401
|
Escamez S, Tuominen H. Programmes of cell death and autolysis in tracheary elements: when a suicidal cell arranges its own corpse removal. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1313-21. [PMID: 24554761 DOI: 10.1093/jxb/eru057] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Tracheary element (TE) differentiation represents a unique system to study plant developmental programmed cell death (PCD). TE PCD occurs after deposition of the secondary cell walls when an unknown signal induces tonoplast rupture and the arrest of cytoplasmic streaming. TE PCD is tightly followed by autolysis of the protoplast and partial hydrolysis of the primary cell walls. This review integrates TE differentiation, programmed cell death (PCD), and autolysis in a biological and evolutionary context. The collective evidence from the evolutionary and molecular studies suggests that TE differentiation consists primarily of a programme for cell death and autolysis under the direct control of the transcriptional master switches VASCULAR NAC DOMAIN 6 (VND6) and VND7. In this scenario, secondary cell walls represent a later innovation to improve the water transport capacity of TEs which necessitates transcriptional regulators downstream of VND6 and VND7. One of the most fascinating features of TEs is that they need to prepare their own corpse removal by expression and accumulation of hydrolases that are released from the vacuole after TE cell death. Therefore, TE differentiation involves, in addition to PCD, a programmed autolysis which is initiated before cell death and executed post-mortem. It has recently become clear that TE PCD and autolysis are separate processes with separate molecular regulation. Therefore, the importance of distinguishing between the cell death programme per se and autolysis in all plant PCD research and of careful description of the morphological, biochemical, and molecular sequences in each of these processes, is advocated.
Collapse
Affiliation(s)
- Sacha Escamez
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90187 Umeå, Sweden
| | | |
Collapse
|
402
|
Furch ACU, Zimmermann MR, Kogel KH, Reichelt M, Mithöfer A. Direct and individual analysis of stress-related phytohormone dispersion in the vascular system of Cucurbita maxima after flagellin 22 treatment. THE NEW PHYTOLOGIST 2014; 201:1176-1182. [PMID: 24387138 DOI: 10.1111/nph.12661] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 11/25/2013] [Indexed: 06/03/2023]
Abstract
• The stress-related phytohormones, salicylic acid (SA) and abscisic acid (ABA), and the three jasmonates, jasmonic acid (JA), cis-12-oxo-phytodienoic acid (cis-OPDA), and (+)-7-iso-jasmonoyl-L-isoleucine (JA-Ile), were investigated in phloem and xylem exudates of Cucurbita maxima. • Phloem and xylem exudates were separately collected and analysed via liquid chromatography-mass spectrometry. • We show direct evidence for all three jasmonates, ABA, and SA in both phloem and xylem exudates of C. maxima. JA and JA-Ile concentrations are higher in xylem (JA: c(xylem) ≈ 199.5 nM, c(phloem) ≈ 43.9 nM; JA-Ile: c(xylem) ≈ 7.9 nM, c(phloem) ≈ 1.6 nM), whereas ABA and SA concentrations are higher in phloem exudates (ABA: c(xylem) ≈ 37.1 nM, c(phloem) ≈ 142.6 nM; SA: c(xylem) ≈ 61.6 nM, c(phloem) ≈ 1319 nM). During bacteria-derived flagellin 22 (flg22)-triggered remote root-to-shoot signalling, phytohormone concentration changed rapidly both in phloem and xylem. • The unequal distribution of phytohormones suggests that phloem and xylem have distinct roles in defence responses. Our data shed light on systemic phytohormone signalling and help explain how plants cope with environmental challenges by lateral exchange between phloem and xylem. Our analysis is a starting point for further investigations of how phytohormones contribute to phloem- and xylem-based defence signalling.
Collapse
Affiliation(s)
- Alexandra C U Furch
- Research Centre for BioSystems, Land Use and Nutrition, Institute of Phytopathology and Applied Zoology, Justus Liebig University, Heinrich-Buff-Ring 26-32, D-35392, Gießen, Germany
| | - Matthias R Zimmermann
- Institute for Botany, Justus Liebig University, Heinrich-Buff-Ring 38, D-35392, Gießen, Germany
| | - Karl-Heinz Kogel
- Research Centre for BioSystems, Land Use and Nutrition, Institute of Phytopathology and Applied Zoology, Justus Liebig University, Heinrich-Buff-Ring 26-32, D-35392, Gießen, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Axel Mithöfer
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| |
Collapse
|
403
|
Zhang Z, Liao H, Lucas WJ. Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:192-220. [PMID: 24417933 DOI: 10.1111/jipb.12163] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/06/2014] [Indexed: 05/18/2023]
Abstract
As an essential plant macronutrient, the low availability of phosphorus (P) in most soils imposes serious limitation on crop production. Plants have evolved complex responsive and adaptive mechanisms for acquisition, remobilization and recycling of phosphate (Pi) to maintain P homeostasis. Spatio-temporal molecular, physiological, and biochemical Pi deficiency responses developed by plants are the consequence of local and systemic sensing and signaling pathways. Pi deficiency is sensed locally by the root system where hormones serve as important signaling components in terms of developmental reprogramming, leading to changes in root system architecture. Root-to-shoot and shoot-to-root signals, delivered through the xylem and phloem, respectively, involving Pi itself, hormones, miRNAs, mRNAs, and sucrose, serve to coordinate Pi deficiency responses at the whole-plant level. A combination of chromatin remodeling, transcriptional and posttranslational events contribute to globally regulating a wide range of Pi deficiency responses. In this review, recent advances are evaluated in terms of progress toward developing a comprehensive understanding of the molecular events underlying control over P homeostasis. Application of this knowledge, in terms of developing crop plants having enhanced attributes for P use efficiency, is discussed from the perspective of agricultural sustainability in the face of diminishing global P supplies.
Collapse
Affiliation(s)
- Zhaoliang Zhang
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, California, 95616, USA
| | | | | |
Collapse
|
404
|
Chen Y, Hao X, Cao J. Small auxin upregulated RNA (SAUR) gene family in maize: identification, evolution, and its phylogenetic comparison with Arabidopsis, rice, and sorghum. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:133-50. [PMID: 24472286 DOI: 10.1111/jipb.12127] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 11/01/2013] [Indexed: 05/19/2023]
Abstract
Small auxin-up RNAs (SAURs) are the early auxin-responsive genes represented by a large multigene family in plants. Here, we identified 79 SAUR gene family members from maize (Zea mays subsp. mays) by a reiterative database search and manual annotation. Phylogenetic analysis indicated that the SAUR proteins from Arabidopsis, rice, sorghum, and maize had divided into 16 groups. These genes were non-randomly distributed across the maize chromosomes, and segmental duplication and tandem duplication contributed to the expansion of the maize SAUR gene family. Synteny analysis established orthology relationships and functional linkages between SAUR genes in maize and sorghum genomes. We also found that the auxin-responsive elements were conserved in the upstream sequences of maize SAUR members. Selection analyses identified some significant site-specific constraints acted on most SAUR paralogs. Expression profiles based on microarray data have provided insights into the possible functional divergence among members of the SAUR gene family. Quantitative real-time PCR analysis indicated that some of the 10 randomly selected ZmSAUR genes could be induced at least in maize shoot or root tissue tested. The results reveal a comprehensive overview of the maize SAUR gene family and may pave the way for deciphering their function during plant development.
Collapse
Affiliation(s)
- Yuzhu Chen
- Institute of Life Science, Jiangsu University, Zhenjiang, 212013, China
| | | | | |
Collapse
|
405
|
Furuta KM, Hellmann E, Helariutta Y. Molecular control of cell specification and cell differentiation during procambial development. ANNUAL REVIEW OF PLANT BIOLOGY 2014; 65:607-38. [PMID: 24579995 DOI: 10.1146/annurev-arplant-050213-040306] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Land plants develop vascular tissues that enable the long-distance transport of water and nutrients in xylem and phloem, provide mechanical support for their vertical growth, and produce cells in radial growth. Vascular tissues are produced in many parts of the plant and during different developmental stages. Early vascular development is focused in procambial meristems, and in some species it continues during the secondary phase of plant development in cambial meristems. In this review, we highlight recent progress in understanding procambial development. This involves the analysis of stem cell-like properties of procambial tissues, specification of xylem and phloem, and differentiation of the conductive tissues. Several major plant hormones, small-RNA species, and transcriptional networks play a role in vascular development. We describe current approaches to integrating these networks as well as their potential role in explaining the diversity and evolution of plant vascular systems.
Collapse
Affiliation(s)
- Kaori Miyashima Furuta
- Institute of Biotechnology and Department of Biology and Environmental Sciences, University of Helsinki, Helsinki FIN-00014, Finland; , ,
| | | | | |
Collapse
|
406
|
Ramírez-Ortega FA, Herrera-Pola PS, Toscano-Morales R, Xoconostle-Cázares B, Ruiz-Medrano R. Overexpression of the pumpkin (Cucurbita maxima) 16 kDa phloem protein CmPP16 increases tolerance to water deficit. PLANT SIGNALING & BEHAVIOR 2014; 9:e973823. [PMID: 25482781 PMCID: PMC4622608 DOI: 10.4161/15592324.2014.973823] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 08/04/2014] [Accepted: 08/06/2014] [Indexed: 05/03/2023]
Abstract
The phloem plays an important role in the delivery of nutrients and signals between photosynthetic to heterotrophic tissues. Proteins and RNAs in the phloem translocation stream may have an important role in maintaining the integrity of the sieve tube system, as well as in long-distance signaling. CmPP16 is a pumpkin phloem protein, which has been shown to bind RNA in a non-sequence specific manner, and move it cell-to-cell and conceivably, long-distance. The protein and RNA are found in both companion cell (CC) and sieve elements (SE). However, a more precise function for this protein is not known. In this work we report the overexpression of CmPP16 fused to GFP via transformation of pumpkin (Cucurbita maxima cv. Big Max) plants in the cotyledonary stage by direct inoculation of Agrobacterium tumefaciens and Agrobacterium rhizogenes. Plants overexpressing CmPP16 did not show an obvious phenotype. However, these plants displayed higher photosynthetic capacity during drought than wild-type (WT) pumpkin or transformed with another construct. These results suggest that CmPP16 may be involved in the response to stress through long-distance signaling.
Collapse
Affiliation(s)
| | - Paul Starsky Herrera-Pola
- Dpto. de Biotecnología y Bioingeniería; CINVESTAV-IPN; Col. San Pedro Zacatenco; México D.F., México
| | - Roberto Toscano-Morales
- Dpto. de Biotecnología y Bioingeniería; CINVESTAV-IPN; Col. San Pedro Zacatenco; México D.F., México
| | | | - Roberto Ruiz-Medrano
- Dpto. de Biotecnología y Bioingeniería; CINVESTAV-IPN; Col. San Pedro Zacatenco; México D.F., México
| |
Collapse
|
407
|
Ramírez-Ortega FA, Herrera-Pola PS, Toscano-Morales R, Xoconostle-Cázares B, Ruiz-Medrano R. Overexpression of the pumpkin (Cucurbita maxima) 16 kDa phloem protein CmPP16 increases tolerance to water deficit. PLANT SIGNALING & BEHAVIOR 2014. [PMID: 25482781 DOI: 10.4161/15592324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The phloem plays an important role in the delivery of nutrients and signals between photosynthetic to heterotrophic tissues. Proteins and RNAs in the phloem translocation stream may have an important role in maintaining the integrity of the sieve tube system, as well as in long-distance signaling. CmPP16 is a pumpkin phloem protein, which has been shown to bind RNA in a non-sequence specific manner, and move it cell-to-cell and conceivably, long-distance. The protein and RNA are found in both companion cell (CC) and sieve elements (SE). However, a more precise function for this protein is not known. In this work we report the overexpression of CmPP16 fused to GFP via transformation of pumpkin (Cucurbita maxima cv. Big Max) plants in the cotyledonary stage by direct inoculation of Agrobacterium tumefaciens and Agrobacterium rhizogenes. Plants overexpressing CmPP16 did not show an obvious phenotype. However, these plants displayed higher photosynthetic capacity during drought than wild-type (WT) pumpkin or transformed with another construct. These results suggest that CmPP16 may be involved in the response to stress through long-distance signaling.
Collapse
|
408
|
Chu H, Liang W, Li J, Hong F, Wu Y, Wang L, Wang J, Wu P, Liu C, Zhang Q, Xu J, Zhang D. A CLE-WOX signalling module regulates root meristem maintenance and vascular tissue development in rice. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5359-5369. [PMID: 24043854 DOI: 10.1093/jxb/ert301] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
CLAVATA3 (CLV3)/ENDOSPERM SURROUNDING REGION (ESR)-related (CLE) proteins belong to a small peptide family conserved in plants. Recent studies in Arabidopsis and rice have revealed a key role for CLEs in mediating cell-cell communication and stem cell maintenance during plant development, but how CLE signalling controls root development in the rice remains largely unknown. Here it is shown that exogenous application of a synthetic dodeca-amino acid peptide corresponding to the CLE motif of the rice FON2-LIKE CLE PROTEIN2 (FCP2p) protein or overexpression of FCP2 terminates root apical meristem (RAM) activity and impairs late metaxylem formation. FCP2p treatment suppresses the expression of the rice QUIESCENT-CENTER-SPECIFIC HOMEOBOX (QHB) gene, a putative orthologue of Arabidopsis WUSCHEL (WUS)-RELATED HOMEOBOX 5 (WOX5) gene, in both quiescent centre and late metaxylem cells; whereas inducible overexpression of QHB reduces the sensitivity of rice to FCP2p treatment. These results together suggest that in rice RAM maintenance and late metaxylem development are probably controlled by the mutual regulation between FCP2 and QHB. Moreover, a cross-species peptide treatment experiment in Arabidopsis implies that FCP2 has both evolutionarily conserved and species-specific roles in root development.
Collapse
Affiliation(s)
- Huangwei Chu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
409
|
Gardiner J. Evolutionary basins of attraction and convergence in plants and animals. Commun Integr Biol 2013; 6:e26760. [PMID: 24505506 PMCID: PMC3914912 DOI: 10.4161/cib.26760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/09/2013] [Indexed: 11/19/2022] Open
Abstract
Living organisms evolve, in part, according to the underlying properties of the amino acids and other compounds of which they are composed. Thus there are evolutionary basins of attraction that living organisms will tend to evolve toward. These processes are complex and probably beyond our current capabilities to fully envisage. But progress is being made toward an understanding of such principles by efforts to catalog protein folds and protein–protein interactions. Even plants and animals show convergent evolution, possibly driven by underlying evolutionary basins of attraction. Physical and chemical parameters and the properties of proteins present in the last common ancestor of these 2 taxa, including a putative connexin ancestor, may have played key roles here. Thus evolution is perhaps not as random as is sometimes depicted, but will follow predefined pathways. Here I address convergent evolution in plants and animals beginning at the molecular level and progressing to the organismic one.
Collapse
Affiliation(s)
- John Gardiner
- The School of Biological Sciences; The University of Sydney; Camperdown, NSW Australia
| |
Collapse
|
410
|
Aloni R. Role of hormones in controlling vascular differentiation and the mechanism of lateral root initiation. PLANTA 2013; 238:819-30. [PMID: 23835810 DOI: 10.1007/s00425-013-1927-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 06/28/2013] [Indexed: 05/21/2023]
Abstract
The vascular system in plants is induced and controlled by streams of inductive hormonal signals. Auxin produced in young leaves is the primary controlling signal in vascular differentiation. Its polar and non-polar transport pathways and major controlling mechanisms are clarified. Ethylene produced in differentiating protoxylem vessels is the signal that triggers lateral root initiation, while tumor-induced ethylene is a limiting and controlling factor of crown gall development and its vascular differentiation. Gibberellin produced in mature leaves moves non-polarly and promotes elongation, regulates cambium activity and induces long fibers. Cytokinin from the root cap moves upward to promote cambial activity and stimulate shoot growth and branching, while strigolactone from the root inhibits branching. Furthermore, the role of the hormonal signals in controlling the type of differentiating vascular elements and gradients of conduit size and density, and how they regulate plant adaptation and have shaped wood evolution are elucidated.
Collapse
Affiliation(s)
- Roni Aloni
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, 69978, Tel Aviv, Israel,
| |
Collapse
|
411
|
Hinojosa-Moya JJ, Xoconostle-Cázares B, Toscano-Morales R, Ramírez-Ortega F, Luis Cabrera-Ponce J, Ruiz-Medrano R. Characterization of the pumpkin Translationally-Controlled Tumor Protein CmTCTP. PLANT SIGNALING & BEHAVIOR 2013; 8:e26477. [PMID: 24065051 PMCID: PMC4091340 DOI: 10.4161/psb.26477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 09/13/2013] [Indexed: 05/17/2023]
Abstract
In higher plants, the phloem plays a central role in the delivery of nutrients and signals from source to sink tissues. These signals likely coordinate different aspects of plant development, as well as its response to environmental cues. Although some phloem-transported proteins and RNAs may function as signaling molecules in plants, their mode of action remains poorly understood. Previous analysis of transcripts from CMV-infected pumpkin (Cucurbita maxima cv Big Max) identified a Translationally-Controlled Tumor Protein (TCTP) mRNA homolog, designated CmTCTP. In the present work this transcript was analyzed in terms of its expression pattern. This RNA accumulates, both in healthy and CMV-infected plants, in developing and mature phloem in petiole and roots, as well as in apices at high levels. The protein was present at lower levels in most cell types, and almost no signal was detected in apices, suggesting translational regulation of this RNA. Additionally, CmTCTP harbored by Agrobacterium rhizogenes is capable of inducing whole plant regeneration. These data suggest a role for CmTCTP in growth regulation, possibly through long-distance signaling.
Collapse
Affiliation(s)
- J Jesús Hinojosa-Moya
- Departamento de Biotecnología y Bioingeniería; CINVESTAV- IPN; Zacatenco, D.F. Mexico
- Facultad de Ingeniería Química; Benemérita Universidad Autónoma de Puebla; Colonia San Manuel; Ciudad Universitaria; Puebla, México
| | | | | | | | - José Luis Cabrera-Ponce
- Departamento de Ingeniería Genética de Plantas; CINVESTAV-IPN Unidad Guanajuato; Irapuato, Guanajuato México
| | - Roberto Ruiz-Medrano
- Departamento de Biotecnología y Bioingeniería; CINVESTAV- IPN; Zacatenco, D.F. Mexico
| |
Collapse
|
412
|
Sawchuk MG, Scarpella E. Polarity, continuity, and alignment in plant vascular strands. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:824-834. [PMID: 23773763 DOI: 10.1111/jipb.12086] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/04/2013] [Indexed: 06/02/2023]
Abstract
Plant vascular cells are joined end to end along uninterrupted lines to connect shoot organs with roots; vascular strands are thus polar, continuous, and internally aligned. What controls the formation of vascular strands with these properties? The "auxin canalization hypothesis"-based on positive feedback between auxin flow through a cell and the cell's capacity for auxin transport-predicts the selection of continuous files of cells that transport auxin polarly, thus accounting for the polarity and continuity of vascular strands. By contrast, polar, continuous auxin transport-though required-is insufficient to promote internal alignment of vascular strands, implicating additional factors. The auxin canalization hypothesis was derived from the response of mature tissue to auxin application but is consistent with molecular and cellular events in embryo axis formation and shoot organ development. Objections to the hypothesis have been raised based on vascular organizations in callus tissue and shoot organs but seem unsupported by available evidence. Other objections call instead for further research; yet the inductive and orienting influence of auxin on continuous vascular differentiation remains unique.
Collapse
Affiliation(s)
- Megan G Sawchuk
- Department of Biological Sciences, University of Alberta, Edmonton Alberta, Canada, T6G 2E9
| | | |
Collapse
|
413
|
Grieneisen VA, Marée AFM, Ostergaard L. Juicy stories on female reproductive tissue development: coordinating the hormone flows. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:847-63. [PMID: 23869979 DOI: 10.1111/jipb.12092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 07/07/2013] [Indexed: 05/07/2023]
Abstract
In the past 20-30 years, developmental biologists have made tremendous progress in identifying genes required for the specification of individual cell types of an organ and in describing how they interact in genetic networks. In comparison, very little is known about the mechanisms that regulate tissue polarity and overall organ patterning. Gynoecia and fruits from members of the Brassicaceae family of flowering plants provide excellent model systems to study organ patterning and tissue specification because they become partitioned into distinct domains whose formation is determined by polarity establishment both at a cellular and whole tissue level. Interactions among key regulators of Arabidopsis gynoecium and fruit development have revealed a network of upstream transcription factor activities required for such tissue differentiation. Regulation of the plant hormone auxin is emerging as both an immediate downstream output and input of these activities, and here we aim to provide an overview of the current knowledge regarding the link between auxin and female reproductive development in plants. In this review, we will also demonstrate how available data can be exploited in a mathematical modeling approach to reveal and understand the feedback regulatory circuits that underpin the polarity establishment, necessary to guide auxin flows.
Collapse
Affiliation(s)
- Verônica A Grieneisen
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | | |
Collapse
|
414
|
Hussey SG, Mizrachi E, Creux NM, Myburg AA. Navigating the transcriptional roadmap regulating plant secondary cell wall deposition. FRONTIERS IN PLANT SCIENCE 2013; 4:325. [PMID: 24009617 PMCID: PMC3756741 DOI: 10.3389/fpls.2013.00325] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/31/2013] [Indexed: 05/17/2023]
Abstract
The current status of lignocellulosic biomass as an invaluable resource in industry, agriculture, and health has spurred increased interest in understanding the transcriptional regulation of secondary cell wall (SCW) biosynthesis. The last decade of research has revealed an extensive network of NAC, MYB and other families of transcription factors regulating Arabidopsis SCW biosynthesis, and numerous studies have explored SCW-related transcription factors in other dicots and monocots. Whilst the general structure of the Arabidopsis network has been a topic of several reviews, they have not comprehensively represented the detailed protein-DNA and protein-protein interactions described in the literature, and an understanding of network dynamics and functionality has not yet been achieved for SCW formation. Furthermore the methodologies employed in studies of SCW transcriptional regulation have not received much attention, especially in the case of non-model organisms. In this review, we have reconstructed the most exhaustive literature-based network representations to date of SCW transcriptional regulation in Arabidopsis. We include a manipulable Cytoscape representation of the Arabidopsis SCW transcriptional network to aid in future studies, along with a list of supporting literature for each documented interaction. Amongst other topics, we discuss the various components of the network, its evolutionary conservation in plants, putative modules and dynamic mechanisms that may influence network function, and the approaches that have been employed in network inference. Future research should aim to better understand network function and its response to dynamic perturbations, whilst the development and application of genome-wide approaches such as ChIP-seq and systems genetics are in progress for the study of SCW transcriptional regulation in non-model organisms.
Collapse
Affiliation(s)
| | | | | | - Alexander A. Myburg
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of PretoriaPretoria, South Africa
| |
Collapse
|
415
|
Kachroo A, Robin GP. Systemic signaling during plant defense. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:527-33. [PMID: 23870750 DOI: 10.1016/j.pbi.2013.06.019] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/24/2013] [Accepted: 06/25/2013] [Indexed: 05/18/2023]
Abstract
Systemic acquired resistance (SAR) is a type of pathogen-induced broad-spectrum resistance in plants. During SAR, primary infection-induced rapid generation and transportation of mobile signal(s) 'prepare' the rest of the plant for subsequent infections. Several, seemingly unrelated, mobile chemical inducers of SAR have been identified, at least two of which function in a feed-back regulatory loop with a lipid transfer-like protein. Signal(s) perception in the systemic tissues relies on the presence of an intact cuticle, the waxy layer covering all aerial parts of the plant. SAR results in chromatin modifications, which prime systemic tissues for enhanced and rapid signaling derived from salicylic acid, which along with its signaling components is key for SAR induction. This review summarizes recent findings related to SAR signal generation, movement, and perception.
Collapse
Affiliation(s)
- Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, United States.
| | | |
Collapse
|
416
|
Martínez-Navarro AC, Galván-Gordillo SV, Xoconostle-Cázares B, Ruiz-Medrano R. Vascular gene expression: a hypothesis. FRONTIERS IN PLANT SCIENCE 2013; 4:261. [PMID: 23882276 PMCID: PMC3713349 DOI: 10.3389/fpls.2013.00261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/26/2013] [Indexed: 05/05/2023]
Abstract
The phloem is the conduit through which photoassimilates are distributed from autotrophic to heterotrophic tissues and is involved in the distribution of signaling molecules that coordinate plant growth and responses to the environment. Phloem function depends on the coordinate expression of a large array of genes. We have previously identified conserved motifs in upstream regions of the Arabidopsis genes, encoding the homologs of pumpkin phloem sap mRNAs, displaying expression in vascular tissues. This tissue-specific expression in Arabidopsis is predicted by the overrepresentation of GA/CT-rich motifs in gene promoters. In this work we have searched for common motifs in upstream regions of the homologous genes from plants considered to possess a "primitive" vascular tissue (a lycophyte), as well as from others that lack a true vascular tissue (a bryophyte), and finally from chlorophytes. Both lycophyte and bryophyte display motifs similar to those found in Arabidopsis with a significantly low E-value, while the chlorophytes showed either a different conserved motif or no conserved motif at all. These results suggest that these same genes are expressed coordinately in non-vascular plants; this coordinate expression may have been one of the prerequisites for the development of conducting tissues in plants. We have also analyzed the phylogeny of conserved proteins that may be involved in phloem function and development. The presence of CmPP16, APL, FT, and YDA in chlorophytes suggests the recruitment of ancient regulatory networks for the development of the vascular tissue during evolution while OPS is a novel protein specific to vascular plants.
Collapse
|
417
|
Li S, Chen M, Yu D, Ren S, Sun S, Liu L, Ketelaar T, Emons AMC, Liu CM. EXO70A1-mediated vesicle trafficking is critical for tracheary element development in Arabidopsis. THE PLANT CELL 2013; 25:1774-86. [PMID: 23709627 PMCID: PMC3694705 DOI: 10.1105/tpc.113.112144] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 04/20/2013] [Accepted: 05/14/2013] [Indexed: 05/18/2023]
Abstract
Exocysts are highly conserved octameric complexes that play an essential role in the tethering of Golgi-derived vesicles to target membranes in eukaryotic organisms. Genes encoding the EXO70 subunit are highly duplicated in plants. Based on expression analyses, we proposed previously that individual EXO70 members may provide the exocyst with functional specificity to regulate cell type- or cargo-specific exocytosis, although direct evidence is not available. Here, we show that, as a gene expressed primarily during tracheary element (TE) development, EXO70A1 regulates vesicle trafficking in TE differentiation in Arabidopsis thaliana. Mutations of EXO70A1 led to aberrant xylem development, producing dwarfed and nearly sterile plants with very low fertility, reduced cell expansion, and decreased water potential and hydraulic transport. Grafting of a mutant shoot onto wild-type rootstock rescued most of these aboveground phenotypes, while grafting of a wild-type shoot to the mutant rootstock did not rescue the short root hair phenotype, consistent with the role of TEs in hydraulic transport from roots to shoots. Histological analyses revealed an altered pattern of secondary cell wall thickening and accumulation of large membrane-bound compartments specifically in developing TEs of the mutant. We thus propose that EXO70A1 functions in vesicle trafficking in TEs to regulate patterned secondary cell wall thickening.
Collapse
Affiliation(s)
- Shipeng Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Laboratory of Cell Biology, Wageningen University, 6708PB Wageningen, The Netherlands
- Department of Life Science, Qilu Normal University, Jinan 250013, China
| | - Min Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Dali Yu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Department of Life Science, Qilu Normal University, Jinan 250013, China
| | - Shichao Ren
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Shufeng Sun
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Linde Liu
- College of Life Science, Ludong University, Yantai 264025, China
| | - Tijs Ketelaar
- Laboratory of Cell Biology, Wageningen University, 6708PB Wageningen, The Netherlands
| | - Anne-Mie C. Emons
- Laboratory of Cell Biology, Wageningen University, 6708PB Wageningen, The Netherlands
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Address correspondence to
| |
Collapse
|