401
|
Elert-Dobkowska E, Stepniak I, Krysa W, Rajkiewicz M, Rakowicz M, Sobanska A, Rudzinska M, Wasielewska A, Pilch J, Kubalska J, Lipczynska-Lojkowska W, Kulczycki J, Kurdziel K, Sikorska A, Beetz C, Zaremba J, Sulek A. Molecular spectrum of the SPAST, ATL1 and REEP1 gene mutations associated with the most common hereditary spastic paraplegias in a group of Polish patients. J Neurol Sci 2015; 359:35-9. [PMID: 26671083 DOI: 10.1016/j.jns.2015.10.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/15/2015] [Accepted: 10/13/2015] [Indexed: 12/14/2022]
Abstract
Hereditary spastic paraplegias (HSPs) consist of a heterogeneous group of genetically determined neurodegenerative disorders. Progressive lower extremity weakness and spasticity are the prominent features of HSPs resulting from retrograde axonal degeneration of the corticospinal tracts. Three genetic types, SPG3 (ATL1), SPG4 (SPAST) and SPG31 (REEP1), appear predominantly and may account for up to 50% of autosomal dominant hereditary spastic paraplegias (AD-HSPs). Here, we present the results of genetic testing of the three mentioned SPG genetic types in a group of 216 unrelated Polish patients affected with spastic paraplegia. Molecular evaluation was performed by multiplex ligation-dependent probe amplification (MLPA) and DNA sequencing. Nineteen novel mutations: 13 in SPAST, 4 in ATL1 and 2 in REEP1, were identified among overall 50 different mutations detected in 57 families. Genetic analysis resulted in the identification of molecular defects in 54% of familial and 8.4% of isolated cases. Our research expanded the causative mutations spectrum of the three most common genetic forms of HSPs found in a large cohort of probands originating from the Central Europe.
Collapse
Affiliation(s)
| | - Iwona Stepniak
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Wioletta Krysa
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Marta Rajkiewicz
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Maria Rakowicz
- Department of Clinical Neurophysiology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Anna Sobanska
- Department of Clinical Neurophysiology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Monika Rudzinska
- Department of Neurology, Medical University of Silesia, Katowice, Poland
| | | | - Jacek Pilch
- Department of Pediatric Neurology, Medical University of Silesia, Katowice, Poland
| | - Jolanta Kubalska
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | | | - Jerzy Kulczycki
- First Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Katarzyna Kurdziel
- Department of Pediatric Neurology, St. Ludwig's Children Hospital, Krakow, Poland
| | - Agata Sikorska
- Department of Genetics and Animal Breeding, University of Life Sciences, Poznan, Poland
| | - Christian Beetz
- Department of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, Jena, Germany
| | - Jacek Zaremba
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland; Division Five of Medical Sciences, Polish Academy of Science, Warsaw, Poland
| | - Anna Sulek
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland.
| |
Collapse
|
402
|
McGurk L, Berson A, Bonini NM. Drosophila as an In Vivo Model for Human Neurodegenerative Disease. Genetics 2015; 201:377-402. [PMID: 26447127 PMCID: PMC4596656 DOI: 10.1534/genetics.115.179457] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/19/2015] [Indexed: 12/13/2022] Open
Abstract
With the increase in the ageing population, neurodegenerative disease is devastating to families and poses a huge burden on society. The brain and spinal cord are extraordinarily complex: they consist of a highly organized network of neuronal and support cells that communicate in a highly specialized manner. One approach to tackling problems of such complexity is to address the scientific questions in simpler, yet analogous, systems. The fruit fly, Drosophila melanogaster, has been proven tremendously valuable as a model organism, enabling many major discoveries in neuroscientific disease research. The plethora of genetic tools available in Drosophila allows for exquisite targeted manipulation of the genome. Due to its relatively short lifespan, complex questions of brain function can be addressed more rapidly than in other model organisms, such as the mouse. Here we discuss features of the fly as a model for human neurodegenerative disease. There are many distinct fly models for a range of neurodegenerative diseases; we focus on select studies from models of polyglutamine disease and amyotrophic lateral sclerosis that illustrate the type and range of insights that can be gleaned. In discussion of these models, we underscore strengths of the fly in providing understanding into mechanisms and pathways, as a foundation for translational and therapeutic research.
Collapse
Affiliation(s)
- Leeanne McGurk
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Amit Berson
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Nancy M Bonini
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
403
|
Lynch DS, Koutsis G, Tucci A, Panas M, Baklou M, Breza M, Karadima G, Houlden H. Hereditary spastic paraplegia in Greece: characterisation of a previously unexplored population using next-generation sequencing. Eur J Hum Genet 2015; 24:857-63. [PMID: 26374131 DOI: 10.1038/ejhg.2015.200] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/04/2015] [Accepted: 08/07/2015] [Indexed: 11/09/2022] Open
Abstract
Hereditary Spastic Paraplegia (HSP) is a syndrome characterised by lower limb spasticity, occurring alone or in association with other neurological manifestations, such as cognitive impairment, seizures, ataxia or neuropathy. HSP occurs worldwide, with different populations having different frequencies of causative genes. The Greek population has not yet been characterised. The purpose of this study was to describe the clinical presentation and molecular epidemiology of the largest cohort of HSP in Greece, comprising 54 patients from 40 families. We used a targeted next-generation sequencing (NGS) approach to genetically assess a proband from each family. We made a genetic diagnosis in >50% of cases and identified 11 novel variants. Variants in SPAST and KIF5A were the most common causes of autosomal dominant HSP, whereas SPG11 and CYP7B1 were the most common cause of autosomal recessive HSP. We identified a novel variant in SPG11, which led to disease with later onset and may be unique to the Greek population and report the first nonsense mutation in KIF5A. Interestingly, the frequency of HSP mutations in the Greek population, which is relatively isolated, was very similar to other European populations. We confirm that NGS approaches are an efficient diagnostic tool and should be employed early in the assessment of HSP patients.
Collapse
Affiliation(s)
- David S Lynch
- Department of Molecular Neuroscience, The National Hospital for Neurology and Neurosurgery, UCL Institute of Neurology, London, UK.,The Leonard Wolfson Experimental Neurology Centre, The National Hospital for Neurology and Neurosurgery, UCL Institute of Neurology, London, UK
| | - Georgios Koutsis
- Neurogenetics Unit, 1st Department of Neurology, School of Medicine, University of Athens, Athens, Greece
| | - Arianna Tucci
- Department of Molecular Neuroscience, The National Hospital for Neurology and Neurosurgery, UCL Institute of Neurology, London, UK.,Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy.,Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milano, Italy
| | - Marios Panas
- Neurogenetics Unit, 1st Department of Neurology, School of Medicine, University of Athens, Athens, Greece
| | - Markella Baklou
- Neurogenetics Unit, 1st Department of Neurology, School of Medicine, University of Athens, Athens, Greece
| | - Marianthi Breza
- Neurogenetics Unit, 1st Department of Neurology, School of Medicine, University of Athens, Athens, Greece
| | - Georgia Karadima
- Neurogenetics Unit, 1st Department of Neurology, School of Medicine, University of Athens, Athens, Greece
| | - Henry Houlden
- Department of Molecular Neuroscience, The National Hospital for Neurology and Neurosurgery, UCL Institute of Neurology, London, UK.,Neurogenetics Laboratory, The National Hospital for Neurology and Neurosurgery, UCL Institute of Neurology, London, UK
| |
Collapse
|
404
|
Bargiela D, Yu-Wai-Man P, Keogh M, Horvath R, Chinnery PF. Prevalence of neurogenetic disorders in the North of England. Neurology 2015; 85:1195-201. [PMID: 26341866 PMCID: PMC4607600 DOI: 10.1212/wnl.0000000000001995] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/28/2015] [Indexed: 12/04/2022] Open
Abstract
Objective: Genetic disorders enter the differential diagnosis of common neurologic diseases, but their overall prevalence is not known. We set out to determine their minimum prevalence. Methods: Meta-analysis of epidemiologic data gathered from the same geographic region in the North of England. Results: Monogenic neurologic disorders affect at least 90.9/100,000 (95% confidence interval 87.6–94.3), or 1 in 1,100 of the population in Northern England. Conclusion: As a group, neurogenetic disorders are not rare. These findings have implications for clinical service delivery.
Collapse
Affiliation(s)
- David Bargiela
- From the Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Patrick Yu-Wai-Man
- From the Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Michael Keogh
- From the Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Rita Horvath
- From the Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Patrick F Chinnery
- From the Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
405
|
Solowska JM, Baas PW. Hereditary spastic paraplegia SPG4: what is known and not known about the disease. Brain 2015; 138:2471-84. [PMID: 26094131 DOI: 10.1093/brain/awv178] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 05/02/2015] [Indexed: 01/11/2023] Open
Abstract
Mutations in more than 70 distinct loci and more than 50 mutated gene products have been identified in patients with hereditary spastic paraplegias, a diverse group of neurological disorders characterized predominantly, but not exclusively, by progressive lower limb spasticity and weakness resulting from distal degeneration of corticospinal tract axons. Mutations in the SPAST (previously known as SPG4) gene that encodes the microtubule-severing protein called spastin, are the most common cause of the disease. The aetiology of the disease is poorly understood, but partial loss of microtubule-severing activity resulting from inactivating mutations in one SPAST allele is the most postulated explanation. Microtubule severing is important for regulating various aspects of the microtubule array, including microtubule number, length, and mobility. In addition, higher numbers of dynamic plus-ends of microtubules, resulting from microtubule-severing events, may play a role in endosomal tubulation and fission. Even so, there is growing evidence that decreased severing of microtubules does not fully explain HSP-SPG4. The presence of two translation initiation codons in SPAST allows synthesis of two spastin isoforms: a full-length isoform called M1 and a slightly shorter isoform called M87. M87 is more abundant in both neuronal and non-neuronal tissues. Studies on rodents suggest that M1 is only readily detected in adult spinal cord, which is where nerve degeneration mainly occurs in humans with HSP-SPG4. M1, due to its hydrophobic N-terminal domain not shared by M87, may insert into endoplasmic reticulum membrane, and together with reticulons, atlastin and REEP1, may play a role in the morphogenesis of this organelle. Some mutated spastins may act in dominant-negative fashion to lower microtubule-severing activity, but others have detrimental effects on neurons without further lowering microtubule severing. The observed adverse effects on microtubule dynamics, axonal transport, endoplasmic reticulum, and endosomal trafficking are likely caused not only by diminished severing of microtubules, but also by neurotoxicity of mutant spastin proteins, chiefly M1. Some large deletions in SPAST might also affect the function of adjacent genes, further complicating the aetiology of the disease.
Collapse
Affiliation(s)
- Joanna M Solowska
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | - Peter W Baas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| |
Collapse
|
406
|
Gray and white matter alterations in hereditary spastic paraplegia type SPG4 and clinical correlations. J Neurol 2015; 262:1961-71. [PMID: 26050637 DOI: 10.1007/s00415-015-7791-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 12/14/2022]
Abstract
Hereditary spastic paraplegias (HSP) are a group of clinically and genetically heterogeneous disorders with the hallmark of progressive spastic gait disturbance. We used advanced neuroimaging to identify brain regions involved in SPG4, the most common HSP genotype. Additionally, we analyzed correlations between imaging and clinical findings. We performed 3T MRI scans including isotropic high-resolution 3D T1, T2-FLAIR, and DTI sequences in 15 adult patients with genetically confirmed SPG4 and 15 age- and sex-matched healthy controls. Brain volume loss of gray and white matter was evaluated through voxel-based morphometry (VBM) for supra- and infratentorial regions separately. DTI maps of axial diffusivity (AD), radial diffusivity (RD), mean diffusivity (MD), fractional anisotropy (FA), and measured anisotropy (MA1) were analyzed through tract-based special statistics (TBSS). VBM and TBSS revealed a widespread affection of gray and white matter in SPG4 including the corpus callosum, medio-dorsal thalamus, parieto-occipital regions, upper brainstem, cerebellum, and corticospinal tract. Significant correlations with correlation coefficients r > 0.6 between clinical data and DTI findings could be demonstrated for disease duration and disease severity as assessed by the spastic paraplegia rating scale for the pontine crossing tract (AD) and the corpus callosum (RD and FA). Imaging also provided evidence that SPG4 underlies a primarily axonal rather than demyelinating damage in accordance with post-mortem data. DTI is an attractive tool to assess subclinical affection in SPG4. The correlation of imaging findings with disease duration and severity suggests AD, RD, and FA as potential progression markers in interventional studies.
Collapse
|
407
|
Kumar KR, Blair NF, Sue CM. An Update on the Hereditary Spastic Paraplegias: New Genes and New Disease Models. Mov Disord Clin Pract 2015; 2:213-223. [PMID: 30838228 DOI: 10.1002/mdc3.12184] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/24/2015] [Accepted: 03/19/2015] [Indexed: 02/07/2023] Open
Abstract
Aims The hereditary spastic paraplegias (HSPs) are a heterogeneous group of disorders characterized by spasticity in the lower limbs. We provide an overview of HSP with an emphasis on recent developments. Methods A PubMed search using the term "hereditary spastic paraplegia" and "hereditary spastic paraparesis" was conducted for a period from January 2012 to January 2015. We discuss and critique the major studies in the field over this 36-month period. Results A total of 346 publications were identified, of which 47 were selected for review. We provide an update of the common forms of HSP and include patient videos. We also discuss how next-generation sequencing (NGS) has led to the accelerated discovery of new HSP genes, including B4GALNT1,DDHD1, C19orf12,GBA2,TECPR2,DDHD2, C12orf65,REEP2, and IBA57. Moreover, a single study alone identified 18 previously unknown putative HSP genes and created a model for the protein interactions of HSP, called the "HSPome." Many of the newly reported genes cause rare, complicated, autosomal recessive forms of HSP. NGS also has important clinical applications by facilitating the molecular diagnosis of HSP. Furthermore, common genetic forms of HSP have been studied using new disease models, such as neurons derived from induced pluripotent stem cells. These models have been used to elucidate important disease mechanisms and have served as platforms to screen for candidate drug compounds. Conclusion The field of HSP research has been progressing at a rapid pace. The challenge remains in translating these advances into new targeted disease therapies.
Collapse
Affiliation(s)
- Kishore R Kumar
- Departments of Neurology and Neurogenetics Kolling Institute of Medical Research and Royal North Shore Hospital University of Sydney Sydney New South Wales Australia
| | - Nicholas F Blair
- Departments of Neurology and Neurogenetics Kolling Institute of Medical Research and Royal North Shore Hospital University of Sydney Sydney New South Wales Australia
| | - Carolyn M Sue
- Departments of Neurology and Neurogenetics Kolling Institute of Medical Research and Royal North Shore Hospital University of Sydney Sydney New South Wales Australia
| |
Collapse
|
408
|
Kim JS, Cho JW. Hereditary Cerebellar Ataxias: A Korean Perspective. J Mov Disord 2015; 8:67-75. [PMID: 26090078 PMCID: PMC4460542 DOI: 10.14802/jmd.15006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/14/2015] [Accepted: 04/16/2015] [Indexed: 12/28/2022] Open
Abstract
Hereditary ataxia is a heterogeneous disorder characterized by progressive ataxia combined with/without peripheral neuropathy, extrapyramidal symptoms, pyramidal symptoms, seizure, and multiple systematic involvements. More than 35 autosomal dominant cerebellar ataxias have been designated as spinocerebellar ataxia, and there are 55 recessive ataxias that have not been named systematically. Conducting genetic sequencing to confirm a diagnosis is difficult due to the large amount of subtypes with phenotypic overlap. The prevalence of hereditary ataxia can vary among countries, and estimations of prevalence and subtype frequencies are necessary for planning a diagnostic strategy in a specific population. This review covers the various hereditary ataxias reported in the Korean population with a focus on the prevalence and subtype frequencies as the clinical characteristics of the various subtypes.
Collapse
Affiliation(s)
- Ji Sun Kim
- Department of Neurology, Soonchunhyang University Hospital, Soonchunhyang University School of Medicine, Seoul, Korea
| | - Jin Whan Cho
- Department of Neurology, Sungkyunkwan University School of Medicine, Seoul, Korea ; Neuroscience Center, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
409
|
Klebe S, Stevanin G, Depienne C. Clinical and genetic heterogeneity in hereditary spastic paraplegias: from SPG1 to SPG72 and still counting. Rev Neurol (Paris) 2015; 171:505-30. [PMID: 26008818 DOI: 10.1016/j.neurol.2015.02.017] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/10/2015] [Accepted: 02/19/2015] [Indexed: 12/11/2022]
Abstract
Hereditary spastic paraplegias (HSPs) are genetically determined neurodegenerative disorders characterized by progressive weakness and spasticity of lower limbs, and are among the most clinically and genetically heterogeneous human diseases. All modes of inheritance have been described, and the recent technological revolution in molecular genetics has led to the identification of 76 different spastic gait disease-loci with 59 corresponding spastic paraplegia genes. Autosomal recessive HSP are usually associated with diverse additional features (referred to as complicated forms), contrary to autosomal dominant HSP, which are mostly pure. However, the identification of additional mutations and families has considerably enlarged the clinical spectra, and has revealed a huge clinical variability for almost all HSP; complicated forms have also been described for primary pure HSP subtypes, adding further complexity to the genotype-phenotype correlations. In addition, the introduction of next generation sequencing in clinical practice has revealed a genetic and phenotypic overlap with other neurodegenerative disorders (amyotrophic lateral sclerosis, neuropathies, cerebellar ataxias, etc.) and neurodevelopmental disorders, including intellectual disability. This review aims to describe the most recent advances in the field and to provide genotype-phenotype correlations that could help clinical diagnoses of this heterogeneous group of disorders.
Collapse
Affiliation(s)
- S Klebe
- Department of neurology, university hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - G Stevanin
- Sorbonne universités, UPMC université Paris 06, 91-105, boulevard de l'Hôpital, 75013 Paris, France; ICM, CNRS UMR 7225, Inserm U 1127, 47/83, boulevard de l'Hôpital, 75013 Paris, France; École pratique des hautes études, 4-14, rue Ferrus, 75014 Paris, France; Département de génétique, AP-HP, hôpital Pitié-Salpêtrière, 47/83, boulevard de l'Hôpital, 75013 Paris, France
| | - C Depienne
- Sorbonne universités, UPMC université Paris 06, 91-105, boulevard de l'Hôpital, 75013 Paris, France; ICM, CNRS UMR 7225, Inserm U 1127, 47/83, boulevard de l'Hôpital, 75013 Paris, France; Département de génétique, AP-HP, hôpital Pitié-Salpêtrière, 47/83, boulevard de l'Hôpital, 75013 Paris, France.
| |
Collapse
|
410
|
Delving into the complexity of hereditary spastic paraplegias: how unexpected phenotypes and inheritance modes are revolutionizing their nosology. Hum Genet 2015; 134:511-38. [PMID: 25758904 PMCID: PMC4424374 DOI: 10.1007/s00439-015-1536-7] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 02/23/2015] [Indexed: 12/11/2022]
Abstract
Hereditary spastic paraplegias (HSP) are rare neurodegenerative diseases sharing the degeneration of the corticospinal tracts as the main pathological characteristic. They are considered one of the most heterogeneous neurological disorders. All modes of inheritance have been described for the 84 different loci and 67 known causative genes implicated up to now. Recent advances in molecular genetics have revealed clinico-genetic heterogeneity of these disorders including their clinical and genetic overlap with other diseases of the nervous system. The systematic analysis of a large set of genes, including exome sequencing, is unmasking unusual phenotypes or inheritance modes associated with mutations in HSP genes and related genes involved in various neurological diseases. A new nosology may emerge after integration and understanding of these new data to replace the current classification. Collectively, functions of the known genes implicate the disturbance of intracellular membrane dynamics and trafficking as the consequence of alterations of cytoskeletal dynamics, lipid metabolism and organelle structures, which represent in fact a relatively small number of cellular processes that could help to find common curative approaches, which are still lacking.
Collapse
|
411
|
Theadom A, Rodrigues M, Roxburgh R, Balalla S, Higgins C, Bhattacharjee R, Jones K, Krishnamurthi R, Feigin V. Prevalence of muscular dystrophies: a systematic literature review. Neuroepidemiology 2014; 43:259-68. [PMID: 25532075 DOI: 10.1159/000369343] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/19/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Determining the prevalence of neuromuscular disorders for the general population is important to identify the scope of burden on society and enable comparisons with other health conditions. This systematic review aims to identify and collate the findings of studies published between 1960 and 2013 on the prevalence of all types of muscular dystrophies. SUMMARY Relevant articles were identified through electronic database searches and manual searches of reference lists. There were 38 articles from across 19 countries that met the inclusion criteria. The total combined prevalence for all muscular dystrophies for studies classified as having a low risk of bias ranged between 19.8 and 25.1 per 100,000 person-years. Myotonic dystrophy (0.5-18.1 per 100,000), Duchenne muscular dystrophy (1.7-4.2) and facioscapulohumeral muscular dystrophy (3.2-4.6 per 100,000) were found to be the most common types of disorder. There was wide variation in study methodology, case ascertainment, and verification procedures and populations studied, all of which may contribute to the wide prevalence range, in addition to the likely variation in prevalence by country. Key Messages: Greater consistency in the conduct and reporting of neuroepidemiological studies is urgently needed to enable comparisons to be made between studies, countries, and over time.
Collapse
Affiliation(s)
- Alice Theadom
- National Institute for Stroke and Applied Neuroscience, Auckland University of Technology, Auckland, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
412
|
Hensiek A, Kirker S, Reid E. Diagnosis, investigation and management of hereditary spastic paraplegias in the era of next-generation sequencing. J Neurol 2014; 262:1601-12. [PMID: 25480570 PMCID: PMC4503825 DOI: 10.1007/s00415-014-7598-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 11/25/2014] [Indexed: 12/11/2022]
Abstract
The hereditary spastic paraplegias (HSPs) are a group of genetic conditions in which spastic paralysis of the legs is the principal clinical feature. This is caused by a relatively selective distal axonal degeneration involving the longest axons of the corticospinal tracts. Consequently, these conditions provide an opportunity to identify genes, proteins and cellular pathways that are critical for axonal health. In this review, we will provide a brief overview of the classification, clinical features and genetics of HSP, highlighting selected HSP subtypes (i.e. those associated with thin corpus callosum or cerebellar ataxia) that are of particular clinical interest. We will then discuss appropriate investigation strategies for HSPs, suggesting how these might evolve with the introduction of next-generation sequencing technology. Finally, we will discuss the management of HSP, an area somewhat neglected by HSP research.
Collapse
Affiliation(s)
- Anke Hensiek
- Department of Neurology, Cambridge University Hospitals NHS Trust, Addenbrooke’s Biomedical Campus, Cambridge, UK
| | - Stephen Kirker
- Addenbrooke’s Rehabilitation Clinic, Cambridge University Hospitals NHS Trust, Addenbrooke’s Biomedical Campus, Cambridge, UK
| | - Evan Reid
- Cambridge Institute for Medical Research, University of Cambridge, Addenbrooke’s Biomedical Campus, Cambridge, CB2 0XY UK
- Department of Medical Genetics, University of Cambridge, Addenbrooke’s Biomedical Campus, Cambridge, UK
| |
Collapse
|
413
|
Role of dynamic and mitochondrial mutations in neurodegenerative diseases with ataxia: lower repeats and LNAs at multiple loci as alternative pathogenesis. J Mol Neurosci 2014; 54:837-47. [PMID: 25303857 DOI: 10.1007/s12031-014-0431-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 09/24/2014] [Indexed: 10/24/2022]
Abstract
Spinocerebellar ataxia is a growing group of hereditary neurodegenerative diseases for which ≥30 different genetic loci have been identified. In this study, we assessed the repeats at eight spinocerebellar ataxia (SCA) loci in 188 clinical SCA patients and 100 individuals without any neurological signs. Results from the present study were able to identify 16/188 (8.5%) clinical ataxia patients with repeat expansions in the pathological range of SCA genes, with the majority having expansion at the SCA1, 2, and 3 loci. The present study further evaluated two mitochondrial mutations associated with ataxia, i.e., T8993G and A8344G. Six patients were identified with A8344G mutation and none had the mutation in ATPase 6 gene; however, G8994A variation was found in three cases. Overall, three cases had triplet repeat expansions as well as mitochondrial (mt) mutations, which indicates potential association of triplet repeat expansions and mitochondrial mutations. Both the molecular analysis of several SCA loci and two relevant mt mutations indicated that the majority of ataxia cases were still undiagnosed; hence, the following hypotheses were proposed and tested based on available data: (i) lower repeats than normal range and (ii) large normal alleles (LNAs) at multiple loci may be an alternative basis for disease pathogenesis.
Collapse
|
414
|
Lo Giudice T, Lombardi F, Santorelli FM, Kawarai T, Orlacchio A. Hereditary spastic paraplegia: clinical-genetic characteristics and evolving molecular mechanisms. Exp Neurol 2014; 261:518-39. [PMID: 24954637 DOI: 10.1016/j.expneurol.2014.06.011] [Citation(s) in RCA: 246] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 06/07/2014] [Accepted: 06/12/2014] [Indexed: 12/12/2022]
Abstract
Hereditary spastic paraplegia (HSP) is a group of clinically and genetically heterogeneous neurological disorders characterized by pathophysiologic hallmark of length-dependent distal axonal degeneration of the corticospinal tracts. The prominent features of this pathological condition are progressive spasticity and weakness of the lower limbs. To date, 72 spastic gait disease-loci and 55 spastic paraplegia genes (SPGs) have been identified. All modes of inheritance (autosomal dominant, autosomal recessive, and X-linked) have been described. Recently, a late onset spastic gait disorder with maternal trait of inheritance has been reported, as well as mutations in genes not yet classified as spastic gait disease. Several cellular processes are involved in its pathogenesis, such as membrane and axonal transport, endoplasmic reticulum membrane modeling and shaping, mitochondrial function, DNA repair, autophagy, and abnormalities in lipid metabolism and myelination processes. Moreover, recent evidences have been found about the impairment of endosome membrane trafficking in vesicle formation and about the involvement of oxidative stress and mtDNA polymorphisms in the onset of the disease. Interactome networks have been postulated by bioinformatics and biological analyses of spastic paraplegia genes, which would contribute to the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Temistocle Lo Giudice
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC) - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy; Dipartimento di Medicina dei Sistemi, Università di Roma "Tor Vergata", Rome, Italy
| | - Federica Lombardi
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC) - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy
| | - Filippo Maria Santorelli
- Unità Operativa Complessa di Medicina Molecolare, Neurogenetica e Malattie Neurodegenerative, IRCCS Stella Maris, Pisa, Italy
| | - Toshitaka Kawarai
- Department of Clinical Neuroscience, Institute of Health Biosciences, Graduate School of Medicine, University of Tokushima, Tokushima, Japan
| | - Antonio Orlacchio
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC) - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy; Dipartimento di Medicina dei Sistemi, Università di Roma "Tor Vergata", Rome, Italy.
| |
Collapse
|