401
|
Denroche HC, Quong WL, Bruin JE, Tudurí E, Asadi A, Glavas MM, Fox JK, Kieffer TJ. Leptin administration enhances islet transplant performance in diabetic mice. Diabetes 2013; 62:2738-46. [PMID: 23656888 PMCID: PMC3717838 DOI: 10.2337/db12-1684] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Islet transplantation is an effective method to obtain long-term glycemic control for patients with type 1 diabetes, yet its widespread use is limited by an inadequate supply of donor islets. The hormone leptin has profound glucose-lowering and insulin-sensitizing action in type 1 diabetic rodent models. We hypothesized that leptin administration could reduce the dose of transplanted islets required to achieve metabolic control in a mouse model of type 1 diabetes. We first performed a leptin dose-response study in C57Bl/6 mice with streptozotocin (STZ)-induced diabetes to determine a leptin dose insufficient to reverse hyperglycemia. Subsequently, we compared the ability of suboptimal islet transplants of 50 or 125 syngeneic islets to achieve glycemic control in STZ-induced diabetic C57Bl/6 mice treated with or without this dose of leptin. The dose-response study revealed that leptin reverses STZ-induced diabetes in a dose-dependent manner. Supraphysiological leptin levels were necessary to restore euglycemia but simultaneously increased risk of hypoglycemia, and also lost efficacy after 12 days of administration. In contrast, 1 µg/day leptin only modestly reduced blood glucose but maintained efficacy throughout the study duration. We then administered 1 µg/day leptin to diabetic mice that underwent transplantation of 50 or 125 islets. Although these islet doses were insufficient to ameliorate hyperglycemia alone, coadministration of leptin with islet transplantation robustly improved control of glucose and lipid metabolism, without increasing circulating insulin levels. This study reveals that low-dose leptin administration can reduce the number of transplanted islets required to achieve metabolic control in STZ-induced diabetic mice.
Collapse
Affiliation(s)
- Heather C. Denroche
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Whitney L. Quong
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jennifer E. Bruin
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eva Tudurí
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ali Asadi
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Maria M. Glavas
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jessica K. Fox
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Timothy J. Kieffer
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Corresponding author: Timothy J. Kieffer,
| |
Collapse
|
402
|
Shih HP, Wang A, Sander M. Pancreas organogenesis: from lineage determination to morphogenesis. Annu Rev Cell Dev Biol 2013; 29:81-105. [PMID: 23909279 DOI: 10.1146/annurev-cellbio-101512-122405] [Citation(s) in RCA: 217] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The pancreas is an essential organ for proper nutrient metabolism and has both endocrine and exocrine function. In the past two decades, knowledge of how the pancreas develops during embryogenesis has significantly increased, largely from developmental studies in model organisms. Specifically, the molecular basis of pancreatic lineage decisions and cell differentiation is well studied. Still not well understood are the mechanisms governing three-dimensional morphogenesis of the organ. Strategies to derive transplantable β-cells in vitro for diabetes treatment have benefited from the accumulated knowledge of pancreas development. In this review, we provide an overview of the current understanding of pancreatic lineage determination and organogenesis, and we examine future implications of these findings for treatment of diabetes mellitus through cell replacement.
Collapse
Affiliation(s)
- Hung Ping Shih
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, California 92093-0695;
| | | | | |
Collapse
|
403
|
Abstract
Insulin-secreting pancreatic β-cells are essential regulators of mammalian metabolism. The absence of functional β-cells leads to hyperglycemia and diabetes, making patients dependent on exogenously supplied insulin. Recent insights into β-cell development, combined with the discovery of pluripotent stem cells, have led to an unprecedented opportunity to generate new β-cells for transplantation therapy and drug screening. Progress has also been made in converting terminally differentiated cell types into β-cells using transcriptional regulators identified as key players in normal development, and in identifying conditions that induce β-cell replication in vivo and in vitro. Here, we summarize what is currently known about how these strategies could be utilized to generate new β-cells and highlight how further study into the mechanisms governing later stages of differentiation and the acquisition of functional capabilities could inform this effort.
Collapse
Affiliation(s)
- Felicia W Pagliuca
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
404
|
Abstract
It has been known for decades that encapsulation can protect transplanted islets from immune destruction in rodents, but it has proved difficult to extend this success to large animals and humans. A new study in this issue by Jacobs-Tulleneers-Thevissen et al (doi: 10.1007/s00125-013-2906-0 ) advances the field by showing that human islets contained in alginate capsules can function very well, not only in the peritoneal cavity of mice, but also in a human with type 1 diabetes. Many obstacles must still be overcome, but this technology has the potential to safely protect transplanted beta cells from autoimmunity and allorejection.
Collapse
Affiliation(s)
- G C Weir
- Section on Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA.
| |
Collapse
|
405
|
Abstract
Type 1 diabetes mellitus (T1D) is a chronic, multifactorial autoimmune disease that involves the progressive destruction of pancreatic β-cells, ultimately resulting in the loss of insulin production and secretion. The goal of clinical intervention is to prevent or arrest the onset and progression of autoimmunity, reverse β-cell destruction, and restore glycometabolic and immune homeostasis. Despite promising outcomes observed with islet transplantation and advancements in immunomodulatory therapies, the need for an effective cell replacement strategy for curing T1D still persists. Stem cell therapy offers a solution to the cited challenges of islet transplantation. While the regenerative potential of stem cells can be harnessed to make available a self-replenishing supply of glucose-responsive insulin-producing cells, their immunomodulatory properties may potentially be used to prevent, arrest, or reverse autoimmunity, ameliorate innate/alloimmune graft rejection, and prevent recurrence of the disease. Herein, we discuss the therapeutic potential of stem cells derived from a variety of sources for the cure of T1D, for example, embryonic stem cells, induced pluripotent stem cells, bone marrow-derived hematopoietic stem cells, and multipotent mesenchymal stromal cells derived from bone marrow, umbilical cord blood, and adipose tissue. The benefits of combinatorial approaches designed to ensure the successful clinical translation of stem cell therapeutic strategies, such as approaches combining effective stem cell strategies with islet transplantation, immunomodulatory drug regimens, and/or novel bioengineering techniques, are also discussed. To conclude, the application of stem cell therapy in the cure for T1D appears extremely promising.
Collapse
Affiliation(s)
- Preeti Chhabra
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Kenneth L. Brayman
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
406
|
Dynamic expression of microRNAs during the differentiation of human embryonic stem cells into insulin-producing cells. Gene 2013; 518:246-55. [DOI: 10.1016/j.gene.2013.01.038] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 01/07/2013] [Accepted: 01/15/2013] [Indexed: 11/20/2022]
|
407
|
Abstract
PURPOSE OF REVIEW Diabetes is a debilitating disease characterized by a chronic inability to normalize blood glucose levels. Transplanting cadaveric pancreata or isolated pancreatic islets can restore glucose homeostasis, but organ demand outstrips supply. Consequently, there is significant interest in alternative tissue sources. This review summarizes state-of-the-art efforts to generate scalable, functional β-cells to treat diabetes. RECENT FINDINGS Applying knowledge gleaned from developmental biology, human pluripotent stem cells can be treated stepwise with combinations of small molecules, developmentally relevant growth factors, and morphogens to generate pancreatic progenitor cells (PPCs) in vitro. Transplanted PPCs can then further mature in vivo into functional islet-like tissues containing all of the endocrine hormone cells present in adult islets and can reverse hyperglycemia in a diabetic animal model. Recent publications demonstrate that skin, liver, and other cell lineages may also be reprogrammed to functional β-like cells. SUMMARY Although generation of fully functional β-cells in vitro has not yet been achieved, possible intermediate approaches to treat diabetes include using PPCs or reprogramming adult cells to β-like cells. A cell therapy with either approach will require isolation from the host immune response. Ongoing efforts are addressing this need through the use of immune-isolation devices to avoid immunosuppressive drugs.
Collapse
|
408
|
Yanai A, Laver CRJ, Joe AW, Viringipurampeer IA, Wang X, Gregory-Evans CY, Gregory-Evans K. Differentiation of human embryonic stem cells using size-controlled embryoid bodies and negative cell selection in the production of photoreceptor precursor cells. Tissue Eng Part C Methods 2013; 19:755-64. [PMID: 23363370 DOI: 10.1089/ten.tec.2012.0524] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We proposed to optimize the retinal differentiation protocols for human embryonic stem cells (hESCs) by improving cell handling. To improve efficiency, we first focused on the production of just one retinal precursor cell type (photoreceptor precursor cells [PPCs]) rather than the production of a range of retinal cells. Combining information from a number of previous studies, in particular the use of a feeder-free culture medium and taurine plus triiodothyronine supplements, we then assessed the values of using size-controlled embryoid bodies (EBs) and negative cell selection (to remove residual embryonic antigen-4-positive hESCs). Using size-controlled 1000 cell EBs, significant improvements were made, in that 78% CRX+ve PPCs could be produced in just 17 days. This could be increased to 93% PPCs through the added step of negative cell selection. Improved efficiency of PPC production will help in efforts to undertake shorter and larger preclinical studies as a prelude to future clinical trials.
Collapse
Affiliation(s)
- Anat Yanai
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
409
|
Habener JF, Stanojevic V. Alpha cells come of age. Trends Endocrinol Metab 2013; 24:153-63. [PMID: 23260869 DOI: 10.1016/j.tem.2012.10.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 10/27/2012] [Accepted: 10/30/2012] [Indexed: 02/07/2023]
Abstract
The alpha cells that coinhabit the islets with the insulin-producing beta cells have recently captured the attention of diabetes researchers because of new breakthrough findings highlighting the importance of these cells in the maintenance of beta cell health and functions. In normal physiological conditions alpha cells produce glucagon but in conditions of beta cell injury they also produce glucagon-like peptide-1 (GLP-1), a growth and survival factor for beta cells. In this review we consider these new findings on the functions of alpha cells. Alpha cells remain somewhat enigmatic inasmuch as they now appear to be important in the maintenance of the health of beta cells, but their production of glucagon promotes diabetes. This circumstance prompts an examination of approaches to coax alpha cells to produce GLP-1 instead of glucagon.
Collapse
Affiliation(s)
- Joel F Habener
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | |
Collapse
|
410
|
Carolan PJ, Melton DA. New findings in pancreatic and intestinal endocrine development to advance regenerative medicine. Curr Opin Endocrinol Diabetes Obes 2013; 20:1-7. [PMID: 23249759 DOI: 10.1097/med.0b013e32835bc380] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW We highlight some of the major recent advances that have been made towards understanding the mechanisms that control endocrine differentiation and cell identity in the pancreas and intestine. RECENT FINDINGS Notch signaling plays a complex role in the fate choice between endocrine, duct, and acinar lineages in the developing pancreas. New approaches to dissecting the role of mesenchymal cells in the developing endocrine pancreas reveal inhibitory signals from the endothelium. Epigenetic mechanisms represent another layer of control over pancreatic development and β cell identity. Further details on the transcriptional control of enteroendocrine cell development have emerged and revealed a surprising role for FoxO1 in restraining insulin expression in the gut. Incremental progress is being made in the field of directed differentiation of embryonic stem cells to pancreatic β cells and the first reported differentiation of human embryonic stem cells into intestinal organoids containing enteroendocrine cells represents a major breakthrough. SUMMARY Greater knowledge of the fundamental processes controlling endocrine development in the pancreas and intestine has the potential to advance the field of regenerative medicine by providing a pathway to successfully create cell types of clinical interest.
Collapse
Affiliation(s)
- Peter J Carolan
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
411
|
Weir GC, Bonner-Weir S. Islet β cell mass in diabetes and how it relates to function, birth, and death. Ann N Y Acad Sci 2013; 1281:92-105. [PMID: 23363033 PMCID: PMC3618572 DOI: 10.1111/nyas.12031] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In type 1 diabetes (T1D) β cell mass is markedly reduced by autoimmunity. Type 2 diabetes (T2D) results from inadequate β cell mass and function that can no longer compensate for insulin resistance. The reduction of β cell mass in T2D may result from increased cell death and/or inadequate birth through replication and neogenesis. Reduction in mass allows glucose levels to rise, which places β cells in an unfamiliar hyperglycemic environment, leading to marked changes in their phenotype and a dramatic loss of glucose-stimulated insulin secretion (GSIS), which worsens as glucose levels climb. Toxic effects of glucose on β cells (glucotoxicity) appear to be the culprit. This dysfunctional insulin secretion can be reversed when glucose levels are lowered by treatment, a finding with therapeutic significance. Restoration of β cell mass in both types of diabetes could be accomplished by either β cell regeneration or transplantation. Learning more about the relationships between β cell mass, turnover, and function and finding ways to restore β cell mass are among the most urgent priorities for diabetes research.
Collapse
Affiliation(s)
- Gordon C Weir
- Section on Islet Cell Biology and Regenerative Medicine, Research Division, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, MA 02215, USA.
| | | |
Collapse
|
412
|
Scharfmann R, Rachdi L, Ravassard P. Concise review: in search of unlimited sources of functional human pancreatic beta cells. Stem Cells Transl Med 2012; 2:61-7. [PMID: 23283495 DOI: 10.5966/sctm.2012-0120] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
It is well-established that insulin-producing pancreatic beta cells are central in diabetes. In type 1 diabetes, beta cells are destroyed by an autoimmune mechanism, whereas in type 2 diabetes, there is a decrease in functional beta-cell mass. In this context, studying beta cells is of major importance. Beta cells represent only 1% of total pancreatic cells and are found dispersed in the pancreatic gland. During the past decades, many tools and approaches have been developed to study rodent beta cells that efficiently pushed the field forward. However, rodent and human beta cells are not identical, and our knowledge of human beta cells has not progressed as quickly as our understanding of rodent beta cells. We believe that one of the reasons for this inefficient progress is the difficulty of accessing unlimited sources of functional human pancreatic beta cells. The main focus of this review concerns recent strategies to generate new sources of human pancreatic beta cells.
Collapse
|
413
|
Ricordi C, Inverardi L, Domínguez-Bendala J. From cellular therapies to tissue reprogramming and regenerative strategies in the treatment of diabetes. Regen Med 2012; 7:41-8. [DOI: 10.2217/rme.12.70] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Diabetes mellitus represents a global epidemic affecting over 350 million patients worldwide and projected by the WHO to surpass the 500 million patient mark within the next two decades. Besides Type 1 and Type 2 diabetes mellitus, the study of the endocrine compartment of the pancreas is of great translational interest, as strategies aimed at restoring its mass could become therapies for glycemic dysregulation, drug-related diabetes following diabetogenic therapies, or hyperglycemic disturbances following the treatment of cancer and nesidioblastosis. Such strategies generally fall under one of the ‘three Rs’: replacement (islet transplantation and stem cell differentiation); reprogramming (e.g., from the exocrine compartment of the pancreas); and regeneration (replication and induction of endogenous stem cells). As the latter has been extensively reviewed in recent months by us and others, this article focuses on emerging reprogramming and replacement approaches.
Collapse
Affiliation(s)
- Camillo Ricordi
- University of Miami Cell Transplant Center and Diabetes Research Institute, Miami, FL, USA
| | - Luca Inverardi
- University of Miami Cell Transplant Center and Diabetes Research Institute, Miami, FL, USA
| | - Juan Domínguez-Bendala
- University of Miami Cell Transplant Center and Diabetes Research Institute, Miami, FL, USA
| |
Collapse
|
414
|
Lau DC, Kieffer T, Light P. Islet Biology Key to Our Understanding of Diabetes. Can J Diabetes 2012. [DOI: 10.1016/j.jcjd.2012.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|