401
|
Sun J, Ming L, Shang F, Shen L, Chen J, Jin Y. Apocynin suppression of NADPH oxidase reverses the aging process in mesenchymal stem cells to promote osteogenesis and increase bone mass. Sci Rep 2015; 5:18572. [PMID: 26686764 PMCID: PMC4685263 DOI: 10.1038/srep18572] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 11/20/2015] [Indexed: 11/18/2022] Open
Abstract
Because of the reduced potential for osteogenesis in aging bone marrow stromal cells, the balance of bone metabolism becomes disrupted, leading to various bone diseases. An increase in reactive oxygen species has been determined to be one of the key factors that accelerates the aging process in BMSCs. In these cells, increased expression of NADPH oxidases is the major source of ROS. In the current study, we suppressed the expression of NOX using apocynin, an effective antioxidant and free radical scavenger, and the results showed that aging BMSCs exhibited an enhanced potential for osteogenesis. The expression of potential key targets influencing this reversal was evaluated using qRT-PCR, and the expression of p53 was shown to be reduced with the suppression of NOX. We speculate that this may be one of the major reasons for the reversal of the aging process. We also examined the effect of apocynin in vivo, and the results showed that in SAMP6 mice, bone mineral density and total bone volume were increased after 3 months of apocynin treatment. In conclusion, our results demonstrate that in aging BMSCs, suppression of NADPH oxidase by apocynin partially reverses the aging process and enhances osteogenic potential.
Collapse
Affiliation(s)
- Jinlong Sun
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi' an, Shaanxi 710032, PR China.,State Key Laboratory of Military Stomatology, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Leiguo Ming
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.,State Key Laboratory of Military Stomatology, Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.,Institute for Tissue Engineering and Regenerative Medicine Research of Xi'an, Xi'an, Shaanxi, 710032, China
| | - Fengqing Shang
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.,State Key Laboratory of Military Stomatology, Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Lijuan Shen
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi' an, Shaanxi 710032, PR China
| | - Jihua Chen
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi' an, Shaanxi 710032, PR China
| | - Yan Jin
- State Key Laboratory of Military Stomatology, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.,State Key Laboratory of Military Stomatology, Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.,Institute for Tissue Engineering and Regenerative Medicine Research of Xi'an, Xi'an, Shaanxi, 710032, China
| |
Collapse
|
402
|
Application of Green Tea Catechin for Inducing the Osteogenic Differentiation of Human Dedifferentiated Fat Cells in Vitro. Int J Mol Sci 2015; 16:27988-8000. [PMID: 26602917 PMCID: PMC4691028 DOI: 10.3390/ijms161226081] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 12/21/2022] Open
Abstract
Despite advances in stem cell biology, there are few effective techniques to promote the osteogenic differentiation of human primary dedifferentiated fat (DFAT) cells. We attempted to investigate whether epigallocatechin-3-gallate (EGCG), the main component of green tea catechin, facilitates early osteogenic differentiation and mineralization on DFAT cells in vitro. DFAT cells were treated with EGCG (1.25-10 μM) in osteogenic medium (OM) with or without 100 nM dexamethasone (Dex) for 12 days (hereafter two osteogenic media were designated as OM(Dex) and OM). Supplementation of 1.25 μM EGCG to both the media effectively increased the mRNA expression of collagen 1 (COL1A1) and runt-related transcription factor 2 (RUNX2) and also increased proliferation and mineralization. Compared to OM(Dex) with EGCG, OM with EGCG induced earlier expression for COL1A1 and RUNX2 at day 1 and higher mineralization level at day 12. OM(Dex) with 10 μM EGCG remarkably hampered the proliferation of the DFAT cells. These results suggest that OM(without Dex) with EGCG might be a preferable medium to promote proliferation and to induce osteoblast differentiation of DFAT cells. Our findings provide an insight for the combinatory use of EGCG and DFAT cells for bone regeneration and stem cell-based therapy.
Collapse
|
403
|
Aurrekoetxea M, Garcia-Gallastegui P, Irastorza I, Luzuriaga J, Uribe-Etxebarria V, Unda F, Ibarretxe G. Dental pulp stem cells as a multifaceted tool for bioengineering and the regeneration of craniomaxillofacial tissues. Front Physiol 2015; 6:289. [PMID: 26528190 PMCID: PMC4607862 DOI: 10.3389/fphys.2015.00289] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/01/2015] [Indexed: 02/06/2023] Open
Abstract
Dental pulp stem cells, or DPSC, are neural crest-derived cells with an outstanding capacity to differentiate along multiple cell lineages of interest for cell therapy. In particular, highly efficient osteo/dentinogenic differentiation of DPSC can be achieved using simple in vitro protocols, making these cells a very attractive and promising tool for the future treatment of dental and periodontal diseases. Among craniomaxillofacial organs, the tooth and salivary gland are two such cases in which complete regeneration by tissue engineering using DPSC appears to be possible, as research over the last decade has made substantial progress in experimental models of partial or total regeneration of both organs, by cell recombination technology. Moreover, DPSC seem to be a particularly good choice for the regeneration of nerve tissues, including injured or transected cranial nerves. In this context, the oral cavity appears to be an excellent testing ground for new regenerative therapies using DPSC. However, many issues and challenges need yet to be addressed before these cells can be employed in clinical therapy. In this review, we point out some important aspects on the biology of DPSC with regard to their use for the reconstruction of different craniomaxillofacial tissues and organs, with special emphasis on cranial bones, nerves, teeth, and salivary glands. We suggest new ideas and strategies to fully exploit the capacities of DPSC for bioengineering of the aforementioned tissues.
Collapse
Affiliation(s)
- Maitane Aurrekoetxea
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country Leioa, Spain
| | - Patricia Garcia-Gallastegui
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country Leioa, Spain
| | - Igor Irastorza
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country Leioa, Spain
| | - Jon Luzuriaga
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country Leioa, Spain
| | - Verónica Uribe-Etxebarria
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country Leioa, Spain
| | - Fernando Unda
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country Leioa, Spain
| | - Gaskon Ibarretxe
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country Leioa, Spain
| |
Collapse
|
404
|
Del Angel-Mosqueda C, Gutiérrez-Puente Y, López-Lozano AP, Romero-Zavaleta RE, Mendiola-Jiménez A, Medina-De la Garza CE, Márquez-M M, De la Garza-Ramos MA. Epidermal growth factor enhances osteogenic differentiation of dental pulp stem cells in vitro. Head Face Med 2015; 11:29. [PMID: 26334535 PMCID: PMC4558932 DOI: 10.1186/s13005-015-0086-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/17/2015] [Indexed: 01/09/2023] Open
Abstract
Introduction Epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) play an important role in extracellular matrix mineralization, a complex process required for proper bone regeneration, one of the biggest challenges in dentistry. The purpose of this study was to evaluate the osteogenic potential of EGF and bFGF on dental pulp stem cells (DPSCs). Material and methods Human DPSCs were isolated using CD105 magnetic microbeads and characterized by flow cytometry. To induce osteoblast differentiation, the cells were cultured in osteogenic medium supplemented with EGF or bFGF at a low concentration. Cell morphology and expression of CD146 and CD10 surface markers were analyzed using fluorescence microscopy. To measure mineralization, an alizarin red S assay was performed and typical markers of osteoblastic phenotype were evaluated by RT-PCR. Results EGF treatment induced morphological changes and suppression of CD146 and CD10 markers. Additionally, the cells were capable of producing calcium deposits and increasing the mRNA expression to alkaline phosphatase (ALP) and osteocalcin (OCN) in relation to control groups (p < 0.001). However, bFGF treatment showed an inhibitory effect. Conclusion These data suggests that DPSCs in combination with EGF could be an effective stem cell-based therapy for bone tissue engineering applications in periodontics and oral implantology.
Collapse
Affiliation(s)
- Casiano Del Angel-Mosqueda
- Unidad de Odontología Integral y Especialidades, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México. .,Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México. .,Facultad de Odontología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México.
| | - Yolanda Gutiérrez-Puente
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México. .,Departamento de Química, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México.
| | - Ada Pricila López-Lozano
- Unidad de Odontología Integral y Especialidades, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México. .,Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México. .,Facultad de Odontología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México.
| | - Ricardo Emmanuel Romero-Zavaleta
- Unidad de Odontología Integral y Especialidades, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México.
| | | | - Carlos Eduardo Medina-De la Garza
- Unidad de Odontología Integral y Especialidades, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México. .,Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México.
| | - Marcela Márquez-M
- Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México. .,Department of Oncology-Pathology, CCK, Karolinska Institutet, Stockholm, Sweden.
| | - Myriam Angélica De la Garza-Ramos
- Unidad de Odontología Integral y Especialidades, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México. .,Facultad de Odontología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México.
| |
Collapse
|
405
|
Zhou X, Feng W, Qiu K, Chen L, Wang W, Nie W, Mo X, He C. BMP-2 Derived Peptide and Dexamethasone Incorporated Mesoporous Silica Nanoparticles for Enhanced Osteogenic Differentiation of Bone Mesenchymal Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2015; 7:15777-15789. [PMID: 26133753 DOI: 10.1021/acsami.5b02636] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Bone morphogenetic protein-2 (BMP-2), a growth factor that induces osteoblast differentiation and promotes bone regeneration, has been extensively investigated in bone tissue engineering. The peptides of bioactive domains, corresponding to residues 73-92 of BMP-2 become an alternative to reduce adverse side effects caused by the use of high doses of BMP-2 protein. In this study, BMP-2 peptide functionalized mesoporous silica nanoparticles (MSNs-pep) were synthesized by covalently grafting BMP-2 peptide on the surface of nanoparticles via an aminosilane linker, and dexamethasone (DEX) was then loaded into the channel of MSNs to construct nanoparticulate osteogenic delivery systems (DEX@MSNs-pep). The in vitro cell viability of MSNs-pep was tested with bone mesenchymal stem cells (BMSCs) exposure to different particle concentrations, revealing that the functionalized MSNs had better cytocompatibility than their bare counterparts, and the cellular uptake efficiency of MSNs-pep was remarkably larger than that of bare MSNs. The in vitro results also show that the MSNs-pep promoted osteogenic differentiation of BMSCs in terms of the levels of alkaline phosphatase (ALP) activity, calcium deposition, and expression of bone-related protein. Moreover, the osteogenic differentiation of BMSCs can be further enhanced by incorporating of DEX into MSNs-pep. After intramuscular implantation in rats for 3 weeks, the computed tomography (CT) images and histological examination indicate that this nanoparticulate osteogenic delivery system induces effective osteoblast differentiation and bone regeneration in vivo. Collectively, the BMP-2 peptide and DEX incorporated MSNs can act synergistically to enhance osteogenic differentiation of BMSCs, which have potential applications in bone tissue engineering.
Collapse
Affiliation(s)
- Xiaojun Zhou
- †College of Chemistry, Chemical Engineering and Biotechnology; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
- ‡College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Wei Feng
- ‡College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Kexin Qiu
- †College of Chemistry, Chemical Engineering and Biotechnology; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
- ‡College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Liang Chen
- ‡College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Weizhong Wang
- ‡College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Wei Nie
- ‡College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiumei Mo
- †College of Chemistry, Chemical Engineering and Biotechnology; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
- ‡College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chuanglong He
- †College of Chemistry, Chemical Engineering and Biotechnology; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
- ‡College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
406
|
Yiang GT, Chen JN, Wu TK, Wang HF, Hung YT, Chang WJ, Chen C, Wei CW, Yu YL. Ascorbic acid inhibits TPA-induced HL-60 cell differentiation by decreasing cellular H₂O₂ and ERK phosphorylation. Mol Med Rep 2015; 12:5501-7. [PMID: 26238149 DOI: 10.3892/mmr.2015.4091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 05/27/2015] [Indexed: 11/06/2022] Open
Abstract
Retinoic acid (RA), vitamin D and 12-O‑tetradecanoyl phorbol-13-acetate (TPA) can induce HL-60 cells to differentiate into granulocytes, monocytes and macrophages, respectively. Similar to RA and vitamin D, ascorbic acid also belongs to the vitamin family. High‑dose ascorbic acid (>100 µM) induces HL‑60 cell apoptosis and induces a small fraction of HL‑60 cells to express the granulocyte marker, CD66b. In addition, ascorbic acid exerts an anti‑oxidative stress function. Oxidative stress is required for HL‑60 cell differentiation following treatment with TPA, however, the effect of ascorbic acid on HL‑60 cell differentiation in combination with TPA treatment remains to be fully elucidated. The aim of the present study was to investigate the cellular effects of ascorbic acid treatment on TPA-differentiated HL-60 cells. TPA-differentiated HL-60 cells were used for this investigation, this study and the levels of cellular hydrogen peroxide (H2O2), caspase activity and ERK phosphorylation were determined following combined treatment with TPA and ascorbic acid. The results demonstrated that low‑dose ascorbic acid (5 µM) reduced the cellular levels of H2O2 and inhibited the differentiation of HL‑60 cells into macrophages following treatment with TPA. In addition, the results of the present study further demonstrated that low‑dose ascorbic acid inactivates the ERK phosphorylation pathway, which inhibited HL‑60 cell differentiation following treatment with TPA.
Collapse
Affiliation(s)
- Giou-Teng Yiang
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan, R.O.C
| | - Jen-Ni Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan, R.O.C
| | - Tsai-Kun Wu
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung 404, Taiwan, R.O.C
| | - Hsueh-Fang Wang
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Taichung 433, Taiwan, R.O.C
| | - Yu-Ting Hung
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Taichung 433, Taiwan, R.O.C
| | - Wei-Jung Chang
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Chinshuh Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan, R.O.C
| | - Chyou-Wei Wei
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Taichung 433, Taiwan, R.O.C
| | - Yung-Luen Yu
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung 404, Taiwan, R.O.C
| |
Collapse
|
407
|
Chronopoulou L, Amalfitano A, Palocci C, Nocca G, Callà C, Arcovito A. Dexamethasone-loaded biopolymeric nanoparticles promote gingival fibroblasts differentiation. Biotechnol Prog 2015; 31:1381-7. [DOI: 10.1002/btpr.2141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/04/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Laura Chronopoulou
- Dept. of Chemistry; Sapienza University of Rome; Piazzale a. Moro 5 Rome 00185 Italy
| | - Adriana Amalfitano
- Dept. of Chemistry; Sapienza University of Rome; Piazzale a. Moro 5 Rome 00185 Italy
| | - Cleofe Palocci
- Dept. of Chemistry; Sapienza University of Rome; Piazzale a. Moro 5 Rome 00185 Italy
| | - Giuseppina Nocca
- Inst. of Biochemistry and Clinical Biochemistry, Faculty of Medicine, Università Cattolica Del Sacro Cuore; L.Go F. Vito 1 Rome 00168 Italy
- Inst. of Chemistry of Molecular Recognition; C.N.R., C/O L.Go F. Vito 1 Rome 00168 Italy
| | - Cinzia Callà
- Inst. of Biochemistry and Clinical Biochemistry, Faculty of Medicine, Università Cattolica Del Sacro Cuore; L.Go F. Vito 1 Rome 00168 Italy
| | - Alessandro Arcovito
- Inst. of Biochemistry and Clinical Biochemistry, Faculty of Medicine, Università Cattolica Del Sacro Cuore; L.Go F. Vito 1 Rome 00168 Italy
- Centro Di Ricrca Sulle Biotecnologie Applicate Alla Cosmetologia (CRBA); Università Cattolica Del Sacro Cuore; L.Go F. Vito 1 Rome 00168 Italy
| |
Collapse
|
408
|
Croes M, Oner FC, Kruyt MC, Blokhuis TJ, Bastian O, Dhert WJA, Alblas J. Proinflammatory Mediators Enhance the Osteogenesis of Human Mesenchymal Stem Cells after Lineage Commitment. PLoS One 2015; 10:e0132781. [PMID: 26176237 PMCID: PMC4503569 DOI: 10.1371/journal.pone.0132781] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 06/18/2015] [Indexed: 01/09/2023] Open
Abstract
Several inflammatory processes underlie excessive bone formation, including chronic inflammation of the spine, acute infections, or periarticular ossifications after trauma. This suggests that local factors in these conditions have osteogenic properties. Mesenchymal stem cells (MSCs) and their differentiated progeny contribute to bone healing by synthesizing extracellular matrix and inducing mineralization. Due to the variation in experimental designs used in vitro, there is controversy about the osteogenic potential of proinflammatory factors on MSCs. Our goal was to determine the specific conditions allowing the pro-osteogenic effects of distinct inflammatory stimuli. Human bone marrow MSCs were exposed to tumor necrosis factor alpha (TNF-α) and lipopolysaccharide (LPS). Cells were cultured in growth medium or osteogenic differentiation medium. Alternatively, bone morphogenetic protein 2 (BMP-2) was used as osteogenic supplement to simulate the conditions in vivo. Alkaline phosphatase activity and calcium deposition were indicators of osteogenicity. To elucidate lineage commitment-dependent effects, MSCs were pre-differentiated prior treatment. Our results show that TNF-α and LPS do not affect the expression of osteogenic markers by MSCs in the absence of an osteogenic supplement. In osteogenic differentiation medium or together with BMP-2 however, these mediators highly stimulated their alkaline phosphatase activity and subsequent matrix mineralization. In pre-osteoblasts, matrix mineralization was significantly increased by these mediators, but irrespective of the culture conditions. Our study shows that inflammatory factors potently enhance the osteogenic capacity of MSCs. These properties may be harnessed in bone regenerative strategies. Importantly, the commitment of MSCs to the osteogenic lineage greatly enhances their responsiveness to inflammatory signals.
Collapse
Affiliation(s)
- Michiel Croes
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - F. Cumhur Oner
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Moyo C. Kruyt
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Taco J. Blokhuis
- Department of Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Okan Bastian
- Department of Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Wouter J. A. Dhert
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Jacqueline Alblas
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
- * E-mail:
| |
Collapse
|
409
|
Bottagisio M, Lovati AB, Lopa S, Moretti M. Osteogenic Differentiation of Human and Ovine Bone Marrow Stromal Cells in response to β-Glycerophosphate and Monosodium Phosphate. Cell Reprogram 2015; 17:235-42. [PMID: 26168053 DOI: 10.1089/cell.2014.0105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bone defects are severe burdens in clinics, and thus cell therapy offers an alternative strategy exploiting the features of bone marrow stromal cells (BMSCs). Sheep are a suitable orthopedic preclinical model for similarities with humans. This study compares the influence of two phosphate sources combined with bone morphogenetic protein-2 (BMP-2) on the osteogenic potential of human and ovine BMSCs. β-Glycerophosphate (β-GlyP) and monosodium phosphate (NaH2PO4) were used as organic and inorganic phosphate sources. Osteogenic differentiation of the BMSCs was assessed by calcified matrix, alkaline phosphatase (ALP) activity, and gene expression analysis. A higher calcified matrix deposition was detected in BMSCs cultured with NaH2PO4. Although no significant differences were detected among media for human BMSCs, β-GlyP with or without BMP-2 determined a positive trend in ALP levels compared to NaH2PO4. In contrast, NaH2PO4 had a positive effect on ALP levels in ovine BMSCs. β-GlyP better supported the expression of COL1A1 in human BMSCs, whereas all media enhanced RUNX2 and SPARC expression. Ovine BMSCs responded poorly to any media for RUNX2, COL1A1, and SPARC expression. NaH2PO4 improved calcified matrix deposition without upregulating the transcriptional expression of osteogenic markers. A further optimization of differentiation protocols needs to be performed to translate the procedures from preclinical to clinical models.
Collapse
Affiliation(s)
- Marta Bottagisio
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute , 20161 Milan, Italy
| | - Arianna B Lovati
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute , 20161 Milan, Italy
| | - Silvia Lopa
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute , 20161 Milan, Italy
| | - Matteo Moretti
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute , 20161 Milan, Italy
| |
Collapse
|
410
|
Santo VE, Ratanavaraporn J, Sato K, Gomes ME, Mano JF, Reis RL, Tabata Y. Cell engineering by the internalization of bioinstructive micelles for enhanced bone regeneration. Nanomedicine (Lond) 2015; 10:1707-21. [DOI: 10.2217/nnm.15.11] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To direct precursor cells toward the osteoblastic lineage, by using an intracellular nanocarrier releasing dexamethasone. Materials & methods: Biodegradable gelatin-based micelles entrapped dexamethasone (dex-micelles). Internalization efficiency and biocompatibility of dex-micelles and their potency for in vitro osteogenic differentiation and in vivo bone regeneration were assessed. Results: Dex-micelles were internalized by rat bone marrow mesenchymal stem cells and demonstrated a pH-responsive release profile and an enhancement of 2D and 3D in vitro osteogenic differentiation. In vivo implantation of gelatin scaffolds seeded with rat bone marrow mesenchymal stem cells precultured for 24 h with dex-micelles promoted a significant enhancement of de novo bone formation in a rat ulna defect, in a dose-dependent manner. Conclusion: The proposed intracellular delivery system is a powerful tool to promote bone regeneration.
Collapse
Affiliation(s)
- Vítor E Santo
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, Sakyo Ku, Kyoto 6068507, Japan
- 3B's Research Group – Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, AvePark, 4806–909 Taipas, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Juthamas Ratanavaraporn
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, Sakyo Ku, Kyoto 6068507, Japan
| | - Keisuke Sato
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, Sakyo Ku, Kyoto 6068507, Japan
| | - Manuela E Gomes
- 3B's Research Group – Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, AvePark, 4806–909 Taipas, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João F Mano
- 3B's Research Group – Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, AvePark, 4806–909 Taipas, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group – Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, AvePark, 4806–909 Taipas, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Yasuhiko Tabata
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, Sakyo Ku, Kyoto 6068507, Japan
| |
Collapse
|
411
|
Hegedűs C, Robaszkiewicz A, Lakatos P, Szabó É, Virág L. Poly(ADP-ribose) in the bone: from oxidative stress signal to structural element. Free Radic Biol Med 2015; 82:179-86. [PMID: 25660995 DOI: 10.1016/j.freeradbiomed.2015.01.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/20/2015] [Accepted: 01/26/2015] [Indexed: 01/16/2023]
Abstract
Contrary to common perception bone is a dynamic organ flexibly adapting to changes in mechanical loading by shifting the delicate balance between bone formation and bone resorption carried out by osteoblasts and osteoclasts, respectively. In the past decades numerous studies demonstrating production of reactive oxygen or nitrogen intermediates, effects of different antioxidants, and involvement of prototypical redox control mechanisms (Nrf2-Keap1, Steap4, FoxO, PAMM, caspase-2) have proven the central role of redox regulation in the bone. Poly(ADP-ribosyl)ation (PARylation), a NAD-dependent protein modification carried out by poly(ADP-ribose) polymerase (PARP) enzymes recently emerged as a new regulatory mechanism fine-tuning osteoblast differentiation and mineralization. Interestingly PARylation does not simply serve as a signaling mechanism during osteoblast differentiation but also couples it to osteoblast death. Even more strikingly, the poly(ADP-ribose) polymer likely released from succumbed cells at the terminal stage of differentiation is incorporated into the bone matrix representing the first structural role of this versatile biopolymer. Moreover, this new paradigm explains why and how osteodifferentiation and death of cells entering this pathway are closely coupled to each other. Here we review the role of reactive oxygen and nitrogen intermediates as well as PARylation in osteoblast and osteoclast differentiation, function, and cell death.
Collapse
Affiliation(s)
- Csaba Hegedűs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Agnieszka Robaszkiewicz
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Department of Environmental Pollution Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland
| | - Petra Lakatos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Éva Szabó
- Division of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, H-4032 Debrecen, Hungary.
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; MTA-DE Cell Biology and Signaling Research Group, Debrecen, Hungary.
| |
Collapse
|
412
|
Takahashi K, Ogura N, Tomoki R, Eda T, Okada H, Kato R, Iwai S, Ito K, Kuyama K, Kondoh T. Applicability of human dental follicle cells to bone regeneration without dexamethasone: an in vivo pilot study. Int J Oral Maxillofac Surg 2015; 44:664-9. [DOI: 10.1016/j.ijom.2014.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 10/27/2014] [Accepted: 11/07/2014] [Indexed: 11/24/2022]
|
413
|
Synergistic protection of N-acetylcysteine and ascorbic acid 2-phosphate on human mesenchymal stem cells against mitoptosis, necroptosis and apoptosis. Sci Rep 2015; 5:9819. [PMID: 25909282 PMCID: PMC4408980 DOI: 10.1038/srep09819] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 03/17/2015] [Indexed: 12/15/2022] Open
Abstract
Human mesenchymal stem cells (hMSCs) contribute to ischemic tissue repair, regeneration, and possess ability to self-renew. However, poor viability of transplanted hMSCs within ischemic tissues has limited its therapeutic efficiency. Therefore, it is urgent to explore new method to improve the viability of the grafted cells. By using a systematic analysis, we reveal the mechanism of synergistic protection of N-acetylcysteine (NAC) and ascorbic acid 2-phosphate (AAP) on hMSCs that were under H2O2-induced oxidative stress. The combined treatment of NAC and AAP (NAC/AAP) reduces reactive oxygen species (ROS) generation, stabilizes mitochondrial membrane potential and decreases mitochondrial fission/fragmentation due to oxidative stress. Mitochondrial fission/fragmentation is a major prologue of mitoptosis. NAC/AAP prevents apoptotic cell death via decreasing the activation of BAX, increasing the expression of BCL2, and reducing cytochrome c release from mitochondria that might lead to the activation of caspase cascade. Stabilization of mitochondria also prevents the release of AIF, and its nuclear translocation which may activate necroptosis via H2AX pathway. The decreasing of mitoptosis is further studied by MicroP image analysis, and is associated with decreased activation of Drp1. In conclusion, NAC/AAP protects mitochondria from H2O2-induced oxidative stress and rescues hMSCs from mitoptosis, necroptosis and apoptosis.
Collapse
|
414
|
Liu YC, Kao YT, Huang WK, Lin KY, Wu SC, Hsu SC, Schuyler SC, Li LY, Leigh Lu F, Lu J. CCL5/RANTES is important for inducing osteogenesis of human mesenchymal stem cells and is regulated by dexamethasone. Biosci Trends 2015; 8:138-43. [PMID: 25030847 DOI: 10.5582/bst.2014.01047] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In this study, we examine the effect of chemokine (C-C motif) ligand 5 (CCL5)/Regulated on Activation Normal T cell Expressed and Secreted (RANTES), a pro-inflammatory cytokine on osteogenic differentiation of human mesenchymal stem cells (hMSCs). We found CCL5 expression was increased during osteogenic differentiation of hMSCs and CCL5 expression is dependent on the presence of dexamethasone. Knocking down endogenous CCL5 expression blocked osteogenesis, as revealed by decreasing alkaline phosphatase (ALP) activity and a reduction in the expression levels of ALP, bone sialoprotein (BSP), and osteopontin (OPN). Of note, the overexpression of CCL5 was sufficient to increase ALP expression and activity. Moreover, the down-regulation of chemokine (C-C motif) receptor 1 (CCR1), one of the CCL5 receptors, significantly decreased the osteogenesis of hMSCs. Interestingly, the down-regulation of CCR1, but not CCL5, was sufficient to affect the cell numbers during the process of osteogenesis. Our findings reveal that both CCL5 and CCR1 are required for osteogenesis of human MSCs, CCL5 is sufficient for the osteogenesis, and provide a novel link between dexamethasone and CCL5 in human osteogenesis.
Collapse
Affiliation(s)
- Yu-Chuan Liu
- Graduate Institute of Life Sciences, National Defense Medical Center
| | | | | | | | | | | | | | | | | | | |
Collapse
|
415
|
Bowler MA, Merryman WD. In vitro models of aortic valve calcification: solidifying a system. Cardiovasc Pathol 2015; 24:1-10. [PMID: 25249188 PMCID: PMC4268061 DOI: 10.1016/j.carpath.2014.08.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/21/2014] [Accepted: 08/07/2014] [Indexed: 12/21/2022] Open
Abstract
Calcific aortic valve disease (CAVD) affects 25% of people over 65, and the late-stage stenotic state can only be treated with total valve replacement, requiring 85,000 surgeries annually in the US alone (University of Maryland Medical Center, 2013, http://umm.edu/programs/services/heart-center-programs/cardiothoracic-surgery/valve-surgery/facts). As CAVD is an age-related disease, many of the affected patients are unable to undergo the open-chest surgery that is its only current cure. This challenge motivates the elucidation of the mechanisms involved in calcification, with the eventual goal of alternative preventative and therapeutic strategies. There is no sufficient animal model of CAVD, so we turn to potential in vitro models. In general, in vitro models have the advantages of shortened experiment time and better control over multiple variables compared to in vivo models. As with all models, the hypothesis being tested dictates the most important characteristics of the in vivo physiology to recapitulate. Here, we collate the relevant pieces of designing and evaluating aortic valve calcification so that investigators can more effectively draw significant conclusions from their results.
Collapse
Affiliation(s)
- Meghan A Bowler
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212.
| |
Collapse
|
416
|
Taubenberger AV. In vitro microenvironments to study breast cancer bone colonisation. Adv Drug Deliv Rev 2014; 79-80:135-44. [PMID: 25453260 DOI: 10.1016/j.addr.2014.10.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 09/13/2014] [Accepted: 10/15/2014] [Indexed: 12/15/2022]
Abstract
Bone metastasis occurs frequently in patients with advanced breast cancer and is a major cause of morbidity and mortality in these patients. In order to advance current therapies, the mechanisms leading to the formation of bone metastases and their pathophysiology have to be better understood. Several in vitro models have been developed for systematic studies of interactions between breast cancer cells and the bone microenvironment. Such models can provide insights into the molecular basis of bone metastatic colonisation and also may provide a useful platform to design more physiologically relevant drug testing assays. This review describes different in vitro approaches and discusses their advantages and disadvantages.
Collapse
Affiliation(s)
- Anna V Taubenberger
- Group of Cellular Machines, Biotec TU Dresden, Tatzberg 47-51, 01307 Dresden, Germany; Institute of Health and Biomedical Innovation, Queensland University of Technology, Musk Avenue 60, Kelvin Grove, QLD, Australia.
| |
Collapse
|
417
|
Chai YC, Geris L, Bolander J, Pyka G, Van Bael S, Luyten FP, Schrooten J. In vivo ectopic bone formation by devitalized mineralized stem cell carriers produced under mineralizing culture condition. Biores Open Access 2014; 3:265-77. [PMID: 25469312 PMCID: PMC4245878 DOI: 10.1089/biores.2014.0050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Functionalization of tissue engineering scaffolds with in vitro–generated bone-like extracellular matrix (ECM) represents an effective biomimetic approach to promote osteogenic differentiation of stem cells in vitro. However, the bone-forming capacity of these constructs (seeded with or without cells) is so far not apparent. In this study, we aimed at developing a mineralizing culture condition to biofunctionalize three-dimensional (3D) porous scaffolds with highly mineralized ECM in order to produce devitalized, osteoinductive mineralized carriers for human periosteal-derived progenitors (hPDCs). For this, three medium formulations [i.e., growth medium only (BM1), with ascorbic acid (BM2), and with ascorbic acid and dexamethasone (BM3)] supplemented with calcium (Ca2+) and phosphate (PO43−) ions simultaneously as mineralizing source were investigated. The results showed that, besides the significant impacts on enhancing cell proliferation (the highest in BM3 condition), the formulated mineralizing media differentially regulated the osteochondro-related gene markers in a medium-dependent manner (e.g., significant upregulation of BMP2, bone sialoprotein, osteocalcin, and Wnt5a in BM2 condition). This has resulted in distinguished cell populations that were identifiable by specific gene signatures as demonstrated by the principle component analysis. Through devitalization, mineralized carriers with apatite crystal structures unique to each medium condition (by X-ray diffraction and SEM analysis) were obtained. Quantitatively, BM3 condition produced carriers with the highest mineral and collagen contents as well as human-specific VEGF proteins, followed by BM2 and BM1 conditions. Encouragingly, all mineralized carriers (after reseeded with hPDCs) induced bone formation after 8 weeks of subcutaneous implantation in nude mice models, with BM2-carriers inducing the highest bone volume, and the lowest in the BM3 condition (as quantitated by nano-computed tomography [nano-CT]). Histological analysis revealed different bone formation patterns, either bone ossicles containing bone marrow surrounding the scaffold struts (in BM2) or bone apposition directly on the struts' surface (in BM1 and BM3). In conclusion, we have presented experimental data on the feasibility to produce devitalized osteoinductive mineralized carriers by functionalizing 3D porous scaffolds with an in vitro cell-made mineralized matrix under the mineralizing culture conditions.
Collapse
Affiliation(s)
- Yoke Chin Chai
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center , KU Leuven, Leuven, Belgium . ; Department of Biomedical Engineering, Faculty of Engineering, University of Malaya , Kuala Lumpur, Malaysia . ; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven , Leuven, Belgium
| | - Liesbet Geris
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven , Leuven, Belgium . ; Biomechanics Research Unit, University of Liege , Liege, Belgium
| | - Johanna Bolander
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center , KU Leuven, Leuven, Belgium . ; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven , Leuven, Belgium
| | - Grzegorz Pyka
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven , Leuven, Belgium . ; Department of Materials Engineering, KU Leuven , Heverlee, Belgium
| | - Simon Van Bael
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven , Leuven, Belgium . ; Division of Production Engineering, Machine Design and Automation, Department of Mechanical Engineering, KU Leuven , Heverlee, Belgium
| | - Frank P Luyten
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center , KU Leuven, Leuven, Belgium . ; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven , Leuven, Belgium
| | - Jan Schrooten
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven , Leuven, Belgium . ; Department of Materials Engineering, KU Leuven , Heverlee, Belgium
| |
Collapse
|
418
|
Zhang W, Zhang X, Ling J, Liu W, Zhang X, Ma J, Zheng J. Proliferation and odontogenic differentiation of BMP2 gene‑transfected stem cells from human tooth apical papilla: an in vitro study. Int J Mol Med 2014; 34:1004-12. [PMID: 25070743 PMCID: PMC4152145 DOI: 10.3892/ijmm.2014.1862] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 07/09/2014] [Indexed: 01/09/2023] Open
Abstract
Stem cells from the apical papilla (SCAP) have odontogenic potential, which plays a pivotal role in the root dentin development of permanent teeth. Human bone morphogenetic protein 2 (BMP2) is a well-known gene that participates in regulating the odontogenic differentiation of dental tissue-derived stem cells. However, little is known regarding the effects of the BMP2 gene on the proliferation and odontogenic differentiation of SCAP. This study aimed to evaluate the odontogenic differentiation potential of lentiviral-mediated BMP2 gene-transfected human SCAP (SCAP/BMP2) in vitro. SCAP were isolated by enzymatic dissociation of human teeth apical papillae. The multipotential of SCAP was verified by their osteogenic and adipogenic differentiation characteristics. The phenotype of SCAP was evaluated by flow cytometry (FCM). The proliferation status of the blank vector-transfected SCAP (SCAP/Vector) and SCAP/BMP2 was analyzed by a cell counting kit-8 (CCK-8). Odontogenic genes, including alkaline phosphatase (ALP), osteocalcin (OCN), dentin sialophosphoprotein (DSPP) and dentin matrix protein 1 (DMP1) of the two groups of cells were evaluated by quantitative polymerase chain reaction (qPCR). ALP staining and alizarin red (AR) staining of the cells was performed on the 16th day after transfection. In vitro results of CCK-8, qPCR, ALP and AR staining demonstrated that: i) SCAP/BMP2 had a comparable proliferation rate to SCAP/Vector; ii) SCAP/BMP2 presented significantly better potential to differentiate into odontoblasts compared to SCAP/Vector by upregulating ALP, OCN, DSPP and DMP1 genes; iii) more ALP granules and mineralized deposits were formed by SCAP/BMP2 as compared to SCAP/Vector. The results suggested that lentiviral-mediated BMP2 gene transfection enhances the odontogenic differentiation capacity of human SCAP in vitro.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology and Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, P.R. China
| | - Xiaolei Zhang
- Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology and Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, P.R. China
| | - Junqi Ling
- Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology and Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, P.R. China
| | - Wei Liu
- Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology and Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, P.R. China
| | - Xinchun Zhang
- Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology and Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, P.R. China
| | - Jinglei Ma
- Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology and Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, P.R. China
| | - Jianmao Zheng
- Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology and Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510080, P.R. China
| |
Collapse
|
419
|
Idowu B, Cama G, Deb S, Di Silvio L. In vitro osteoinductive potential of porous monetite for bone tissue engineering. J Tissue Eng 2014; 5:2041731414536572. [PMID: 24904727 PMCID: PMC4046799 DOI: 10.1177/2041731414536572] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/19/2014] [Indexed: 12/26/2022] Open
Abstract
Tissue engineering-based bone grafts are emerging as a viable alternative treatment modality to repair and regenerate tissues damaged as a result of disease or injury. The choice of the biomaterial component is a critical determinant of the success of the graft or scaffold; essentially, it must induce and allow native tissue integration, and most importantly mimic the hierarchical structure of the native bone. Calcium phosphate bioceramics are widely used in orthopaedics and dentistry applications due to their similarity to bone mineral and their ability to induce a favourable biological response. One such material is monetite, which is biocompatible, osteoconductive and has the ability to be resorbed under physiological conditions. The osteoinductive properties of monetite in vivo are known; however, little is known of the direct effect on osteoinduction of human mesenchymal stem cells in vitro. In this study, we evaluated the potential of monetite to induce and sustain human mesenchymal stem cells towards osteogenic differentiation. Human mesenchymal stem cells were seeded on the monetite scaffold in the absence of differentiating factors for up to 28 days. The gene expression profile of bone-specific markers in cells on monetite scaffold was compared to the control material hydroxyapatite. At day 14, we observed a marked increase in alkaline phosphatase, osteocalcin and osteonectin expressions. This study provides evidence of a suitable material that has potential properties to be used as a tissue engineering scaffold.
Collapse
Affiliation(s)
- Bernadine Idowu
- Biomaterials, Biomimetics & Biophotonics, Dental Institute, Guy's Hospital, King's College London, London, UK
| | - Giuseppe Cama
- Biomaterials, Biomimetics & Biophotonics, Dental Institute, Guy's Hospital, King's College London, London, UK
| | - Sanjukta Deb
- Biomaterials, Biomimetics & Biophotonics, Dental Institute, Guy's Hospital, King's College London, London, UK
| | - Lucy Di Silvio
- Biomaterials, Biomimetics & Biophotonics, Dental Institute, Guy's Hospital, King's College London, London, UK
| |
Collapse
|
420
|
Yang S, Wang M, Zhang H, Cai KY, Shen XK, Deng F, Zhang Y, Wang L. Influence of dexamethasone-loaded TNTs on the proliferation and osteogenic differentiation of rat mesenchymal stem cells. RSC Adv 2014. [DOI: 10.1039/c4ra11498a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schematic illustration of cellular responses of rMSCs to Dex-loaded TNT arrays.
Collapse
Affiliation(s)
- Sheng Yang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences
- College of Stomatology
- Chongqing Medical University
- Chongqing 401147, China
| | - Ming Wang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences
- College of Stomatology
- Chongqing Medical University
- Chongqing 401147, China
| | - He Zhang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences
- College of Stomatology
- Chongqing Medical University
- Chongqing 401147, China
| | - Kai-yong Cai
- Key Laboratory of Biorheological Science and Technology
- The Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400044, China
| | - Xin-kun Shen
- Key Laboratory of Biorheological Science and Technology
- The Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400044, China
| | - Feng Deng
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences
- College of Stomatology
- Chongqing Medical University
- Chongqing 401147, China
| | - Yi Zhang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences
- College of Stomatology
- Chongqing Medical University
- Chongqing 401147, China
| | - Lu Wang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences
- College of Stomatology
- Chongqing Medical University
- Chongqing 401147, China
| |
Collapse
|