401
|
Lieber MR, Ma Y, Pannicke U, Schwarz K. Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol 2003; 4:712-20. [PMID: 14506474 DOI: 10.1038/nrm1202] [Citation(s) in RCA: 712] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Non-homologous DNA end-joining (NHEJ)--the main pathway for repairing double-stranded DNA breaks--functions throughout the cell cycle to repair such lesions. Defects in NHEJ result in marked sensitivity to ionizing radiation and ablation of lymphocytes, which rely on NHEJ to complete the rearrangement of antigen-receptor genes. NHEJ is typically imprecise, a characteristic that is useful for immune diversification in lymphocytes, but which might also contribute to some of the genetic changes that underlie cancer and ageing.
Collapse
Affiliation(s)
- Michael R Lieber
- Norris Comprehensive Cancer Center, Department of Pathology, University of Southern California School of Medicine, 1441 Eastlake Avenue, MS 9176, Los Angeles, California 90089, USA.
| | | | | | | |
Collapse
|
402
|
Baynton K, Otterlei M, Bjørås M, von Kobbe C, Bohr VA, Seeberg E. WRN interacts physically and functionally with the recombination mediator protein RAD52. J Biol Chem 2003; 278:36476-86. [PMID: 12750383 DOI: 10.1074/jbc.m303885200] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Werner syndrome (WS) is a premature aging disorder that predisposes affected individuals to cancer development. The affected gene, WRN, encodes an RecQ homologue whose precise biological function remains elusive. Altered DNA recombination is a hallmark of WS cells suggesting that WRN plays an important role in these pathways. Here we report a novel physical and functional interaction between WRN and the homologous recombination mediator protein RAD52. Fluorescence resonance energy transfer (FRET) analyses show that WRN and RAD52 form a complex in vivo that co-localizes in foci associated with arrested replication forks. Biochemical studies demonstrate that RAD52 both inhibits and enhances WRN helicase activity in a DNA structure-dependent manner, whereas WRN increases the efficiency of RAD52-mediated strand annealing between non-duplex DNA and homologous sequences contained within a double-stranded plasmid. These results suggest that coordinated WRN and RAD52 activities are involved in replication fork rescue after DNA damage.
Collapse
Affiliation(s)
- Kathy Baynton
- Centre for Molecular Biology and Neuroscience, and Institute of Medical Microbiology, University of Oslo, Rikshospitalet, 0027 Oslo, Norway
| | | | | | | | | | | |
Collapse
|
403
|
Kibe T, Tomita K, Matsuura A, Izawa D, Kodaira T, Ushimaru T, Uritani M, Ueno M. Fission yeast Rhp51 is required for the maintenance of telomere structure in the absence of the Ku heterodimer. Nucleic Acids Res 2003; 31:5054-63. [PMID: 12930956 PMCID: PMC212814 DOI: 10.1093/nar/gkg718] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Schizosaccharomyces pombe Ku70-Ku80 heterodimer is required for telomere length regulation. Lack of pku70+ results in telomere shortening and striking rearrangements of telomere-associated sequences. We found that the rearrangements of telomere-associated sequences in pku80+ mutants are Rhp51 dependent, but not Rad50 dependent. Rhp51 bound to telomere ends when the Ku heterodimer was not present at telomere ends. We also found that the single-stranded G-rich tails increased in S phase in wild-type strains, while deletion of pku70+ increased the single-stranded overhang in both G2 and S phase. Based on these observations, we propose that Rhp51 binds to the G-rich overhang and promotes homologous pairing between two different telomere ends in the absence of Ku heterodimer. Moreover, pku80 rhp51 double mutants showed a significantly reduced telomere hybridization signal. Our results suggest that, although Ku heterodimer sequesters Rhp51 from telomere ends to inhibit homologous recombination activity, Rhp51 plays important roles for the maintenance of telomere ends in the absence of the Ku heterodimer.
Collapse
Affiliation(s)
- Tatsuya Kibe
- Department of Chemistry, Shizuoka University, 836 Oya, Shizuoka 422-8529, Japan
| | | | | | | | | | | | | | | |
Collapse
|
404
|
Gallego ME, Bleuyard JY, Daoudal-Cotterell S, Jallut N, White CI. Ku80 plays a role in non-homologous recombination but is not required for T-DNA integration in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 35:557-565. [PMID: 12940949 DOI: 10.1046/j.1365-313x.2003.01827.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Chromosomal breaks are repaired by homologous recombination (HR) or non-homologous end joining (NHEJ) mechanisms. The Ku70/Ku80 heterodimer binds DNA ends and plays roles in NHEJ and telomere maintenance in organisms ranging from yeast to humans. We have previously identified a ku80 mutant of the model plant Arabidopsis thaliana and shown the role of Ku80 in telomere homeostasis in plant cells. We show here that this mutant is hypersensitive to the DNA-damaging agent methyl methane sulphonate and has a reduced capacity to carry out NHEJ recombination. To understand the interplay between HR and NHEJ in plants, we measured HR in the absence of Ku80. We find that the frequency of intrachromosomal HR is not affected by the absence of Ku80. Previous work has clearly implicated the Ku heterodimer in Agrobacterium-mediated T-DNA transformation of yeast. Surprisingly, ku80 mutant plants show no defect in the efficiency of T-DNA transformation of plants with Agrobacterium, showing that an alternative pathway must exist in plants.
Collapse
Affiliation(s)
- M E Gallego
- CNRS UMR 6547, Université Blaise Pascal, 24 avenue des Landais, 63177 Aubière, France
| | | | | | | | | |
Collapse
|
405
|
Rockwood LD, Nussenzweig A, Janz S. Paradoxical decrease in mutant frequencies and chromosomal rearrangements in a transgenic lacZ reporter gene in Ku80 null mice deficient in DNA double strand break repair. Mutat Res 2003; 529:51-8. [PMID: 12943919 DOI: 10.1016/s0027-5107(03)00108-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Repair of DNA double strand breaks (DSB), either by homologous recombination (HR) or nonhomologous end-joining (NHEJ), is essential to maintain genomic stability. To examine the impact of NHEJ deficiency on genomic integrity in Ku80 null (Ku-) mice, the chromosomally integrated shuttle vector pUR288, which includes a lacZ reporter gene, was used to measure mutations in vivo. Unexpectedly, a significant decrease was found in mutant frequencies of Ku- liver (5.04x10(-5)) and brain (4.55x10(-5)) compared to tissues obtained from normal (Ku+) littermates (7.92x10(-5)and 7.30x10(-5), respectively). No significant difference was found in mutant frequencies in spleen from Ku- (7.21x10(-5)) and Ku+ mice (8.16x10(-5)). The determination of the mutant spectrum in lacZ revealed the almost complete absence of chromosomal rearrangements (R) in Ku- tissues (0.5%, 3/616), a notable distinction from Ku+ controls (16.7%, 104/621). These findings suggest that accurate repair of DSB by HR and elimination of cells with unrepaired DNA damage by apoptosis are capable of maintaining genomic stability of the lacZ reporter in Ku- mice.
Collapse
Affiliation(s)
- Lynne D Rockwood
- Laboratory of Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, NCI, Room 2B10, Building 37, Bethesda, MD 20892-4256, USA
| | | | | |
Collapse
|
406
|
Abstract
The BRCA1 gene was identified and cloned in 1994 based its linkage to early onset breast cancer and breast-ovarian cancer syndromes in women. While inherited mutations of BRCA1 are responsible for about 40-45% of hereditary breast cancers, these mutations account for only 2-3% of all breast cancers, since the BRCA1 gene is rarely mutated in sporadic breast cancers. However, BRCA1 expression is frequently reduced or absent in sporadic cancers, suggesting a much wider role in mammary carcinogenesis. Since BRCA1 was cloned in 1994, its molecular function has been the subject of intense investigation. These studies have revealed multiple functions of the BRCA1 that may contribute to its tumor suppressor activity, including roles in: cell cycle progression, several highly specialized DNA repair processes, DNA damage-responsive cell cycle check-points, regulation of a set of specific transcriptional pathways, and apoptosis. Many of these functions are linked to protein:protein interactions involving different portions of the 1,863 amino acid (aa) BRCA1 protein. BRCA1 functions in cell cycle progression and the DNA damage response appear to be regulated by distinct and specific phosphorylation events, but the molecular pathways activated by these phosphorylations are only beginning to be unraveled. In addition, the reason that BRCA1 mutation carriers develop specific tumor types (breast and ovarian cancers in women and possibly prostate cancers in men) is not clearly understood. Elucidation of the precise molecular functions of the BRCA1 gene product will greatly enhance our understanding of the pathogenesis of hereditary as well as sporadic mammary carcinogenesis.
Collapse
Affiliation(s)
- Eliot M Rosen
- Department of Radiation Oncology, Long Island Jewish Medical Center, New York, New York, USA.
| | | | | | | |
Collapse
|
407
|
Zan H, Wu X, Komori A, Holloman WK, Casali P. AID-dependent generation of resected double-strand DNA breaks and recruitment of Rad52/Rad51 in somatic hypermutation. Immunity 2003; 18:727-38. [PMID: 12818155 PMCID: PMC4625537 DOI: 10.1016/s1074-7613(03)00151-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Somatic hypermutation (SHM) of immunoglobulin (Ig) genes appears to involve the generation of double-strand DNA breaks (DSBs) and their error-prone repair. Here we show that DSBs occur at a high frequency in unrearranged (germline) Ig variable (V) genes, BCL6 and c-MYC. These DSBs are blunt, target the mutational RGYW/RGY hotspot, and would be resolved through nonhomologous end-joining, as indicated by the presence of Ku70/Ku86 on these DNA ends. Upon CD40-induced expression of activation-induced cytidine deaminase (AID), DSBs increase in frequency and are resected to yield 5'- and 3'-protruding ends in hypermutating rearranged V genes, BCL6 and translocated c-MYC. 3'-protruding ends would direct DSB repair through homologous recombination, as indicated by their exclusive presence in S/G2 and recruitment of Rad52/Rad51, leading to SHM, upon mispair by error-prone DNA polymerases modulated by crosslinking of the B cell receptor for antigen.
Collapse
Affiliation(s)
- Hong Zan
- Division of Molecular Immunology, Department of Pathology and Laboratory Medicine, Cornell University, New York, New York 10021
- Center for Immunology, School of Biological Sciences and College of Medicine, University of California, Irvine, Irvine, California 92697
| | - Xiaoping Wu
- Division of Molecular Immunology, Department of Pathology and Laboratory Medicine, Cornell University, New York, New York 10021
- Center for Immunology, School of Biological Sciences and College of Medicine, University of California, Irvine, Irvine, California 92697
| | - Atsumasa Komori
- Division of Molecular Immunology, Department of Pathology and Laboratory Medicine, Cornell University, New York, New York 10021
- Center for Immunology, School of Biological Sciences and College of Medicine, University of California, Irvine, Irvine, California 92697
| | - William K. Holloman
- Department of Microbiology and Immunology, Joan and Sanford I. Weill Medical College and Graduate School of Medical Sciences, Cornell University, New York, New York 10021
| | - Paolo Casali
- Division of Molecular Immunology, Department of Pathology and Laboratory Medicine, Cornell University, New York, New York 10021
- Department of Microbiology and Immunology, Joan and Sanford I. Weill Medical College and Graduate School of Medical Sciences, Cornell University, New York, New York 10021
- Center for Immunology, School of Biological Sciences and College of Medicine, University of California, Irvine, Irvine, California 92697
| |
Collapse
|
408
|
Ricchetti M, Dujon B, Fairhead C. Distance from the chromosome end determines the efficiency of double strand break repair in subtelomeres of haploid yeast. J Mol Biol 2003; 328:847-62. [PMID: 12729759 DOI: 10.1016/s0022-2836(03)00315-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Double strand break (DSB) repair plays an important role in chromosome evolution. We have investigated the fate of DSBs as a function of their location along the yeast chromosome XI, in a system where no conventional homologous recombination can occur. We report that the relative frequency of non-homologous endjoining (NHEJ), which is the exclusive mode of DSB repair in the internal chromosomal portion, decreases gradually towards the telomere, keeping the absolute frequency nearly constant, and that other repair mechanisms, which generally involve the loss of the distal chromosomal fragment, appear in subtelomeric regions. Distance of the DSB from chromosome ends plays a critical role in the global frequency of these repair mechanisms. Direct telomere additions are rare, and other events such as break-induced replication, plasmid incorporation, and gene conversion, involve acquisition of heterologous sequences. Therefore, in subtelomeric regions, cell survival to DSBs is higher and alternative modes of repair allow new genomic combinations to be generated. Furthermore, subtelomeric rearrangements depend on the recombination process, which, unexpectedly, also promotes the joining of heterologous sequences. Finally, we report that the Rad52 protein increases the efficiency of NHEJ.
Collapse
Affiliation(s)
- Miria Ricchetti
- Unité de Génétique Moléculaire des Levures, (UFR 927 Univ. P. et M. Curie and URA 2171 CNRS), Structure and Dynamics of Genomes Departement, Institut Pasteur, Paris, France.
| | | | | |
Collapse
|
409
|
Prudden J, Evans JS, Hussey SP, Deans B, O’Neill P, Thacker J, Humphrey T. Pathway utilization in response to a site-specific DNA double-strand break in fission yeast. EMBO J 2003; 22:1419-30. [PMID: 12628934 PMCID: PMC151045 DOI: 10.1093/emboj/cdg119] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have examined the genetic requirements for efficient repair of a site-specific DNA double-strand break (DSB) in Schizosaccharomyces pombe. Tech nology was developed in which a unique DSB could be generated in a non-essential minichromosome, Ch(16), using the Saccharomyces cerevisiae HO-endonuclease and its target site, MATa. DSB repair in this context was predominantly through interchromosomal gene conversion. We found that the homologous recombination (HR) genes rhp51(+), rad22A(+), rad32(+) and the nucleotide excision repair gene rad16(+) were required for efficient interchromosomal gene conversion. Further, DSB-induced cell cycle delay and efficient HR required the DNA integrity checkpoint gene rad3(+). Rhp55 was required for interchromosomal gene conversion; however, an alternative DSB repair mechanism was used in an rhp55Delta background involving ku70(+) and rhp51(+). Surprisingly, DSB-induced minichromosome loss was significantly reduced in ku70Delta and lig4Delta non-homologous end joining (NHEJ) mutant backgrounds compared with wild type. Furthermore, roles for Ku70 and Lig4 were identified in suppressing DSB-induced chromosomal rearrangements associated with gene conversion. These findings are consistent with both competitive and cooperative interactions between components of the HR and NHEJ pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tim Humphrey
- MRC Radiation and Genome Stability Unit, Harwell, Didcot, Oxon OX11 0RD, UK
Corresponding author e-mail:
| |
Collapse
|
410
|
Wang X, Wang H, Iliakis G, Wang Y. Caffeine-induced radiosensitization is independent of nonhomologous end joining of DNA double-strand breaks. Radiat Res 2003; 159:426-32. [PMID: 12600246 DOI: 10.1667/0033-7587(2003)159[0426:ciriio]2.0.co;2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
After exposure to ionizing radiation, proliferating cells actively slow down progression through the cell cycle through the activation of checkpoints to provide time for repair. Two major complementary DNA double-strand break (DSB) repair pathways exist in mammalian cells, homologous recombination repair (HRR) and nonhomologous end joining (NHEJ). The relationship between checkpoint activation and these two types of DNA DSB repair pathways is not clear. Caffeine, as a nonspecific inhibitor of ATM and ATR, abolishes multi-checkpoint responses and sensitizes cells to radiation-induced killing. However, it remains unknown which DNA repair process, NHEJ or HRR, or both, is affected by caffeine-abolished checkpoint responses. We report here that caffeine abolishes the radiation-induced G(2)-phase checkpoint and efficiently sensitizes both NHEJ-proficient and NHEJ-deficient mammalian cells to radiation-induced killing without affecting NHEJ. Our results indicate that caffeine-induced radiosensitization occurs by affecting an NHEJ-independent process, possibly HRR.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Radiation Oncology, Kimmel Cancer Center of Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
411
|
Yu X, Gabriel A. Ku-dependent and Ku-independent end-joining pathways lead to chromosomal rearrangements during double-strand break repair in Saccharomyces cerevisiae. Genetics 2003; 163:843-56. [PMID: 12663527 PMCID: PMC1462499 DOI: 10.1093/genetics/163.3.843] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Chromosomal double-strand breaks (DSBs) can be repaired by either homology-dependent or homology-independent pathways. Nonhomologous repair mechanisms have been relatively less well studied, despite their potential importance in generating chromosomal rearrangements. We have developed a Saccharomyces cerevisiae-based assay to identify and characterize homology-independent chromosomal rearrangements associated with repair of a unique DSB generated within an engineered URA3 gene. Approximately 1% of successfully repaired cells have accompanying chromosomal rearrangements consisting of large insertions, deletions, aberrant gene conversions, or other more complex changes. We have analyzed rearrangements in isogenic wild-type, rad52, yku80, and rad52 yku80 strains, to determine the types of events that occur in the presence or absence of these key repair proteins. Deletions were found in all strain backgrounds, but insertions were dependent upon the presence of Yku80p. A rare RAD52- and YKU80-independent form of deletion was present in all strains. These events were characterized by long one-sided deletions (up to 13 kb) and extensive imperfect overlapping sequences (7-22 bp) at the junctions. Our results demonstrate that the frequency and types of repair events depend on the specific genetic context. This approach can be applied to a number of problems associated with chromosome stability.
Collapse
Affiliation(s)
- Xin Yu
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
412
|
Hamer G, Roepers-Gajadien HL, van Duyn-Goedhart A, Gademan IS, Kal HB, van Buul PPW, Ashley T, de Rooij DG. Function of DNA-protein kinase catalytic subunit during the early meiotic prophase without Ku70 and Ku86. Biol Reprod 2003; 68:717-21. [PMID: 12604618 DOI: 10.1095/biolreprod.102.008920] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
All components of the double-stranded DNA break (DSB) repair complex DNA-dependent protein kinase (DNA-PK), including Ku70, Ku86, and DNA-PK catalytic subunit (DNA-PKcs), were found in the radiosensitive spermatogonia. Although p53 induction was unaffected, spermatogonial apoptosis occurred faster in the irradiated DNA-PKcs-deficient scid testis. This finding suggests that spermatogonial DNA-PK functions in DNA damage repair rather than p53 induction. Despite the fact that early spermatocytes lack the Ku proteins, spontaneous apoptosis of these cells occurred in the scid testis. The majority of these apoptotic spermatocytes were found at stage IV of the cycle of the seminiferous epithelium where a meiotic checkpoint has been suggested to exist. Meiotic synapsis and recombination during the early meiotic prophase induce DSBs, which are apparently less accurately repaired in scid spermatocytes that then fail to pass the meiotic checkpoint. The role for DNA-PKcs during the meiotic prophase differs from that in mitotic cells; it is not influenced by ionizing radiation and is independent of the Ku heterodimer.
Collapse
Affiliation(s)
- Geert Hamer
- Department of Endocrinology, Faculty of Biology, Utrecht University, 3584 CH Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
413
|
Abstract
Gene therapy and the production of mutated cell lines or model animals both require the development of efficient, controlled gene-targeting strategies. Classical approaches are based on the ability of cells to use homologous recombination to integrate exogenous DNA into their own genome. The low frequency of homologous recombination in mammalian cells leads to inefficient targeting. Here, we review the limiting steps of classical approaches and the new strategies developed to improve the efficiency of homologous recombination in gene-targeting experiments.
Collapse
Affiliation(s)
- Elodie Biet
- UMR 2027 CNRS-Institut Curie, bâtiment 110, 15, rue Georges-Clémenceau, 91405 Orsay, France
| | | | | |
Collapse
|
414
|
Stark JM, Jasin M. Extensive loss of heterozygosity is suppressed during homologous repair of chromosomal breaks. Mol Cell Biol 2003; 23:733-43. [PMID: 12509470 PMCID: PMC151548 DOI: 10.1128/mcb.23.2.733-743.2003] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Loss of heterozygosity (LOH) is a common genetic alteration in tumors and often extends several megabases to encompass multiple genetic loci or even whole chromosome arms. Based on marker and karyotype analysis of tumor samples, a significant fraction of LOH events appears to arise from mitotic recombination between homologous chromosomes, reminiscent of recombination during meiosis. As DNA double-strand breaks (DSBs) initiate meiotic recombination, a potential mechanism leading to LOH in mitotically dividing cells is DSB repair involving homologous chromosomes. We therefore sought to characterize the extent of LOH arising from DSB-induced recombination between homologous chromosomes in mammalian cells. To this end, a recombination reporter was introduced into a mouse embryonic stem cell line that has nonisogenic maternal and paternal chromosomes, as is the case in human populations, and then a DSB was introduced into one of the chromosomes. Recombinants involving alleles on homologous chromosomes were readily obtained at a frequency of 4.6 x 10(-5); however, this frequency was substantially lower than that of DSB repair by nonhomologous end joining or the inferred frequency of homologous repair involving sister chromatids. Strikingly, the majority of recombinants had LOH restricted to the site of the DSB, with a minor class of recombinants having LOH that extended to markers 6 kb from the DSB. Furthermore, we found no evidence of LOH extending to markers 1 centimorgan or more from the DSB. In addition, crossing over, which can lead to LOH of a whole chromosome arm, was not observed, implying that there are key differences between mitotic and meiotic recombination mechanisms. These results indicate that extensive LOH is normally suppressed during DSB-induced allelic recombination in dividing mammalian cells.
Collapse
Affiliation(s)
- Jeremy M Stark
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center and Cornell University Graduate School of Medical Sciences, New York, New York 10021, USA
| | | |
Collapse
|
415
|
Skorski T. BCR/ABL regulates response to DNA damage: the role in resistance to genotoxic treatment and in genomic instability. Oncogene 2002; 21:8591-604. [PMID: 12476306 DOI: 10.1038/sj.onc.1206087] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BCR/ABL regulates cell proliferation, apoptosis, differentiation and adhesion. In addition, BCR/ABL can induce resistance to cytostatic drugs and irradiation by modulation of DNA repair mechanisms, cell cycle checkpoints and Bcl-2 protein family members. Upon DNA damage BCR/ABL not only enhances reparation of DNA lesions (e.g. homologous recombination repair), but also prolongs activation of cell cycle checkpoints (e.g. G2/M) providing more time for repair of otherwise lethal lesions. Moreover, by modification of anti-apoptotic members of the Bcl-2 family (e.g. upregulation of Bcl-x(L)) BCR/ABL provides a cytoplasmic 'umbrella' protecting mitochondria from the 'rain' of apoptotic signals coming from the damaged DNA in the nucleus, thus preventing release of cytochrome c and activation of caspases. The unrepaired and/or aberrantly repaired (but not lethal) DNA lesions resulting from spontaneous and/or drug-induced damage can accumulate in BCR/ABL-transformed cells leading to genomic instability and malignant progression of the disease. Inhibition of BCR/ABL kinase activity by STI571 (Gleevec, imatinib mesylate) reverses drug resistance and, in combination with standard chemotherapeutics can exert strong anti-leukemia effect.
Collapse
Affiliation(s)
- Tomasz Skorski
- Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, PA 19122, USA.
| |
Collapse
|
416
|
Karanjawala ZE, Adachi N, Irvine RA, Oh EK, Shibata D, Schwarz K, Hsieh CL, Lieber MR. The embryonic lethality in DNA ligase IV-deficient mice is rescued by deletion of Ku: implications for unifying the heterogeneous phenotypes of NHEJ mutants. DNA Repair (Amst) 2002; 1:1017-26. [PMID: 12531011 DOI: 10.1016/s1568-7864(02)00151-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There are two general pathways by which multicellular eukaryotes repair double-strand DNA breaks (DSB): homologous recombination (HR) and nonhomologous DNA end joining (NHEJ). All mammalian mutants in the NHEJ pathway demonstrate a lack of B and T lymphocytes and ionizing radiation sensitivity. Among these NHEJ mutants, the DNA-PK(cs) and Artemis mutants are the least severe, having no obvious phenotype other than the general defects described above. Ku mutants have an intermediate severity with accelerated senescence. The XRCC4 and DNA ligase IV mutants are the most severe, resulting in embryonic lethality. Here we show that the lethality of DNA ligase IV-deficiency in the mouse can be rescued when Ku86 is also absent. To explain the fact that simultaneous gene mutations in the NHEJ pathway can lead to viability when a single mutant is not viable, we propose a nuclease/ligase model. In this model, disrupted NHEJ is more severe if the Artemis:DNA-PK(cs) nuclease is present in the absence of a ligase, and Ku mutants are of intermediate severity, because the nuclease is less efficient. This model is also consistent with the order of severity in organismal phenotypes; consistent with chromosomal breakage observations reported here; and consistent with the NHEJ mutation identified in radiation sensitive human SCID patients.
Collapse
Affiliation(s)
- Zarir E Karanjawala
- Norris Comprehensive Cancer Center, Rm 5428, Department of Pathology, University of Southern California, Keck School of Medicine, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | |
Collapse
|
417
|
Daboussi F, Dumay A, Delacôte F, Lopez BS. DNA double-strand break repair signalling: the case of RAD51 post-translational regulation. Cell Signal 2002; 14:969-75. [PMID: 12359302 DOI: 10.1016/s0898-6568(02)00052-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
DNA double-strand breaks (DSBs) are the major lethal lesion induced by ionizing radiation or by replication block. However, cells can take advantage of DSB-induced recombination in order to generate genetic diversity in physiological processes such as meiosis and V(D)J recombination. Two main alternative pathways compete for DSB repair: homologous recombination (HR) and non-homologous end-joining (NHEJ). This review will briefly present the mechanisms and the enzymatic complex for HR and NHEJ. The signalling of the DSB through the ATM pathway will be presented. Then, we will focus on the case of the RAD51 protein, which plays a pivotal role in HR and is conserved from bacteria to humans. Post-translational regulation of RAD51 is presented. Two contrasting situations are discussed: one with up-regulation (expression of the oncogene BCR/ABL) and one with a down-regulation (expression of the oncogene BCL-2) of RAD51, associated with apoptosis inhibition and tumour predisposition.
Collapse
Affiliation(s)
- Fayza Daboussi
- UMR CEA/CNRS 217, CEA, Div des Sciences du Vivant, DRR, 60-68 Avenue du Général Leclerc, 92265, Fontenay-aux-Roses, Cedex, France
| | | | | | | |
Collapse
|
418
|
Frank-Vaillant M, Marcand S. Transient stability of DNA ends allows nonhomologous end joining to precede homologous recombination. Mol Cell 2002; 10:1189-99. [PMID: 12453425 DOI: 10.1016/s1097-2765(02)00705-0] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The stability of DNA ends generated by the HO endonuclease in yeast is surprisingly high with a half-life of more than an hour. This transient stability is unaffected by mutations that abolish nonhomologous end joining (NHEJ). The unprocessed ends interact with Yku70p and Yku80p, two proteins required for NHEJ, but not significantly with Rad52p, a protein involved in homologous recombination (HR). Repair of a double-strand break by NHEJ is unaffected by the possibility of HR, although the use of HR is increased in NHEJ-defective cells. Partial in vitro 5' strand processing suppresses NHEJ but not HR. These results show that NHEJ precedes HR temporally, and that the availability of substrate dictates the particular pathway used. We propose that transient stability of DNA ends is a foundation for the permanent stability of telomeres.
Collapse
Affiliation(s)
- Marie Frank-Vaillant
- Laboratoire du Cycle Cellulaire, Service de Biochimie et de Génétique Moléculaire, CEA/Saclay, 91191 Gif sur Yvette Cedex, France
| | | |
Collapse
|
419
|
Erdemir T, Bilican B, Cagatay T, Goding CR, Yavuzer U. Saccharomyces cerevisiae C1D is implicated in both non-homologous DNA end joining and homologous recombination. Mol Microbiol 2002; 46:947-57. [PMID: 12421302 DOI: 10.1046/j.1365-2958.2002.03224.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
C1D is a gamma-irradiation inducible nuclear matrix protein that interacts with and activates the DNA-dependent protein kinase (DNA-PK) that is essential for the repair of the DNA double-strand breaks and V(D)J recombination. Recently, it was demonstrated that C1D can also interact with TRAX and prevent the association of TRAX with Translin, a factor known to bind DNA break-point junctions, and that over expression of C1D can induce p53-dependent apoptosis. Taken together, these findings suggest that mammalian C1D could be involved in maintenance of genome integrity by regulating the activity of proteins involved in DNA repair and recombination. To obtain direct evidence for the biological function of C1D that we show is highly conserved between diverse species, we have analysed the Saccharomyces cerevisiae C1D homologue. We report that the disruption of the YC1D gene results in a temperature sensitivity and that yc1d mutant strains exhibit defects in non-homologous DNA end joining (NHEJ) and accurate DNA repair. In addition, using a novel plasmid-based in vivo recombination assay, we show that yc1d mutant strains are also defective in homologous recombination. These results indicate that YC1D is implicated in both homologous recombination and NHEJ pathways for the repair of DNA double-strand breaks.
Collapse
Affiliation(s)
- Tuba Erdemir
- Bikent University, Molecular Biology and Genetics Department, Ankara, Turkey
| | | | | | | | | |
Collapse
|
420
|
Smogorzewska A, Karlseder J, Holtgreve-Grez H, Jauch A, de Lange T. DNA ligase IV-dependent NHEJ of deprotected mammalian telomeres in G1 and G2. Curr Biol 2002; 12:1635-44. [PMID: 12361565 DOI: 10.1016/s0960-9822(02)01179-x] [Citation(s) in RCA: 290] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Telomeres are required to prevent end-to-end chromosome fusions. End-to-end fusions of metaphase chromosomes are observed in mammalian cells with dysfunctional telomeres due to diminished function of telomere-associated proteins and in cells experiencing extensive attrition of telomeric DNA. However, the molecular nature of these fusions and the mechanism by which they occur have not been elucidated. RESULTS We document that telomere fusions resulting from inhibition of the telomere-protective factor TRF2 are generated by DNA ligase IV-dependent nonhomologous end joining (NHEJ). NHEJ gives rise to covalent ligation of the C strand of one telomere to the G strand of another. Breakage of the resulting dicentric chromosomes results in nonreciprocal translocations, a hallmark of human cancer. Telomere NHEJ took place before and after DNA replication, and both sister telomeres participated in the reaction. Telomere fusions were accompanied by active degradation of the 3' telomeric overhangs. CONCLUSIONS The main threat to dysfunctional mammalian telomeres is degradation of the 3' overhang and subsequent telomere end-joining by DNA ligase IV. The involvement of NHEJ in telomere fusions is paradoxical since the NHEJ factors Ku70/80 and DNA-PKcs are present at telomeres and protect chromosome ends from fusion.
Collapse
Affiliation(s)
- Agata Smogorzewska
- Laboratory for Cell Biology and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
421
|
West CE, Waterworth WM, Story GW, Sunderland PA, Jiang Q, Bray CM. Disruption of the Arabidopsis AtKu80 gene demonstrates an essential role for AtKu80 protein in efficient repair of DNA double-strand breaks in vivo. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 31:517-528. [PMID: 12182708 DOI: 10.1046/j.1365-313x.2002.01370.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Double-strand breaks (DSBs) in DNA may occur spontaneously in the cell or be induced experimentally by gamma-irradiation, and represent one of the most serious threats to genomic integrity. Non-homologous end joining (NHEJ) rather than homologous recombination appears to be the major pathway for DSB repair in humans and plants, and it may also be the major route whereby T-DNA integrates into the plant genome during cell transformation. In yeast and mammals, the exposed ends of damaged DNA are bound with high affinity by a dimer of Ku70 and Ku80 proteins, which protects the ends from exonucleases and juxtaposes the two ends of the DSB, independent of sequence homology. Here we report the functional characterization of Ku70 and Ku80 from Arabidopsis thaliana, and demonstrate that AtKu80 and AtKu70 form a heterodimer with DNA binding activity that is specific for DNA ends. An atku80 knockout mutant shows hypersensitivity to the DNA-damaging agents menadione and bleomycin, consistent with a role for AtKu80 in the repair of DSBs in vivo in Arabidopsis.
Collapse
Affiliation(s)
- Christopher E West
- School of Biological Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | | | | | | | | | | |
Collapse
|
422
|
Brenneman MA, Wagener BM, Miller CA, Allen C, Nickoloff JA. XRCC3 controls the fidelity of homologous recombination: roles for XRCC3 in late stages of recombination. Mol Cell 2002; 10:387-95. [PMID: 12191483 DOI: 10.1016/s1097-2765(02)00595-6] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
XRCC3 is a RAD51 paralog that functions in the repair of DNA double-strand breaks (DSBs) by homologous recombination (HR). XRCC3 mutation causes severe chromosome instability. We find that XRCC3 mutant cells display radically altered HR product spectra, with increased gene conversion tract lengths, increased frequencies of discontinuous tracts, and frequent local rearrangements associated with HR. These results indicate that XRCC3 function is not limited to HR initiation, but extends to later stages in formation and resolution of HR intermediates, possibly by stabilizing heteroduplex DNA. The results further demonstrate that HR defects can promote genomic instability not only through failure to initiate HR (leading to nonhomologous repair) but also through aberrant processing of HR intermediates. Both mechanisms may contribute to carcinogenesis in HR-deficient cells.
Collapse
Affiliation(s)
- Mark A Brenneman
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | | | | | |
Collapse
|
423
|
Delacôte F, Han M, Stamato TD, Jasin M, Lopez BS. An xrcc4 defect or Wortmannin stimulates homologous recombination specifically induced by double-strand breaks in mammalian cells. Nucleic Acids Res 2002; 30:3454-63. [PMID: 12140331 PMCID: PMC137076 DOI: 10.1093/nar/gkf452] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Non-homologous end joining (NHEJ) and homologous recombination (HR) are two alternative/competitor pathways for the repair of DNA double-strand breaks (DSBs). To gain further insights into the regulation of DSB repair, we detail here the different HR pathways affected by (i) the inactivation of DNA-PK activity, by treatment with Wortmannin, and (ii) a mutation in the xrcc4 gene, involved in a late NHEJ step, using the XR-1 cell line. Here we have analyzed not only the impact of NHEJ inactivation on recombination induced by a single DSB targeted to the recombination substrate (using I-SceI endonuclease) but also on gamma-ray- and UV-C-induced and spontaneous recombination and finally on Rad51 foci formation, i.e. on the assembly of the homologous recombination complex, at the molecular level. The results presented here show that in contrast to embryonic stem cells, the xrcc4 mutation strongly stimulates I-SceI-induced HR in adult hamster cells. More precisely, we show here that both single strand annealing and gene conversion are stimulated. In contrast, Wortmannin does not affect I-SceI-induced HR. In addition, gamma-ray-induced recombination is stimulated by both xrcc4 mutation and Wortmannin treatment in an epistatic-like manner. In contrast, neither spontaneous nor UV-C-induced recombination was affected by xrcc4 mutation, showing that the channeling from NHEJ to HR is specific to DSBs. Finally, we show here that xrcc4 mutation or Wortmannin treatment results in a stimulation of Rad51 foci assembly, thus that a late NHEJ step is able to affect Rad51 recombination complex assembly. The present data suggest a model according to which NHEJ and HR do not simply compete for DSB repair but can act sequentially: a defect in a late NHEJ step is not a dead end and can make DSB available for subsequent Rad51 recombination complex assembly.
Collapse
Affiliation(s)
- Fabien Delacôte
- UMR CEA/CNRS 217, CEA, DSV, DRR, 60-68 Avenue du Général Leclerc, F-92265 Fontenay aux Roses Cedex, France
| | | | | | | | | |
Collapse
|
424
|
Karathanasis E, Wilson TE. Enhancement of Saccharomyces cerevisiae end-joining efficiency by cell growth stage but not by impairment of recombination. Genetics 2002; 161:1015-27. [PMID: 12136007 PMCID: PMC1462173 DOI: 10.1093/genetics/161.3.1015] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cells can repair DNA double-strand breaks by both homologous and nonhomologous mechanisms. To explore the basis of pathway utilization, we developed both plasmid and chromosomal yeast repair assays in which breaks are created with restriction endonucleases so that nonhomologous end-joining (NHEJ) competes with the single-strand annealing (SSA) recombination pathway, which we show acts with high efficiency via terminal direct repeats of only 28 bp and with reduced but measurable efficiency at 10 bp. The chromosomal assay utilizes a novel approach termed suicide deletion in which the endonuclease cleaves its own gene from the chromosome, thereby ending the futile cleavage cycle that otherwise prevents detection of simple-religation events. Eliminating SSA as a possibility in either assay, either by removal of the direct repeat or by mutation of RAD52, increased the relative but not the absolute efficiency of NHEJ. In contrast, the apparent efficiency of NHEJ was specifically increased in the G1 stage of the haploid cell cycle, as well as by the glucose depletion-signaled transition to stationary phase. The combined results argue against a model in which pathway utilization is determined by a passive competition. Instead, they demonstrate an active regulation designed to optimize the likelihood of genome restoration based on cell state.
Collapse
Affiliation(s)
- Elissa Karathanasis
- Department of Pathology, University of Michigan Medical School, 1301 Catherine Road, M4214 Med Sci I, Ann Arbor, MI 48109-0602, USA
| | | |
Collapse
|
425
|
Rong YS, Titen SW, Xie HB, Golic MM, Bastiani M, Bandyopadhyay P, Olivera BM, Brodsky M, Rubin GM, Golic KG. Targeted mutagenesis by homologous recombination in D. melanogaster. Genes Dev 2002; 16:1568-81. [PMID: 12080094 PMCID: PMC186348 DOI: 10.1101/gad.986602] [Citation(s) in RCA: 259] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We used a recently developed method to produce mutant alleles of five endogenous Drosophila genes, including the homolog of the p53 tumor suppressor. Transgenic expression of the FLP site-specific recombinase and the I-SceI endonuclease generates extrachromosomal linear DNA molecules in vivo. These molecules undergo homologous recombination with the corresponding chromosomal locus to generate targeted alterations of the host genome. The results address several questions about the general utility of this technique. We show that genes not near telomeres can be efficiently targeted; that no knowledge of the mutant phenotype is needed for targeting; and that insertional mutations and allelic substitutions can be easily produced.
Collapse
Affiliation(s)
- Yikang S Rong
- Department of Biology, University of Utah, Salt Lake City 84112, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
426
|
Araujo FD, Pierce AJ, Stark JM, Jasin M. Variant XRCC3 implicated in cancer is functional in homology-directed repair of double-strand breaks. Oncogene 2002; 21:4176-80. [PMID: 12037675 DOI: 10.1038/sj.onc.1205539] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2001] [Revised: 03/27/2002] [Accepted: 04/02/2002] [Indexed: 11/08/2022]
Abstract
Polymorphisms in DNA repair genes, including double-strand break (DSB) repair genes, are postulated to confer increased cancer risk. A variant of the XRCC3 gene, which is involved in DSB repair, has been associated with increased risk of malignant skin melanoma and bladder cancer. We tested the hypothesis that this variant, Thr241Met, may affect cancer risk by disrupting a critical function of XRCC3, i.e., promoting homology-directed repair (HDR) of chromosomal DSBs. Using a quantitative fluorescence assay, we find that the variant XRCC3 protein is functionally active for HDR, complementing the HDR defects of an XRCC3 mutant cell line as well as the wild-type protein. We also examined cells expressing this variant for sensitivity to the interstrand cross-linking agent, mitomycin C (MMC), as HDR mutant cell lines, including the XRCC3 mutant, have been found to be hypersensitive to this DNA damaging agent. Cells expressing the variant protein were found to be no more sensitive than cells expressing the wild-type protein. These results suggest that the increased cancer risk associated with this variant may not be due to an intrinsic HDR defect.
Collapse
Affiliation(s)
- Felipe D Araujo
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
427
|
Stark JM, Hu P, Pierce AJ, Moynahan ME, Ellis N, Jasin M. ATP hydrolysis by mammalian RAD51 has a key role during homology-directed DNA repair. J Biol Chem 2002; 277:20185-94. [PMID: 11923292 DOI: 10.1074/jbc.m112132200] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Disruption of the gene encoding RAD51, the protein that catalyzes strand exchange during homologous recombination, leads to the accumulation of chromosome breaks and lethality in vertebrate cells. As RAD51 is implicated in BRCA1- and BRCA2-mediated tumor suppression as well as cellular viability, we have begun a functional analysis of a defined RAD51 mutation in mammalian cells. By using a dominant negative approach, we generated a mouse embryonic stem cell line that expresses an ATP hydrolysis-defective RAD51 protein, hRAD51-K133R, at comparable levels to the endogenous wild-type RAD51 protein, whose expression is retained in these cells. We found that these cells have increased sensitivity to the DNA-damaging agents mitomycin C and ionizing radiation and also exhibit a decreased rate of spontaneous sister-chromatid exchange. By using a reporter for the repair of a single chromosomal double-strand break, we also found that expression of the hRAD51-K133R protein specifically inhibits homology-directed double-strand break repair. Furthermore, expression of a BRC repeat from BRCA2, a peptide inhibitor of an early step necessary for strand exchange, exacerbates the inhibition of homology-directed repair in the hRAD51-K133R expressing cell line. Thus, ATP hydrolysis by RAD51 has a key role in various types of DNA repair in mammalian cells.
Collapse
Affiliation(s)
- Jeremy M Stark
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center and Cornell University Graduate School of Medical Sciences, New York, New York 10021
| | | | | | | | | | | |
Collapse
|
428
|
Abstract
Oncogenic tyrosine kinases (OTKs) are involved in the induction of many types of tumour, including haematological malignancies and cancers of the breast, prostate, colon and lung. Neoplastic cells that express OTKs are usually resistant to apoptosis that is induced by DNA-damaging agents, such as cytostatic drugs and irradiation, and they display genomic instability. So, what are the mechanisms involved, and what is the potential for overcoming OTK-mediated resistance in the clinic?
Collapse
Affiliation(s)
- Tomasz Skorski
- Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA.
| |
Collapse
|
429
|
Allen C, Kurimasa A, Brenneman MA, Chen DJ, Nickoloff JA. DNA-dependent protein kinase suppresses double-strand break-induced and spontaneous homologous recombination. Proc Natl Acad Sci U S A 2002; 99:3758-63. [PMID: 11904432 PMCID: PMC122597 DOI: 10.1073/pnas.052545899] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2000] [Indexed: 01/22/2023] Open
Abstract
DNA-dependent protein kinase (DNA-PK), composed of Ku70, Ku80, and the catalytic subunit (DNA-PKcs), is involved in repairing double-strand breaks (DSBs) by nonhomologous end-joining (NHEJ). Certain proteins involved in NHEJ are also involved in DSB repair by homologous recombination (HR). To test the effects of DNA-PKcs on DSB-induced HR, we integrated neo direct repeat HR substrates carrying the I-SceI recognition sequence into DNA-PKcs-defective Chinese hamster ovary (V3) cells. The DNA-PKcs defect was complemented with a human DNA-PKcs cDNA. DSB-induced HR frequencies were 1.5- to 3-fold lower with DNA-PKcs complementation. In complemented and uncomplemented strains, all products arose by gene conversion without associated crossover, and average conversion tract lengths were similar. Suppression of DSB-induced HR in complemented cells probably reflects restoration of NHEJ, consistent with competition between HR and NHEJ during DSB repair. Interestingly, spontaneous HR rates were 1.6- to >3.5-fold lower with DNA-PKcs complementation. DNA-PKcs may suppress spontaneous HR through NHEJ of spontaneous DSBs, perhaps at stalled or blocked replication forks. Because replication protein A (RPA) is involved in both replication and HR, and is phosphorylated by DNA-PKcs, it is possible that the suppression of spontaneous HR by DNA-PKcs reflects regulation of replication-dependent HR by DNA-PKcs, perhaps by means of phosphorylation of RPA.
Collapse
Affiliation(s)
- Chris Allen
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | | | | | |
Collapse
|