1
|
Shima S, Mizutani Y, Yoshimoto J, Maeda Y, Ohdake R, Nagao R, Maeda T, Higashi A, Ueda A, Ito M, Mutoh T, Watanabe H. Uric acid and alterations of purine recycling disorders in Parkinson's disease: a cross-sectional study. NPJ Parkinsons Dis 2024; 10:170. [PMID: 39251680 PMCID: PMC11385569 DOI: 10.1038/s41531-024-00785-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/20/2024] [Indexed: 09/11/2024] Open
Abstract
The relationship between reduced serum uric acid (UA) levels and Parkinson's disease (PD), particularly purine metabolic pathways, is not fully understood. Our study compared serum and cerebrospinal fluid (CSF) levels of inosine, hypoxanthine, xanthine, and UA in PD patients and healthy controls. We analyzed 132 samples (serum, 45 PD, and 29 age- and sex-matched healthy controls; CSF, 39 PD, and 19 age- and sex-matched healthy controls) using liquid chromatography-tandem mass spectrometry. Results showed significantly lower serum and CSF UA levels in PD patients than in controls (p < 0.0001; effect size r = 0.5007 in serum, p = 0.0046; r = 0.3720 in CSF). Decreased serum hypoxanthine levels were observed (p = 0.0002; r = 0.4338) in PD patients compared to controls with decreased CSF inosine and hypoxanthine levels (p < 0.0001, r = 0.5396: p = 0.0276, r = 0.2893). A general linear model analysis indicated that the reduced UA levels were mainly due to external factors such as sex and weight in serum and age and weight in CSF unrelated to the purine metabolic pathway. Our findings highlight that decreased UA levels in PD are influenced by factors beyond purine metabolism, including external factors such as sex, weight, and age, emphasizing the need for further research into the underlying mechanisms and potential therapeutic approaches.
Collapse
Affiliation(s)
- Sayuri Shima
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Yasuaki Mizutani
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Junichiro Yoshimoto
- Department of Biomedical Data Science, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Yasuhiro Maeda
- Open Facility Center, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Reiko Ohdake
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Ryunosuke Nagao
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Toshiki Maeda
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Atsuhiro Higashi
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Akihiro Ueda
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Mizuki Ito
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Tatsuro Mutoh
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
- Fujita Health University Central Japan International Airport Clinic, 1-1 Centrair, Tokoname, Aichi, 479-0881, Japan
| | - Hirohisa Watanabe
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
2
|
Franco R, Garrigós C, Lillo J, Rivas-Santisteban R. The Potential of Metabolomics to Find Proper Biomarkers for Addressing the Neuroprotective Efficacy of Drugs Aimed at Delaying Parkinson's and Alzheimer's Disease Progression. Cells 2024; 13:1288. [PMID: 39120318 PMCID: PMC11311351 DOI: 10.3390/cells13151288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/10/2024] Open
Abstract
The first objective is to highlight the lack of tools to measure whether a given intervention affords neuroprotection in patients with Alzheimer's or Parkinson's diseases. A second aim is to present the primary outcome measures used in clinical trials in cohorts of patients with neurodegenerative diseases. The final aim is to discuss whether metabolomics using body fluids may lead to the discovery of biomarkers of neuroprotection. Information on the primary outcome measures in clinical trials related to Alzheimer's and Parkinson's disease registered since 2018 was collected. We analysed the type of measures selected to assess efficacy, not in terms of neuroprotection since, as stated in the aims, there is not yet any marker of neuroprotection. Proteomic approaches using plasma or CSF have been proposed. PET could estimate the extent of lesions, but disease progression does not necessarily correlate with a change in tracer uptake. We propose some alternatives based on considering the metabolome. A new opportunity opens with metabolomics because there have been impressive technological advances that allow the detection, among others, of metabolites related to mitochondrial function and mitochondrial structure in serum and/or cerebrospinal fluid; some of the differentially concentrated metabolites can become reliable biomarkers of neuroprotection.
Collapse
Affiliation(s)
- Rafael Franco
- Molecular Neurobiology Laboratory, Departament de Bioquimica i Biomedicina Molecular, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain; (C.G.); (J.L.)
- Network Center Neurodegenerative Diseases, CiberNed, Spanish National Health Center Carlos iii, Monforte de Lemos 3, 28029 Madrid, Spain
- School of Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Claudia Garrigós
- Molecular Neurobiology Laboratory, Departament de Bioquimica i Biomedicina Molecular, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain; (C.G.); (J.L.)
| | - Jaume Lillo
- Molecular Neurobiology Laboratory, Departament de Bioquimica i Biomedicina Molecular, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain; (C.G.); (J.L.)
- Network Center Neurodegenerative Diseases, CiberNed, Spanish National Health Center Carlos iii, Monforte de Lemos 3, 28029 Madrid, Spain
| | - Rafael Rivas-Santisteban
- Network Center Neurodegenerative Diseases, CiberNed, Spanish National Health Center Carlos iii, Monforte de Lemos 3, 28029 Madrid, Spain
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Campus Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
3
|
Xue X, Sun Z, Ji X, Lin H, Jing H, Yu Q. Associations between serum uric acid and breast cancer incidence: A systematic review and meta-analysis. Am J Med Sci 2024:S0002-9629(24)01340-5. [PMID: 38986907 DOI: 10.1016/j.amjms.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 04/27/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Serum uric acid (SUA) may be involved in the development of cancer by inhibiting oxidative stress, but its relationship with breast cancer remains unclear. MATERIALS AND METHODS The PubMed, Embase, and Web of Science databases were searched systematically for studies on SUA levels in women with breast cancer and the effect of SUA levels on the risk of breast cancer. The Newcastle‒Ottawa Quality Assessment Scale (NOS) was used to assess the quality of all relevant studies included. RESULTS A total of 19 studies were included, including 75,827 women with breast cancer and 508,528 healthy controls. A meta-analysis found that SUA levels were negatively correlated with breast cancer risk in women (HR = 0.94, 95% CI: 0.89 - 0.99, p = 0.003). SUA levels in female breast cancer patients were not significantly different from those in healthy controls (SMD = 0.49, 95% CI = -0.09 - 1.08, p = 0.10), while SUA levels were increased in female breast cancer patients in articles published after 2010, SUA concentration detected by spectrophotometry, and non-Asian populations, regardless of menopausal state and treatment state. CONCLUSION High levels of SUA may reduce the risk of breast cancer in women, suggesting that SUA was a protective factor in women.
Collapse
Affiliation(s)
- Xiao Xue
- Department of Laboratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, PR China
| | - Zhengyi Sun
- Department of Laboratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, PR China
| | - Xufeng Ji
- Department of Laboratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, PR China.
| | - Hua Lin
- Department of Laboratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, PR China.
| | - Huang Jing
- Department of Laboratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, PR China.
| | - Qiuyang Yu
- Department of Laboratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, PR China.
| |
Collapse
|
4
|
Koh S, Lee DY, Cha JM, Kim Y, Kim HH, Yang HJ, Park RW, Choi JY. Association between pre-diagnostic serum uric acid levels in patients with newly diagnosed epilepsy and conversion rate to drug-resistant epilepsy within 5 years: A common data model analysis. Seizure 2024; 118:103-109. [PMID: 38669746 DOI: 10.1016/j.seizure.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
PURPOSE Drug-resistant epilepsy (DRE) poses a significant challenge in epilepsy management, and reliable biomarkers for identifying patients at risk of DRE are lacking. This study aimed to investigate the association between serum uric acid (UA) levels and the conversion rate to DRE. METHODS A retrospective cohort study was conducted using a common data model database. The study included patients newly diagnosed with epilepsy, with prediagnostic serum UA levels within a six-month window. Patients were categorized into hyperUA (≥7.0 mg/dL), normoUA (<7.0 and >2.0 mg/dL), and hypoUA (≤2.0 mg/dL) groups based on their prediagnostic UA levels. The outcome was the conversion rate to DRE within five years of epilepsy diagnosis. RESULTS The study included 5,672 patients with epilepsy and overall conversion rate to DRE was 19.4%. The hyperUA group had a lower DRE conversion rate compared to the normoUA group (HR: 0.81 [95% CI: 0.69-0.96]), while the hypoUA group had a higher conversion rate (HR: 1.88 [95% CI: 1.38-2.55]). CONCLUSIONS Serum UA levels have the potential to serve as a biomarker for identifying patients at risk of DRE, indicating a potential avenue for novel therapeutic strategies aimed at preventing DRE conversion.
Collapse
Affiliation(s)
- Seungyon Koh
- Department of Brain Science, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Suwon 16499, Republic of Korea; Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea; Department of Neurology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Dong Yun Lee
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Republic of Kore; Department of Medical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea; Department of Psychiatry, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jae Myung Cha
- Department of Gastroenterology, Gang Dong Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Yerim Kim
- Department of Neurology, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Hyung Hoi Kim
- Department of Laboratory Medicine, Pusan National University Hospital, Busan, Republic of Korea
| | - Hyeon-Jong Yang
- Department of Pediatrics, Soonchunhyang University College of Medicine, Seoul, Republic of Korea
| | - Rae Woong Park
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Republic of Kore.
| | - Jun Young Choi
- Department of Brain Science, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Suwon 16499, Republic of Korea; Department of Neurology, Ajou University School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|
5
|
Wen S, Arakawa H, Tamai I. Uric acid in health and disease: From physiological functions to pathogenic mechanisms. Pharmacol Ther 2024; 256:108615. [PMID: 38382882 DOI: 10.1016/j.pharmthera.2024.108615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/02/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
Owing to renal reabsorption and the loss of uricase activity, uric acid (UA) is strictly maintained at a higher physiological level in humans than in other mammals, which provides a survival advantage during evolution but increases susceptibility to certain diseases such as gout. Although monosodium urate (MSU) crystal precipitation has been detected in different tissues of patients as a trigger for disease, the pathological role of soluble UA remains controversial due to the lack of causality in the clinical setting. Abnormal elevation or reduction of UA levels has been linked to some of pathological status, also known as U-shaped association, implying that the physiological levels of UA regulated by multiple enzymes and transporters are crucial for the maintenance of health. In addition, the protective potential of UA has also been proposed in aging and some diseases. Therefore, the role of UA as a double-edged sword in humans is determined by its physiological or non-physiological levels. In this review, we summarize biosynthesis, membrane transport, and physiological functions of UA. Then, we discuss the pathological involvement of hyperuricemia and hypouricemia as well as the underlying mechanisms by which UA at abnormal levels regulates the onset and progression of diseases. Finally, pharmacological strategies for urate-lowering therapy (ULT) are introduced, and current challenges in UA study and future perspectives are also described.
Collapse
Affiliation(s)
- Shijie Wen
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Arakawa
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
6
|
Passos V, Henkel LM, Wang J, Zapatero-Belinchón FJ, Möller R, Sun G, Waltl I, Schneider T, Wachs A, Ritter B, Kropp KA, Zhu S, Deleidi M, Kalinke U, Schulz TF, Höglinger G, Gerold G, Wegner F, Viejo-Borbolla A. Innate immune response to SARS-CoV-2 infection contributes to neuronal damage in human iPSC-derived peripheral neurons. J Med Virol 2024; 96:e29455. [PMID: 38323709 DOI: 10.1002/jmv.29455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/21/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
Severe acute respiratory coronavirus 2 (SARS-CoV-2) causes neurological disease in the peripheral and central nervous system (PNS and CNS, respectively) of some patients. It is not clear whether SARS-CoV-2 infection or the subsequent immune response are the key factors that cause neurological disease. Here, we addressed this question by infecting human induced pluripotent stem cell-derived CNS and PNS neurons with SARS-CoV-2. SARS-CoV-2 infected a low number of CNS neurons and did not elicit a robust innate immune response. On the contrary, SARS-CoV-2 infected a higher number of PNS neurons. This resulted in expression of interferon (IFN) λ1, several IFN-stimulated genes and proinflammatory cytokines. The PNS neurons also displayed alterations characteristic of neuronal damage, as increased levels of sterile alpha and Toll/interleukin receptor motif-containing protein 1, amyloid precursor protein and α-synuclein, and lower levels of cytoskeletal proteins. Interestingly, blockade of the Janus kinase and signal transducer and activator of transcription pathway by Ruxolitinib did not increase SARS-CoV-2 infection, but reduced neuronal damage, suggesting that an exacerbated neuronal innate immune response contributes to pathogenesis in the PNS. Our results provide a basis to study coronavirus disease 2019 (COVID-19) related neuronal pathology and to test future preventive or therapeutic strategies.
Collapse
Affiliation(s)
- Vania Passos
- Hannover Medical School, Institute of Virology, Hannover, Germany
| | - Lisa M Henkel
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Jiayi Wang
- Hannover Medical School, Institute of Virology, Hannover, Germany
| | - Francisco J Zapatero-Belinchón
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Cluster of Excellence-Resolving Infection Susceptibility (RESIST), Hannover Medical School, Hannover, Germany
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Rebecca Möller
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Guorong Sun
- Hannover Medical School, Institute of Virology, Hannover, Germany
| | - Inken Waltl
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Talia Schneider
- Hannover Medical School, Institute of Virology, Hannover, Germany
| | - Amelie Wachs
- Hannover Medical School, Institute of Virology, Hannover, Germany
| | - Birgit Ritter
- Hannover Medical School, Institute of Virology, Hannover, Germany
| | - Kai A Kropp
- Hannover Medical School, Institute of Virology, Hannover, Germany
| | - Shuyong Zhu
- Hannover Medical School, Institute of Virology, Hannover, Germany
| | - Michela Deleidi
- Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Ulrich Kalinke
- Cluster of Excellence-Resolving Infection Susceptibility (RESIST), Hannover Medical School, Hannover, Germany
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Thomas F Schulz
- Hannover Medical School, Institute of Virology, Hannover, Germany
- Cluster of Excellence-Resolving Infection Susceptibility (RESIST), Hannover Medical School, Hannover, Germany
| | - Günter Höglinger
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence-Resolving Infection Susceptibility (RESIST), Hannover Medical School, Hannover, Germany
| | - Gisa Gerold
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Cluster of Excellence-Resolving Infection Susceptibility (RESIST), Hannover Medical School, Hannover, Germany
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Abel Viejo-Borbolla
- Hannover Medical School, Institute of Virology, Hannover, Germany
- Cluster of Excellence-Resolving Infection Susceptibility (RESIST), Hannover Medical School, Hannover, Germany
| |
Collapse
|
7
|
Ng MG, Chan BJL, Koh RY, Ng KY, Chye SM. Prevention of Parkinson's Disease: From Risk Factors to Early Interventions. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:746-760. [PMID: 37326115 DOI: 10.2174/1871527322666230616092054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023]
Abstract
Parkinson's disease (PD) is a debilitating neurological disorder characterized by progressively worsening motor dysfunction. Currently, available therapies merely alleviate symptoms, and there are no cures. Consequently, some researchers have now shifted their attention to identifying the modifiable risk factors of PD, with the intention of possibly implementing early interventions to prevent the development of PD. Four primary risk factors for PD are discussed including environmental factors (pesticides and heavy metals), lifestyle (physical activity and dietary intake), drug abuse, and individual comorbidities. Additionally, clinical biomarkers, neuroimaging, biochemical biomarkers, and genetic biomarkers could also help to detect prodromal PD. This review compiled available evidence that illustrates the relationship between modifiable risk factors, biomarkers, and PD. In summary, we raise the distinct possibility of preventing PD via early interventions of the modifiable risk factors and early diagnosis.
Collapse
Affiliation(s)
- Ming Guan Ng
- School of Health Science, International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Brendan Jun Lam Chan
- School of Health Science, International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Rhun Yian Koh
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University, 47500 Selangor, Malaysia
| | - Soi Moi Chye
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Ciocca M, Pizzamiglio C. Clinical Benefits of Therapeutic Interventions Targeting Mitochondria in Parkinson's Disease Patients. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:554-561. [PMID: 37005519 PMCID: PMC11071650 DOI: 10.2174/1871527322666230330122444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 04/04/2023]
Abstract
Parkinson's disease is the second most common neurodegenerative disease. Mitochondrial dysfunction has been associated with neurodegeneration in Parkinson's disease, and several treatments targeting mitochondria have been tested in these patients to delay disease progression and tackle disease symptoms. Herein, we review available data from randomised, double-blind clinical studies that have investigated the role of compounds targeting mitochondria in idiopathic Parkinson's disease patients, with a view of providing patients and clinicians with a comprehensive and practical paper that can inform therapeutic interventions in this group of people. A total of 9 compounds have been tested in randomized clinical trials, but only exenatide has shown some promising neuroprotective and symptomatic effects. However, whether this evidence can be translated into daily clinical practice still needs to be confirmed. In conclusion, targeting mitochondrial dysfunction in Parkinson's disease is a promising therapeutic approach, although only one compound has shown a positive effect on Parkinson's disease progression and symptoms. New compounds have been investigated in animal models, and their efficacy needs to be confirmed in humans through robust, randomised, double-blind clinical trials.
Collapse
Affiliation(s)
- Matteo Ciocca
- Department of Brain Sciences, Imperial College London, London, UK
| | - Chiara Pizzamiglio
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
9
|
Shin YJ, Kim YJ, Lee JE, Kim YS, Lee JW, Kim H, Shin JY, Lee PH. Uric acid regulates α-synuclein transmission in Parkinsonian models. Front Aging Neurosci 2023; 15:1117491. [PMID: 37711993 PMCID: PMC10497982 DOI: 10.3389/fnagi.2023.1117491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 08/11/2023] [Indexed: 09/16/2023] Open
Abstract
Ample evidence demonstrates that α-synuclein (α-syn) has a critical role in the pathogenesis of Parkinson's disease (PD) with evidence indicating that its propagation from one area of the brain to others may be the primary mechanism for disease progression. Uric acid (UA), a natural antioxidant, has been proposed as a potential disease modifying candidate in PD. In the present study, we investigated whether UA treatment modulates cell-to-cell transmission of extracellular α-syn and protects dopaminergic neurons in the α-syn-enriched model. In a cellular model, UA treatment decreased internalized cytosolic α-syn levels and neuron-to-neuron transmission of α-syn in donor-acceptor cell models by modulating dynamin-mediated and clathrin-mediated endocytosis. Moreover, UA elevation in α-syn-inoculated mice inhibited propagation of extracellular α-syn which decreased expression of phosphorylated α-syn in the dopaminergic neurons of the substantia nigra leading to their increased survival. UA treatment did not lead to change in markers related with autophagolysosomal and microglial activity under the same experimental conditions. These findings suggest UA may control the pathological conditions of PD via additive mechanisms which modulate the propagation of α-syn.
Collapse
Affiliation(s)
- Yu Jin Shin
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Yeon Ju Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Ji Eun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Yi Seul Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Jung Wook Lee
- Department of Medical Science, Catholic Kwandong University College of Medicine, Gangneung-si, Republic of Korea
| | - HyeonJeong Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Jin Young Shin
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Otani N, Hoshiyama E, Ouchi M, Takekawa H, Suzuki K. Uric acid and neurological disease: a narrative review. Front Neurol 2023; 14:1164756. [PMID: 37333005 PMCID: PMC10268604 DOI: 10.3389/fneur.2023.1164756] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/05/2023] [Indexed: 06/20/2023] Open
Abstract
Hyperuricemia often accompanies hypertension, diabetes, dyslipidemia, metabolic syndrome, and chronic renal disease; it is also closely related to cardiovascular disease. Moreover, several epidemiological studies have linked hyperuricemia and ischemic stroke. However, uric acid may also have neuroprotective effects because of its antioxidant properties. An association between low uric acid levels and neurodegenerative diseases has been suggested, which may be attributed to diminished neuroprotective effects as a result of reduced uric acid. This review will focus on the relationship between uric acid and various neurological diseases including stroke, neuroimmune diseases, and neurodegenerative diseases. When considering both the risk and pathogenesis of neurological diseases, it is important to consider the conflicting dual nature of uric acid as both a vascular risk factor and a neuroprotective factor. This dual nature of uric acid is important because it may help to elucidate the biological role of uric acid in various neurological diseases and provide new insights into the etiology and treatment of these diseases.
Collapse
Affiliation(s)
- Naoyuki Otani
- Department of Cardiology, Dokkyo Medical University Nikkyo Medical Center, Mibu, Japan
| | - Eisei Hoshiyama
- Department of Neurology, Dokkyo Medical University, Mibu, Japan
| | - Motoshi Ouchi
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Mibu, Japan
| | - Hidehiro Takekawa
- Department of Neurology, Dokkyo Medical University, Mibu, Japan
- Stroke Center, Dokkyo Medical University, Mibu, Japan
| | - Keisuke Suzuki
- Department of Neurology, Dokkyo Medical University, Mibu, Japan
| |
Collapse
|
11
|
Hasíková L, Závada J, Serranová T, Kozlík P, Kalíková K, Kotačková L, Trnka J, Zogala D, Šonka K, Růžička E, Dušek P. Serum but not cerebrospinal fluid levels of allantoin are increased in de novo Parkinson's disease. NPJ Parkinsons Dis 2023; 9:60. [PMID: 37045835 PMCID: PMC10097817 DOI: 10.1038/s41531-023-00505-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Oxidative stress supposedly plays a role in the pathogenesis of Parkinson's disease (PD). Uric acid (UA), a powerful antioxidant, is lowered in PD while allantoin, the oxidation product of UA and known biomarker of oxidative stress, was not systematically studied in PD. We aim to compare serum and cerebrospinal fluid (CSF) levels of UA, allantoin, and allantoin/UA ratio in de novo PD patients and controls, and evaluate their associations with clinical severity and the degree of substantia nigra degeneration in PD. We measured serum and CSF levels of UA, allantoin, and allantoin/UA ratio in 86 PD patients (33 females, mean age 57.9 (SD 12.6) years; CSF levels were assessed in 51 patients) and in 40 controls (19 females, 56.7 (14.1) years). PD patients were examined using Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS), Montreal Cognitive Assessment (MoCA), Scales for Outcomes in Parkinson Disease-Autonomic (SCOPA-AUT), the University of Pennsylvania Smell Identification Test (UPSIT), one-night video-polysomnography, and dopamine transporter single-photon emission computed tomography (DAT-SPECT). Serum allantoin and allantoin/UA ratio were significantly increased in the PD group compared to controls (p < 0.001 and p = 0.002, respectively). Allantoin/UA ratios in serum and CSF were positively associated with the SCOPA-AUT score (p = 0.005 and 0.031, respectively) and RBD presence (p = 0.044 and 0.028, respectively). In conclusion, serum allantoin and allantoin/UA ratio are elevated in patients with de novo PD. Allantoin/UA ratio in serum and CSF is associated with autonomic dysfunction and RBD presence, indicating that higher systemic oxidative stress occurs in PD patients with more diffuse neurodegenerative changes.
Collapse
Affiliation(s)
- Lenka Hasíková
- Institute of Rheumatology, Prague, Czech Republic; Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jakub Závada
- Institute of Rheumatology, Prague, Czech Republic; Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tereza Serranová
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Petr Kozlík
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Květa Kalíková
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Lenka Kotačková
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jiří Trnka
- Institute of Nuclear Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - David Zogala
- Institute of Nuclear Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Karel Šonka
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Evžen Růžička
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Petr Dušek
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.
| |
Collapse
|
12
|
Ong WY, Leow DMK, Herr DR, Yeo CJJ. What Do Randomized Controlled Trials Inform Us About Potential Disease-Modifying Strategies for Parkinson's Disease? Neuromolecular Med 2023; 25:1-13. [PMID: 35776238 DOI: 10.1007/s12017-022-08718-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/05/2022] [Indexed: 01/09/2023]
Abstract
Research advances have shed new insight into cellular pathways contributing to PD pathogenesis and offer increasingly compelling therapeutic targets. In this review, we made a broad survey of the published literature that report possible disease-modifying effects on PD. While there are many studies that demonstrate benefits for various therapies for PD in animal and human studies, we confined our search to human "randomised controlled trials" and with the key words "neuroprotection" or "disease-modifying". It is hoped that through studying the results of these trials, we might clarify possible mechanisms that underlie idiopathic PD. This contrasts with studying the effect of pathophysiology of familial PD, which could be carried out by gene knockouts and animal models. Randomised controlled trials indicate promising effects of MAO-B inhibitors, dopamine agonists, NMDA receptor antagonists, metabotropic glutamate receptor antagonists, therapies related to improving glucose utilization and energy production, therapies related to reduction of excitotoxicity and oxidative stress, statin use, therapies related to iron chelation, therapies related to the use of phytochemicals, and therapies related to physical exercise and brain reward pathway on slowing PD progression. Cumulatively, these approaches fall into two categories: direct enhancement of dopaminergic signalling, and reduction of neurodegeneration. Overlaps between the two categories result in challenges in distinguishing between symptomatic versus disease-modifying effects with current clinical trial designs. Nevertheless, a broad-based approach allows us to consider all possible therapeutic avenues which may be neuroprotective. While the traditional standard of care focuses on symptomatic management with dopaminergic drugs, more recent approaches suggest ways to preserve dopaminergic neurons by attenuating excitotoxicity and oxidative stress.
Collapse
Affiliation(s)
- Wei-Yi Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260, Singapore.
- Neurobiology Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260, Singapore.
| | - Damien Meng-Kiat Leow
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260, Singapore
| | - Deron R Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260, Singapore
| | - Crystal Jing-Jing Yeo
- Institute of Molecular and Cell Biology, A*Star, Singapore, 138673, Singapore
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
- LKC School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
- National Neuroscience Institute, Singapore, 308433, Singapore
| |
Collapse
|
13
|
Grosu L, Grosu AI, Crisan D, Zlibut A, Perju-Dumbrava L. Parkinson's disease and cardiovascular involvement: Edifying insights (Review). Biomed Rep 2023; 18:25. [PMID: 36846617 PMCID: PMC9944619 DOI: 10.3892/br.2023.1607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative illnesses, and is a major healthcare burden with prodigious consequences on life-quality, morbidity, and survival. Cardiovascular diseases are the leading cause of mortality worldwide and growing evidence frequently reports their co-existence with PD. Cardiac dysautonomia due to autonomic nervous system malfunction is the most prevalent type of cardiovascular manifestation in these patients, comprising orthostatic and postprandial hypotension, along with supine and postural hypertension. Moreover, many studies have endorsed the risk of patients with PD to develop ischemic heart disease, heart failure and even arrhythmias, but the underlying mechanisms are not entirely clear. As importantly, the medication used in treating PD, such as levodopa, dopamine agonists or anticholinergic agents, is also responsible for cardiovascular adverse reactions, but further studies are required to elucidate the underlying mechanisms. The purpose of this review was to provide a comprehensive overview of current available data regarding the overlapping cardiovascular disease in patients with PD.
Collapse
Affiliation(s)
- Laura Grosu
- Department of Neurology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Neurology, Municipal Clinical Hospital, 400139 Cluj-Napoca, Romania
| | - Alin Ionut Grosu
- Department of Internal Medicine, 5th Medical Clinic, Iuliu Hatieganu University of Medicine and Pharmacy, 400139 Cluj-Napoca, Romania
- Department of Cardiology, Municipal Clinical Hospital, 400139 Cluj-Napoca, Romania
| | - Dana Crisan
- Department of Internal Medicine, 5th Medical Clinic, Iuliu Hatieganu University of Medicine and Pharmacy, 400139 Cluj-Napoca, Romania
- Department of Internal Medicine, Municipal Clinical Hospital, 400139 Cluj-Napoca, Romania
| | - Alexandru Zlibut
- Department of Internal Medicine, 5th Medical Clinic, Iuliu Hatieganu University of Medicine and Pharmacy, 400139 Cluj-Napoca, Romania
- Department of Cardiology, Emergency Clinical Hospital of Bucharest, 014461 Bucharest, Romania
| | - Lacramioara Perju-Dumbrava
- Department of Neurology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
14
|
Walk D, Nicholson K, Locatelli E, Chan J, Macklin EA, Ferment V, Manousakis G, Chase M, Connolly M, Dagostino D, Hall M, Ostrow J, Pothier L, Lieberman C, Gelevski D, Randall R, Sherman AV, Steinhart E, Walker DG, Walker J, Yu H, Wills AM, Schwarzschild MA, Beukenhorst AL, Onnela JP, Berry JD, Cudkowicz ME, Paganoni S. Randomized trial of inosine for urate elevation in amyotrophic lateral sclerosis. Muscle Nerve 2023; 67:378-386. [PMID: 36840949 DOI: 10.1002/mus.27807] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 02/26/2023]
Abstract
INTRODUCTION/AIMS Higher urate levels are associated with improved ALS survival in retrospective studies, however whether raising urate levels confers a survival advantage is unknown. In the Safety of Urate Elevation in Amyotrophic Lateral Sclerosis (SURE-ALS) trial, inosine raised serum urate and was safe and well-tolerated. The SURE-ALS2 trial was designed to assess longer term safety. Functional outcomes and a smartphone application were also explored. METHODS Participants were randomized 2:1 to inosine (n = 14) or placebo (n = 9) for 20 weeks, titrated to serum urate of 7-8 mg/dL. Primary outcomes were safety and tolerability. Functional outcomes were measured with the Amyotrophic Lateral Sclerosis Functional Rating Scale Revised (ALSFRS-R). Mobility and ALSFRS-R were also assessed by a smartphone application. RESULTS During inosine treatment, mean urate ranged 5.68-6.82 mg/dL. Treatment-emergent adverse event (TEAE) incidence was similar between groups (p > .10). Renal TEAEs occurred in three (21%) and hypertension in one (7%) of participants randomized to inosine. Inosine was tolerated in 71% of participants versus placebo 67%. Two participants (14%) in the inosine group experienced TEAEs deemed related to treatment (nephrolithiasis); one was a severe adverse event. Mean ALSFRS-R decline did not differ between groups (p = .69). Change in measured home time was similar between groups. Digital and in-clinic ALSFRS-R correlated well. DISCUSSION Inosine met pre-specified criteria for safety and tolerability. A functional benefit was not demonstrated in this trial designed for safety and tolerability. Findings suggested potential utility for a smartphone application in ALS clinical and research settings.
Collapse
Affiliation(s)
- David Walk
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Katharine Nicholson
- Neurological Clinical Research Institute and Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Eduardo Locatelli
- Department of Neurology, Holy Cross Hospital, Fort Lauderdale, Florida, USA
| | - James Chan
- Neurological Clinical Research Institute and Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Eric A Macklin
- Neurological Clinical Research Institute and Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Valerie Ferment
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Georgios Manousakis
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Marianne Chase
- Neurological Clinical Research Institute and Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mariah Connolly
- Clinical Research Organization, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Derek Dagostino
- Neurological Clinical Research Institute and Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Meghan Hall
- Clinical Research Organization, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Joseph Ostrow
- Neurological Clinical Research Institute and Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Lindsay Pothier
- Neurological Clinical Research Institute and Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Cassandra Lieberman
- Neurological Clinical Research Institute and Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Dario Gelevski
- Neurological Clinical Research Institute and Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Rebecca Randall
- Clinical Research Organization, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Alexander V Sherman
- Neurological Clinical Research Institute and Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Erin Steinhart
- Neurological Clinical Research Institute and Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Daniela Grasso Walker
- Neurological Clinical Research Institute and Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jason Walker
- Neurological Clinical Research Institute and Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Hong Yu
- Neurological Clinical Research Institute and Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Anne-Marie Wills
- Neurological Clinical Research Institute and Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michael A Schwarzschild
- Department of Neurology, Massachusetts General Hospital, MassGeneral Institute for Neurodegenerative Disease, Boston, Massachusetts, USA
| | - Anna L Beukenhorst
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Jukka-Pekka Onnela
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - James D Berry
- Neurological Clinical Research Institute and Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Merit E Cudkowicz
- Neurological Clinical Research Institute and Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sabrina Paganoni
- Neurological Clinical Research Institute and Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Duque KR, Vizcarra JA, Hill EJ, Espay AJ. Disease-modifying vs symptomatic treatments: Splitting over lumping. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:187-209. [PMID: 36803811 DOI: 10.1016/b978-0-323-85555-6.00020-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Clinical trials of putative disease-modifying therapies in neurodegeneration have obeyed the century-old principle of convergence, or lumping, whereby any feature of a clinicopathologic disease entity is considered relevant to most of those affected. While this convergent approach has resulted in important successes in trials of symptomatic therapies, largely aimed at correcting common neurotransmitter deficiencies (e.g., cholinergic deficiency in Alzheimer's disease or dopaminergic deficiency in Parkinson's disease), it has been consistently futile in trials of neuroprotective or disease-modifying interventions. As individuals affected by the same neurodegenerative disorder do not share the same biological drivers, splitting such disease into small molecular/biological subtypes, to match people to therapies most likely to benefit them, is vital in the pursuit of disease modification. We here discuss three paths toward the splitting needed for future successes in precision medicine: (1) encourage the development of aging cohorts agnostic to phenotype in order to enact a biology-to-phenotype direction of biomarker development and validate divergence biomarkers (present in some, absent in most); (2) demand bioassay-based recruitment of subjects into disease-modifying trials of putative neuroprotective interventions in order to match the right therapies to the right recipients; and (3) evaluate promising epidemiologic leads of presumed pathogenetic potential using Mendelian randomization studies before designing the corresponding clinical trials. The reconfiguration of disease-modifying efforts for patients with neurodegenerative disorders will require a paradigm shift from lumping to splitting and from proteinopathy to proteinopenia.
Collapse
Affiliation(s)
- Kevin R Duque
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Joaquin A Vizcarra
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Emily J Hill
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Alberto J Espay
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States.
| |
Collapse
|
16
|
Khan MA, Haider N, Singh T, Bandopadhyay R, Ghoneim MM, Alshehri S, Taha M, Ahmad J, Mishra A. Promising biomarkers and therapeutic targets for the management of Parkinson's disease: recent advancements and contemporary research. Metab Brain Dis 2023; 38:873-919. [PMID: 36807081 DOI: 10.1007/s11011-023-01180-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/04/2023] [Indexed: 02/23/2023]
Abstract
Parkinson's disease (PD) is one of the progressive neurological diseases which affect around 10 million population worldwide. The clinical manifestation of motor symptoms in PD patients appears later when most dopaminergic neurons have degenerated. Thus, for better management of PD, the development of accurate biomarkers for the early prognosis of PD is imperative. The present work will discuss the potential biomarkers from various attributes covering biochemical, microRNA, and neuroimaging aspects (α-synuclein, DJ-1, UCH-L1, β-glucocerebrosidase, BDNF, etc.) for diagnosis, recent development in PD management, and major limitations with current and conventional anti-Parkinson therapy. This manuscript summarizes potential biomarkers and therapeutic targets, based on available preclinical and clinical evidence, for better management of PD.
Collapse
Affiliation(s)
- Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nafis Haider
- Prince Sultan Military College of Health Sciences, Dhahran, 34313, Saudi Arabia
| | - Tanveer Singh
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Ritam Bandopadhyay
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, 13713, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Murtada Taha
- Prince Sultan Military College of Health Sciences, Dhahran, 34313, Saudi Arabia
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, 11001, Saudi Arabia
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Sila Katamur (Halugurisuk), Kamrup, Changsari, Assam, 781101, India.
| |
Collapse
|
17
|
Affiliation(s)
- Sanjeev Kharel
- Maharajgunj Medical Campus, Tribhuvan University Institute of Medicine, Maharajgunj, Kathmandu, Nepal
| | - Rajeev Ojha
- Department of Neurology, Tribhuvan University Teaching Hospital, Maharajgunj, Kathmandu, Nepal
| |
Collapse
|
18
|
Soares NM, Pereira GM, Dutra ACL, Artigas NR, Krimberg JS, Monticelli BE, Schumacher-Schuh AF, Almeida RMMD, Rieder CRDM. Low serum uric acid levels and levodopa-induced dyskinesia in Parkinson's disease. ARQUIVOS DE NEURO-PSIQUIATRIA 2023; 81:40-46. [PMID: 36918006 PMCID: PMC10014208 DOI: 10.1055/s-0043-1761294] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/21/2022] [Indexed: 03/16/2023]
Abstract
BACKGROUND Levodopa is the most used and effective medication for motor symptoms of Parkinson disease (PD), its long-term use is associated with the appearance of levodopa-induced dyskinesia (LID). Uric acid (UA) is believed to play an important neuroprotective role in PD. OBJECTIVE To investigate if serum UA levels are related with the presence of LIDs in PD patients. Also, we investigated the associations among UA levels and clinical features of PD. METHODS We enrolled 81 PD patients (dyskinesia = 48; no dyskinesia = 33) in the present study. A blood sample was collected to evaluate serum UA levels, clinical evaluation included the following instruments: Montreal Cognitive Assessment (MoCA), Beck Depression Inventory II (BDI-II), MDS-Unified Parkinson's Disease Rating Scale (MDS-UPDRS), Hoehn and Yahr (HY), and the sub-item 4.1 of MDS-UPDRS IV (score ≥ 1). Additional relevant clinical information was obtained by a clinical questionnaire. RESULTS Serum UA levels were lower in the dyskinesia group when compared with the no dyskinesia group. The same result was found in the UA levels of both men and women. The multivariate analysis showed lower uric acid levels were significantly associated with having dyskinesia (odds ratio [OR] = 0.424; 95% confidence interval [CI]: 0.221-0.746; p = 0.005). Additional analysis verified that serum UA levels are inversely correlated with depressive symptoms, disease duration, MDS-UPDRS IV and time spent with dyskinesia. A positive correlation was found with age at onset of PD symptoms. CONCLUSIONS The present study provides a possible role of serum UA levels in LID present in PD patients.
Collapse
Affiliation(s)
- Nayron Medeiros Soares
- Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Porto Alegre RS, Brazil.
- Hospital de Clínicas de Porto Alegre, Serviço de Neurologia, Porto Alegre RS, Brazil.
- Universidade Federal de Ciências da Saúde de Porto Alegre, Curso de Física Médica, Porto Alegre RS, Brazil.
| | - Gabriela Magalhães Pereira
- Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Porto Alegre RS, Brazil.
- Hospital de Clínicas de Porto Alegre, Serviço de Neurologia, Porto Alegre RS, Brazil.
- Universidade Federal de Ciências da Saúde de Porto Alegre, Curso de Física Médica, Porto Alegre RS, Brazil.
| | - Ana Carolina Leonardi Dutra
- Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Porto Alegre RS, Brazil.
- Hospital de Clínicas de Porto Alegre, Serviço de Neurologia, Porto Alegre RS, Brazil.
| | - Nathalie Ribeiro Artigas
- Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Porto Alegre RS, Brazil.
- Hospital de Clínicas de Porto Alegre, Serviço de Neurologia, Porto Alegre RS, Brazil.
| | - Júlia Schneider Krimberg
- Hospital de Clínicas de Porto Alegre, Serviço de Neurologia, Porto Alegre RS, Brazil.
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Porto Alegre RS, Brazil.
| | - Bruno Elkfury Monticelli
- Hospital de Clínicas de Porto Alegre, Serviço de Neurologia, Porto Alegre RS, Brazil.
- Universidade Federal do Rio Grande do Sul, Instituto de Psicologia, Porto Alegre RS, Brazil.
| | - Artur Francisco Schumacher-Schuh
- Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Porto Alegre RS, Brazil.
- Hospital de Clínicas de Porto Alegre, Serviço de Neurologia, Porto Alegre RS, Brazil.
| | | | - Carlos Roberto de Mello Rieder
- Irmandade Santa Casa de Misericórdia de Porto Alegre, Serviço de Neurologia, Porto Alegre RS, Brazil.
- Universidade Federal de Ciências da Saúde de Porto Alegre, Departamento de Clínica Médica, Porto Alegre RS, Brazil.
| |
Collapse
|
19
|
Yang B, Xin M, Liang S, Xu X, Cai T, Dong L, Wang C, Wang M, Cui Y, Song X, Sun J, Sun W. New insight into the management of renal excretion and hyperuricemia: Potential therapeutic strategies with natural bioactive compounds. Front Pharmacol 2022; 13:1026246. [PMID: 36483739 PMCID: PMC9723165 DOI: 10.3389/fphar.2022.1026246] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/26/2022] [Indexed: 10/05/2023] Open
Abstract
Hyperuricemia is the result of increased production and/or underexcretion of uric acid. Hyperuricemia has been epidemiologically associated with multiple comorbidities, including metabolic syndrome, gout with long-term systemic inflammation, chronic kidney disease, urolithiasis, cardiovascular disease, hypertension, rheumatoid arthritis, dyslipidemia, diabetes/insulin resistance and increased oxidative stress. Dysregulation of xanthine oxidoreductase (XOD), the enzyme that catalyzes uric acid biosynthesis primarily in the liver, and urate transporters that reabsorb urate in the renal proximal tubules (URAT1, GLUT9, OAT4 and OAT10) and secrete urate (ABCG2, OAT1, OAT3, NPT1, and NPT4) in the renal tubules and intestine, is a major cause of hyperuricemia, along with variations in the genes encoding these proteins. The first-line therapeutic drugs used to lower serum uric acid levels include XOD inhibitors that limit uric acid biosynthesis and uricosurics that decrease urate reabsorption in the renal proximal tubules and increase urate excretion into the urine and intestine via urate transporters. However, long-term use of high doses of these drugs induces acute kidney disease, chronic kidney disease and liver toxicity. Therefore, there is an urgent need for new nephroprotective drugs with improved safety profiles and tolerance. The current systematic review summarizes the characteristics of major urate transporters, the mechanisms underlying the pathogenesis of hyperuricemia, and the regulation of uric acid biosynthesis and transport. Most importantly, this review highlights the potential mechanisms of action of some naturally occurring bioactive compounds with antihyperuricemic and nephroprotective potential isolated from various medicinal plants.
Collapse
Affiliation(s)
- Bendong Yang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Meiling Xin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Shufei Liang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Xiaoxue Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Tianqi Cai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Ling Dong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Chao Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Meng Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Yuting Cui
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Xinhua Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
- Shandong Qingyujiangxing Biotechnology Co., Ltd., Zibo, China
| | - Jinyue Sun
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
- Shandong Qingyujiangxing Biotechnology Co., Ltd., Zibo, China
| |
Collapse
|
20
|
Ahuja M, Kaidery NA, Dutta D, Attucks OC, Kazakov EH, Gazaryan I, Matsumoto M, Igarashi K, Sharma SM, Thomas B. Harnessing the Therapeutic Potential of the Nrf2/Bach1 Signaling Pathway in Parkinson's Disease. Antioxidants (Basel) 2022; 11:antiox11091780. [PMID: 36139853 PMCID: PMC9495572 DOI: 10.3390/antiox11091780] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative movement disorder characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Although a complex interplay of multiple environmental and genetic factors has been implicated, the etiology of neuronal death in PD remains unresolved. Various mechanisms of neuronal degeneration in PD have been proposed, including oxidative stress, mitochondrial dysfunction, neuroinflammation, α-synuclein proteostasis, disruption of calcium homeostasis, and other cell death pathways. While many drugs individually targeting these pathways have shown promise in preclinical PD models, this promise has not yet translated into neuroprotective therapies in human PD. This has consequently spurred efforts to identify alternative targets with multipronged therapeutic approaches. A promising therapeutic target that could modulate multiple etiological pathways involves drug-induced activation of a coordinated genetic program regulated by the transcription factor, nuclear factor E2-related factor 2 (Nrf2). Nrf2 regulates the transcription of over 250 genes, creating a multifaceted network that integrates cellular activities by expressing cytoprotective genes, promoting the resolution of inflammation, restoring redox and protein homeostasis, stimulating energy metabolism, and facilitating repair. However, FDA-approved electrophilic Nrf2 activators cause irreversible alkylation of cysteine residues in various cellular proteins resulting in side effects. We propose that the transcriptional repressor of BTB and CNC homology 1 (Bach1), which antagonizes Nrf2, could serve as a promising complementary target for the activation of both Nrf2-dependent and Nrf2-independent neuroprotective pathways. This review presents the current knowledge on the Nrf2/Bach1 signaling pathway, its role in various cellular processes, and the benefits of simultaneously inhibiting Bach1 and stabilizing Nrf2 using non-electrophilic small molecules as a novel therapeutic approach for PD.
Collapse
Affiliation(s)
- Manuj Ahuja
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC 29406, USA
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29406, USA
| | - Navneet Ammal Kaidery
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC 29406, USA
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29406, USA
| | - Debashis Dutta
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC 29406, USA
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29406, USA
| | | | | | - Irina Gazaryan
- Pace University, White Plains, NY 10601, USA
- Department of Chemical Enzymology, School of Chemistry, M.V. Lomonosov Moscow State University, 111401 Moscow, Russia
- Faculty of Biology and Biotechnologies, Higher School of Economics, 111401 Moscow, Russia
| | - Mitsuyo Matsumoto
- Department of Biochemistry, Graduate School of Medicine, Tohoku University, Sendai 980-8576, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Graduate School of Medicine, Tohoku University, Sendai 980-8576, Japan
| | - Sudarshana M. Sharma
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC 29406, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29406, USA
| | - Bobby Thomas
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC 29406, USA
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29406, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29406, USA
- Department of Drug Discovery, Medical University of South Carolina, Charleston, SC 29406, USA
- Correspondence:
| |
Collapse
|
21
|
Misri Z, Pillarisetti S, Nayak P, Mahmood A, Ahmed S, Unnikrishnan B. Correlation of Serum Uric Acid with Cognition, Severity, and Stage of Disease in Patients with Idiopathic Parkinson’s Disease and Vascular Parkinsonism: A Cross-Sectional Study. Open Neurol J 2022. [DOI: 10.2174/1874205x-v16-e2207140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
Uric acid (UA) being a potent antioxidant may reduce the oxidative stress and progression of Parkinson’s disease. However, the role of UA is not yet established in people with Idiopathic Parkinson’s disease (IPD) and Vascular Parkinsonism (VP).
Objectives:
We aimed i) to compare the serum UA levels in IPD, VP, and healthy adults and ii) to find a relation between UA levels with disease severity, disease stage, and cognitive function in people with IPD and VP.
Methods:
A cross-sectional study was conducted among people with IPD (n=70), VP (n=70), and healthy adults (n=70). Demographics details, body mass index, duration of illness, levodopa usage, comorbidities, MDS-UPDRS scores, modified H&Y scale, MMSE, and serum UA levels were collected from participants. Pearson’s correlation coefficient was used to find the correlation between UA levels, MDS-UPDRS, H & Y, and MMSE scores.
Results:
The age of the participants ranged from 59 to 80 years. Results showed that serum UA level in healthy control (5.41±0.99; p=0.001) and VP groups (5.27 ± 0.99; p=0.001) were significantly higher compared to IPD group (4.34 ±1.03). We found a significant negative correlation between UA and MDS-UPDRS (r=-0.68, p<0.01) and H & Y scores (r = -0.61, p<0.01) and a significant positive correlation of UA with MMSE (r=0.55, p<0.01) in the IPD group. UA levels in the VP group were not correlated with any of the outcome measures.
Conclusion:
In people with IPD, serum UA level was negatively correlated with severity and progression of the disease but positively correlated with cognitive ability.
Collapse
|
22
|
Basile MS, Bramanti P, Mazzon E. Inosine in Neurodegenerative Diseases: From the Bench to the Bedside. Molecules 2022; 27:molecules27144644. [PMID: 35889517 PMCID: PMC9316764 DOI: 10.3390/molecules27144644] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
Neurodegenerative diseases, such as Alzheimer′s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS), currently represent major unmet medical needs. Therefore, novel therapeutic strategies are needed in order to improve patients’ quality of life and prognosis. Since oxidative stress can be strongly involved in neurodegenerative diseases, the potential use of inosine, known for its antioxidant properties, in this context deserves particular attention. The protective action of inosine treatment could be mediated by its metabolite urate. Here, we review the current preclinical and clinical studies investigating the use of inosine in AD, PD, ALS, and MS. The most important properties of inosine seem to be its antioxidant action and its ability to raise urate levels and to increase energetic resources by improving ATP availability. Inosine appears to be generally safe and well tolerated; however, the possible formation of kidney stones should be monitored, and data on its effectiveness should be further explored since, so far, they have been controversial. Overall, inosine could be a promising potential strategy in the management of neurodegenerative diseases, and additional studies are needed in order to further investigate its safety and efficacy and its use as a complementary therapy along with other approved drugs.
Collapse
|
23
|
Sex Differences in Parkinson’s Disease: From Bench to Bedside. Brain Sci 2022; 12:brainsci12070917. [PMID: 35884724 PMCID: PMC9313069 DOI: 10.3390/brainsci12070917] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Parkinson’s disease (PD) is the second most common neurodegenerative disorder after Alzheimer’s disease and gender differences have been described on several aspects of PD. In the present commentary, we aimed to collect and discuss the currently available evidence on gender differences in PD regarding biomarkers, genetic factors, motor and non-motor symptoms, therapeutic management (including pharmacological and surgical treatment) as well as preclinical studies. Methods: A systematic literature review was performed by searching the Pubmed and Scopus databases with the search strings “biomarkers”, “deep brain stimulation”, “female”, “gender”, “genetic”, “levodopa”, “men”, “male”, “motor symptoms”, “non-motor symptoms”, “Parkinson disease”, “sex”, “surgery”, and “women”. Results: The present review confirms the existence of differences between men and women in Parkinson Disease, pointing out new information regarding evidence from animal models, genetic factors, biomarkers, clinical features and pharmacological and surgical treatment. Conclusions: The overall goal is to acquire new informations about sex and gender differences in Parkinson Disease, in order to develop tailored intervetions.
Collapse
|
24
|
Song Y, March J. Hyperuricemia and the small intestine: Transport mechanisms and co-morbidities. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2022; 3:32-37. [PMID: 39416456 PMCID: PMC11446379 DOI: 10.1016/j.biotno.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 10/19/2024]
Abstract
There is a global increase in cases of hyperuricemia over the last 10 years. A critical component of serum uric acid control is the transport of uric acid to the intestinal lumen, which accounts for 30% of the uric acid eliminated from the serum. This mini review looks at two important aspects of elevated uric acid: the dynamics of intestinal uric acid transport and hyperuricemia co-morbidities. Elevated serum uric acid can lead to gout and it can also impact other diseases such as diabetes, cardiovascular diseases and nervous system diseases. The level of uric acid in the intestine could be related to the potential for uric acid to impact other morbidities. We review the evidence for this and what it would mean for persons with elevated serum uric acid.
Collapse
Affiliation(s)
- Yanbo Song
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
- Johnson and Johnson, China
| | - John March
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
25
|
Banerjee P, Saha I, Sarkar D, Maiti AK. Contributions and Limitations of Mitochondria-Targeted and Non-Targeted Antioxidants in the Treatment of Parkinsonism: an Updated Review. Neurotox Res 2022; 40:847-873. [PMID: 35386026 DOI: 10.1007/s12640-022-00501-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 11/24/2022]
Abstract
As conventional therapeutics can only treat the symptoms of Parkinson's disease (PD), major focus of research in recent times is to slow down or prevent the progression of neuronal degeneration in PD. Non-targeted antioxidants have been an integral part of the conventional therapeutics regimen; however, their importance have lessened over time because of their controversial outcomes in clinical PD trials. Inability to permeate and localize within the mitochondria remains the main drawback on the part of non-targeted antioxidants inspite of possessing free radical scavenging properties. In contrast, mitochondrial-targeted antioxidants (MTAs), a special class of compounds have emerged having high advantages over non-targeted antioxidants by virtue of efficient pharmacokinetics and better absorption rate with capability to localize many fold inside the mitochondrial matrix. Preclinical experimentations indicate that MTAs have the potential to act as better alternatives compared to conventional non-targeted antioxidants in treating PD; however, sufficient clinical trials have not been conducted to investigate the efficacies of MTAs in treating PD. Controversial clinical outcomes on the part of non-targeted antioxidants and lack of clinical trials involving MTAs have made it difficult to go ahead with a direct comparison and in turn have slowed down the progress of development of safer and better alternate strategies in treating PD. This review provides an insight on the roles MTAs and non-targeted antioxidants have played in the treatment of PD till date in preclinical and clinical settings and discusses about the limitations of mitochondria-targeted and non-targeted antioxidants that can be resolved for developing effective strategies in treating Parkinsonism.
Collapse
Affiliation(s)
- Priyajit Banerjee
- Department of Zoology, University of Burdwan, Burdwan, West Bengal, Pin-713104, India
| | - Ishita Saha
- Department of Physiology, Medical College Kolkata, Kolkata, West Bengal, Pin-700073, India
| | - Diptendu Sarkar
- Department of Microbiology, Ramakrishna Mission Vidyamandira, Belur Math, Howrah, West Bengal, 711202, India
| | - Arpan Kumar Maiti
- Mitochondrial Biology and Experimental Therapeutics Laboratory, Department of Zoology, University of North Bengal, District - Darjeeling, P.O. N.B.U, Raja Rammohunpur, West Bengal, Pin-734013, India.
| |
Collapse
|
26
|
Mijailovic NR, Vesic K, Borovcanin MM. The Influence of Serum Uric Acid on the Brain and Cognitive Dysfunction. Front Psychiatry 2022; 13:828476. [PMID: 35530021 PMCID: PMC9072620 DOI: 10.3389/fpsyt.2022.828476] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Uric acid is commonly known for its bad reputation. However, it has been shown that uric acid may be actively involved in neurotoxicity and/or neuroprotection. These effects could be caused by oxidative stress or inflammatory processes localized in the central nervous system, but also by other somatic diseases or systemic conditions. Our interest was to summarize and link the current data on the possible role of uric acid in cognitive functioning. We also focused on the two putative molecular mechanisms related to the pathological effects of uric acid-oxidative stress and inflammatory processes. The hippocampus is a prominent anatomic localization included in expressing uric acid's potential impact on cognitive functioning. In neurodegenerative and mental disorders, uric acid could be involved in a variety of ways in etiopathogenesis and clinical presentation. Hyperuricemia is non-specifically observed more frequently in the general population and after various somatic illnesses. There is increasing evidence to support the hypothesis that hyperuricemia may be beneficial for cognitive functioning because of its antioxidant effects but may also be a potential risk factor for cognitive dysfunction, in part because of increased inflammatory activity. In this context, gender specificities must also be considered.
Collapse
Affiliation(s)
- Natasa R Mijailovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Katarina Vesic
- Department of Neurology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Milica M Borovcanin
- Department of Psychiatry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
27
|
Clinical Association between Gout and Parkinson's Disease: A Nationwide Population-Based Cohort Study in Korea. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:medicina57121292. [PMID: 34946237 PMCID: PMC8704991 DOI: 10.3390/medicina57121292] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 12/21/2022]
Abstract
Background and Objectives: This retrospective cohort study aimed to investigate the association between gout and Parkinson’s disease (PD) in Korea. Materials and Methods: Overall, 327,160 patients with gout and 327,160 age- and sex-matched controls were selected from the Korean National Health Insurance Service (NHIS) database. PD incidence was evaluated by reviewing NHIS records during the period from 2002 to 2019. Patients with a diagnosis of gout (International Classification of Diseases-10 (ICD-10), M10) who were prescribed medications for gout, including colchicine, allopurinol, febuxostat, and benzbromarone for at least 90 days were selected. Patients with PD who were assigned a diagnosis code (ICD-G20) and were registered in the rare incurable diseases (RID) system were extracted. Results: During follow-up, 912 patients with gout and 929 control participants developed PD. The incidence rate (IR) of overall PD (per 1000 person-years) was not significantly different between both groups (0.35 vs. 0.36 in gout and control groups, respectively). The incidence rate ratio (IRR) was 0.98 (95% CI: 0.89–1.07). The cumulative incidence of PD was not significantly different between the groups. No association between gout and PD was identified in univariate analysis (HR = 1.00, 95% CI: 0.91–1.10, p = 0.935). HR increased significantly with old age (HR = 92.08, 198, and 235.2 for 60–69 years, 70–79 years, and over 80 years, respectively), female sex (HR = 1.21, 95% CI: 1.07–1.37, p = 0.002), stroke (HR = 1.95, 95% CI: 1.76–2.16, p < 0.001), and hypertension (HR = 1.16, 95% CI: 1.01–1.34, p = 0.04). Dyslipidemia exhibited an inverse result for PD (HR = 0.6, 95% CI: 0.52–0.68, p < 0.001). Conclusions: This population-based study did not identify an association between gout and PD. Age, female sex, stroke, and hypertension were identified as independent risk factors for PD, and dyslipidemia demonstrated an inverse result for PD.
Collapse
|
28
|
Schwarzschild MA, Ascherio A, Casaceli C, Curhan GC, Fitzgerald R, Kamp C, Lungu C, Macklin EA, Marek K, Mozaffarian D, Oakes D, Rudolph A, Shoulson I, Videnovic A, Scott B, Gauger L, Aldred J, Bixby M, Ciccarello J, Gunzler SA, Henchcliffe C, Brodsky M, Keith K, Hauser RA, Goetz C, LeDoux MS, Hinson V, Kumar R, Espay AJ, Jimenez-Shahed J, Hunter C, Christine C, Daley A, Leehey M, de Marcaida JA, Friedman JH, Hung A, Bwala G, Litvan I, Simon DK, Simuni T, Poon C, Schiess MC, Chou K, Park A, Bhatti D, Peterson C, Criswell SR, Rosenthal L, Durphy J, Shill HA, Mehta SH, Ahmed A, Deik AF, Fang JY, Stover N, Zhang L, Dewey RB, Gerald A, Boyd JT, Houston E, Suski V, Mosovsky S, Cloud L, Shah BB, Saint-Hilaire M, James R, Zauber SE, Reich S, Shprecher D, Pahwa R, Langhammer A, LaFaver K, LeWitt PA, Kaminski P, Goudreau J, Russell D, Houghton DJ, Laroche A, Thomas K, McGraw M, Mari Z, Serrano C, Blindauer K, Rabin M, Kurlan R, Morgan JC, Soileau M, Ainslie M, Bodis-Wollner I, Schneider RB, Waters C, Ratel AS, Beck CA, Bolger P, Callahan KF, Crotty GF, Klements D, Kostrzebski M, McMahon GM, Pothier L, Waikar SS, Lang A, Mestre T. Effect of Urate-Elevating Inosine on Early Parkinson Disease Progression: The SURE-PD3 Randomized Clinical Trial. JAMA 2021; 326:926-939. [PMID: 34519802 PMCID: PMC8441591 DOI: 10.1001/jama.2021.10207] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 06/05/2021] [Indexed: 01/13/2023]
Abstract
Importance Urate elevation, despite associations with crystallopathic, cardiovascular, and metabolic disorders, has been pursued as a potential disease-modifying strategy for Parkinson disease (PD) based on convergent biological, epidemiological, and clinical data. Objective To determine whether sustained urate-elevating treatment with the urate precursor inosine slows early PD progression. Design, Participants, and Setting Randomized, double-blind, placebo-controlled, phase 3 trial of oral inosine treatment in early PD. A total of 587 individuals consented, and 298 with PD not yet requiring dopaminergic medication, striatal dopamine transporter deficiency, and serum urate below the population median concentration (<5.8 mg/dL) were randomized between August 2016 and December 2017 at 58 US sites, and were followed up through June 2019. Interventions Inosine, dosed by blinded titration to increase serum urate concentrations to 7.1-8.0 mg/dL (n = 149) or matching placebo (n = 149) for up to 2 years. Main Outcomes and Measures The primary outcome was rate of change in the Movement Disorder Society Unified Parkinson Disease Rating Scale (MDS-UPDRS; parts I-III) total score (range, 0-236; higher scores indicate greater disability; minimum clinically important difference of 6.3 points) prior to dopaminergic drug therapy initiation. Secondary outcomes included serum urate to measure target engagement, adverse events to measure safety, and 29 efficacy measures of disability, quality of life, cognition, mood, autonomic function, and striatal dopamine transporter binding as a biomarker of neuronal integrity. Results Based on a prespecified interim futility analysis, the study closed early, with 273 (92%) of the randomized participants (49% women; mean age, 63 years) completing the study. Clinical progression rates were not significantly different between participants randomized to inosine (MDS-UPDRS score, 11.1 [95% CI, 9.7-12.6] points per year) and placebo (MDS-UPDRS score, 9.9 [95% CI, 8.4-11.3] points per year; difference, 1.26 [95% CI, -0.59 to 3.11] points per year; P = .18). Sustained elevation of serum urate by 2.03 mg/dL (from a baseline level of 4.6 mg/dL; 44% increase) occurred in the inosine group vs a 0.01-mg/dL change in serum urate in the placebo group (difference, 2.02 mg/dL [95% CI, 1.85-2.19 mg/dL]; P<.001). There were no significant differences for secondary efficacy outcomes including dopamine transporter binding loss. Participants randomized to inosine, compared with placebo, experienced fewer serious adverse events (7.4 vs 13.1 per 100 patient-years) but more kidney stones (7.0 vs 1.4 stones per 100 patient-years). Conclusions and Relevance Among patients recently diagnosed as having PD, treatment with inosine, compared with placebo, did not result in a significant difference in the rate of clinical disease progression. The findings do not support the use of inosine as a treatment for early PD. Trial Registration ClinicalTrials.gov Identifier: NCT02642393.
Collapse
Affiliation(s)
- Michael A Schwarzschild
- Mass General Institute for Neurodegenerative Disease, Boston, Massachusetts
- Massachusetts General Hospital, Boston
| | | | | | | | - Rebecca Fitzgerald
- Parkinson's Foundation Research Advocates, Parkinson's Foundation, New York, New York
| | | | - Codrin Lungu
- Division of Clinical Research, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
| | - Eric A Macklin
- Massachusetts General Hospital, Boston
- Harvard Medical School, Boston, Massachusetts
| | - Kenneth Marek
- Institute for Neurodegenerative Disorders, New Haven, Connecticut
| | - Dariush Mozaffarian
- Tufts School of Medicine and Division of Cardiology, Tufts Medical Center, Boston, Massachusetts
- Friedman School of Nutrition Science and Policy, Boston, Massachusetts
| | - David Oakes
- University of Rochester, Rochester, New York
| | | | - Ira Shoulson
- Department of Neurology, University of Rochester Medical Center, Rochester, New York
| | | | | | | | - Jason Aldred
- Inland Northwest Research, Spokane, Washington
- Selkirk Neurology, Spokane, Washington
| | | | | | | | - Claire Henchcliffe
- University of California, Irvine
- Weill Cornell Medical College, New York, New York
| | | | | | | | | | | | | | - Rajeev Kumar
- Rocky Mountain Movement Disorders Center, Englewood, Colorado
| | | | | | | | | | | | | | | | | | | | | | | | - David K Simon
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Tanya Simuni
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Cynthia Poon
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Mya C Schiess
- The University of Texas Health Science Center, Houston McGovern Medical School, Houston
| | | | - Ariane Park
- The Ohio State University Wexner Medical Center, Columbus
| | | | | | - Susan R Criswell
- Washington University School of Medicine in St Louis, St Louis, Missouri
| | | | | | - Holly A Shill
- Banner Sun Health Research Institute, Sun City, Arizona
- University of Arizona School of Medicine-Phoenix
| | | | | | | | - John Y Fang
- Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | | | - Ashley Gerald
- University of Texas Southwestern Medical Center, Dallas
| | | | | | | | | | - Leslie Cloud
- VCU Parkinson's & Movement Disorders Center, Richmond, Virginia
| | | | | | | | | | - Stephen Reich
- University of Maryland School of Medicine, Baltimore
| | - David Shprecher
- Banner Sun Health Research Institute, Sun City, Arizona
- University of Arizona School of Medicine-Phoenix
| | - Rajesh Pahwa
- University of Kansas Medical Center, Kansas City
| | | | - Kathrin LaFaver
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Peter A LeWitt
- Henry Ford Hospital-West Bloomfield, West Bloomfield Township, Michigan
| | - Patricia Kaminski
- Henry Ford Hospital-West Bloomfield, West Bloomfield Township, Michigan
| | | | | | | | | | - Karen Thomas
- Sentara Neurology Specialists, Norfolk, Virginia
| | - Martha McGraw
- Center for Movement Disorders and Neurodegenerative Disease, Northwestern Medicine/Central DuPage Hospital, Winfield, Illinois
| | - Zoltan Mari
- Cleveland Clinic-Las Vegas, Las Vegas, Nevada
| | | | | | - Marcie Rabin
- Atlantic Neuroscience Institute, Summit, New Jersey
| | - Roger Kurlan
- Atlantic Neuroscience Institute, Summit, New Jersey
| | | | - Michael Soileau
- Texas Movement Disorder Specialists, Georgetown
- Scott & White Healthcare/Texas A&M University, Temple
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Sushrut S Waikar
- Boston University School of Medicine, Boston, Massachusetts
- Boston Medical Center, Boston, Massachusetts
| | - Anthony Lang
- University of Toronto, Toronto, Ontario, Canada
- Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, Toronto, Ontario, Canada
| | | |
Collapse
|
29
|
Ciobanu AM, Ionita I, Buleandra M, David IG, Popa DE, Ciucu AA, Budisteanu M. Current advances in metabolomic studies on non-motor psychiatric manifestations of Parkinson's disease (Review). Exp Ther Med 2021; 22:1010. [PMID: 34345292 PMCID: PMC8311266 DOI: 10.3892/etm.2021.10443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022] Open
Abstract
Life expectancy has increased worldwide and, along with it, a greater prevalence of age-dependent disorders, chronic illnesses and comorbidities can be observed. In 2019, in both Europe and the Americas, dementias ranked 3rd among the top 10 causes of death. Parkinson's disease (PD) is the second most frequent type of neurodegenerative disease. In the last decades, globally, the number of people suffering from PD has more than doubled to over 6 million. Of all the neurological disorders, PD increased with the fastest rate. This troubling trend highlights the stringent need for accurate diagnostic biomarkers, especially in the early stages of the disease and to evaluate treatment response. To gain a broad and complex understanding of the recent advances in the '-omics' research fields, electronic databases such as PubMed, Google Academic, and Science Direct were searched for publications regarding metabolomic studies on PD to identify specific biomarkers for PD, and especially PD with associated psychiatric symptomatology. Discoveries in the fields of metagenomics, transcriptomics and proteomics, may lead to an improved comprehension of the metabolic pathways involved in disease etiology and progression and contribute to the discovery of novel therapeutic targets for effective treatment options.
Collapse
Affiliation(s)
- Adela Magdalena Ciobanu
- Department of Psychiatry, ‘Prof. Dr. Alexandru Obregia’ Clinical Psychiatric Hospital, 041914 Bucharest, Romania
- Department of Neurosciences, Discipline of Psychiatry, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ioana Ionita
- Department of Psychiatry, ‘Prof. Dr. Alexandru Obregia’ Clinical Psychiatric Hospital, 041914 Bucharest, Romania
| | - Mihaela Buleandra
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, 050663 Bucharest, Romania
| | - Iulia Gabriela David
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, 050663 Bucharest, Romania
| | - Dana Elena Popa
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, 050663 Bucharest, Romania
| | - Anton Alexandru Ciucu
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, 050663 Bucharest, Romania
| | - Magdalena Budisteanu
- Laboratory of Medical Genetics, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
- Department of Medical Genetics, Faculty of Medicine, ‘Titu Maiorescu’ University, 031593 Bucharest, Romania
- Psychiatry Research Laboratory, ‘Prof. Dr. Alexandru Obregia’ Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| |
Collapse
|
30
|
Low serum uric acid levels are associated with the nonmotor symptoms and brain gray matter volume in Parkinson's disease. Neurol Sci 2021; 43:1747-1754. [PMID: 34405296 PMCID: PMC8860949 DOI: 10.1007/s10072-021-05558-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/30/2021] [Indexed: 12/21/2022]
Abstract
Background Uric acid (UA) plays a protective role in Parkinson’s disease (PD). To date, studies on the relationship between serum UA levels and nonmotor symptoms and brain gray matter volume in PD patients have been rare. Methods Automated enzymatic analysis was used to determine serum UA levels in 68 healthy controls and 88 PD patients, including those at the early (n = 56) and middle-late (n = 32) stages of the disease. Evaluation of motor symptoms and nonmotor symptoms in PD patients was assessed by the associated scales. Image acquisition was performed using a Siemens MAGNETOM Prisma 3 T MRI scanner. Results Serum UA levels in early stage PD patients were lower than those in healthy controls, and serum UA levels in the middle-late stage PD patients were lower than those in the early stage PD patients. Serum UA levels were significantly negatively correlated with the disease course, dysphagia, anxiety, depression, apathy, and cognitive dysfunction. ROC assessment confirmed that serum UA levels had good predictive accuracy for PD with dysphagia, anxiety, depression, apathy, and cognitive dysfunction. Furthermore, UA levels were significantly positively correlated with gray matter volume in whole brain. Conclusions This study shows that serum UA levels were correlated with the nonmotor symptoms of dysphagia, anxiety, depression, apathy, and cognitive dysfunction and the whole-brain gray matter volume. That is the first report examining the relationships between serum UA and clinical manifestations and imaging features in PD patients.
Collapse
|
31
|
Hasíková L, Závada J, Serranová T, Kotačková L, Kozlík P, Kalíková K, Trnka J, Zogala D, Šonka K, Růžička E, Dušek P. Patients with REM sleep behavior disorder have higher serum levels of allantoin. Parkinsonism Relat Disord 2021; 90:38-43. [PMID: 34352609 DOI: 10.1016/j.parkreldis.2021.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Rapid eye movement (REM) sleep behavior disorder (RBD) is associated with an increased risk of developing Parkinson's disease (PD). Low uric acid (UA) levels are associated with the risk of development and progression of PD. Allantoin is the major oxidation product of UA and is considered as a biomarker of oxidative stress. We aimed to compare serum levels of UA, allantoin, and allantoin/UA ratio in RBD patients with those in healthy controls, and to examine their associations with clinical severity. METHODS We evaluated serum levels of UA, allantoin, and allantoin/UA ratio in 38 RBD patients (one female, mean age 66.8 (SD 6.3) years) and in 47 controls (four females, 66.8 (7.6) years). All RBD patients were assessed according to an examination protocol, which included structured interview, Montreal Cognitive Assessment (MoCA), Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS), and dopamine transporter single-photon emission computed tomography (DAT-SPECT). The lower putaminal binding ratio from both hemispheres was used for analysis. RESULTS Mean serum allantoin concentration and allantoin/UA ratio were significantly increased in the RBD group compared to controls (2.6 (1.8) vs. 1.4 (0.7) μmol/l, p = 0.0004, and 0.008 (0.004) vs. 0.004 (0.002), p < 0.0001, respectively). There were no significant differences in UA levels between the two groups. No significant associations between any biochemical parameter and RBD duration, putaminal binding ratio on DAT-SPECT, MDS-UPDRS, or MoCA score were found. CONCLUSION Serum allantoin and allantoin/UA ratio are increased in RBD patients in comparison to controls, which may reflect increased systemic oxidative stress in prodromal synucleinopathy.
Collapse
Affiliation(s)
- Lenka Hasíková
- Institute of Rheumatology, Prague, Czech Republic, Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jakub Závada
- Institute of Rheumatology, Prague, Czech Republic, Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tereza Serranová
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Lenka Kotačková
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Petr Kozlík
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Květa Kalíková
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiří Trnka
- Institute of Nuclear Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - David Zogala
- Institute of Nuclear Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Karel Šonka
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Evžen Růžička
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Petr Dušek
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic; Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.
| |
Collapse
|
32
|
Current Therapies in Clinical Trials of Parkinson's Disease: A 2021 Update. Pharmaceuticals (Basel) 2021; 14:ph14080717. [PMID: 34451813 PMCID: PMC8398928 DOI: 10.3390/ph14080717] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/15/2021] [Accepted: 07/22/2021] [Indexed: 12/18/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that currently has no cure, but treatments are available to improve PD symptoms and maintain quality of life. In 2020, about 10 million people worldwide were living with PD. In 1970, the United States Food and Drug Administration approved the drug levodopa as a dopamine replacement to manage PD motor symptoms; levodopa-carbidopa combination became commercialized in 1975. After over 50 years of use, levodopa is still the gold standard for PD treatment. Unfortunately, levodopa therapy-induced dyskinesia and OFF symptoms remain unresolved. Therefore, we urgently need to analyze each current clinical trial's status and therapeutic strategy to discover new therapeutic approaches for PD treatment. We surveyed 293 registered clinical trials on ClinicalTrials.gov from 2008 to 16 June 2021. After excluded levodopa/carbidopa derivative add-on therapies, we identified 47 trials as PD treatment drugs or therapies. Among them, 19 trials are in phase I (41%), 25 trials are in phase II (53%), and 3 trials are in phase III (6%). The three phase-III trials use embryonic dopamine cell implant, 5-HT1A receptor agonist (sarizotan), and adenosine A2A receptor antagonist (caffeine). The therapeutic strategy of each trial shows 29, 5, 1, 5, 5, and 2 trials use small molecules, monoclonal antibodies, plasma therapy, cell therapy, gene therapy, and herbal extract, respectively. Additionally, we discuss the most potent drug or therapy among these trials. By systematically updating the current trial status and analyzing the therapeutic strategies, we hope this review can provide new ideas and insights for PD therapy development.
Collapse
|
33
|
Coneys R, Storm CS, Kia DA, Almramhi M, Wood N. Mendelian Randomisation Finds No Causal Association between Urate and Parkinson's Disease Progression. Mov Disord 2021; 36:2182-2187. [PMID: 34056740 DOI: 10.1002/mds.28662] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/20/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a common neurodegenerative movement disorder. Observational studies suggest higher levels of plasma urate may protect against Parkinson's risk and progression; however, causality cannot be established. OBJECTIVES This study set out to determine whether there is a true causal association between urate levels and PD age at onset (AAO) and progression severity using recently released PD AAO and progression genome-wide association study (GWAS) data. METHODS A large two-sample Mendelian randomization design was employed, using genetic variants underlying urate levels and the latest GWAS data for PD outcomes. RESULTS This study found no causal association between urate levels and Parkinson's risk, AAO, or progression severity. CONCLUSIONS Our results predict increasing urate levels as a therapeutic strategy is unlikely to benefit PD patients. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Rachel Coneys
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Catherine S Storm
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Demis A Kia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Mona Almramhi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - NicholasW Wood
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
34
|
Brooker SM, Edamakanti CR, Akasha SM, Kuo SH, Opal P. Spinocerebellar ataxia clinical trials: opportunities and challenges. Ann Clin Transl Neurol 2021; 8:1543-1556. [PMID: 34019331 PMCID: PMC8283160 DOI: 10.1002/acn3.51370] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/14/2022] Open
Abstract
The spinocerebellar ataxias (SCAs) are a group of dominantly inherited diseases that share the defining feature of progressive cerebellar ataxia. The disease process, however, is not confined to the cerebellum; other areas of the brain, in particular, the brainstem, are also affected, resulting in a high burden of morbidity and mortality. Currently, there are no disease‐modifying treatments for the SCAs, but preclinical research has led to the development of therapeutic agents ripe for testing in patients. Unfortunately, due to the rarity of these diseases and their slow and variable progression, there are substantial hurdles to overcome in conducting clinical trials. While the epidemiological features of the SCAs are immutable, the feasibility of conducting clinical trials is being addressed through a combination of strategies. These include improvements in clinical outcome measures, the identification of imaging and fluid biomarkers, and innovations in clinical trial design. In this review, we highlight current challenges in initiating clinical trials for the SCAs and also discuss pathways for researchers and clinicians to mitigate these challenges and harness opportunities for clinical trial development.
Collapse
Affiliation(s)
- Sarah M Brooker
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Sara M Akasha
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University, New York, New York, USA.,Initiative for Columbia Ataxia and Tremor, Columbia University, New York, New York, USA
| | - Puneet Opal
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
35
|
Haji S, Sako W, Murakami N, Osaki Y, Furukawa T, Izumi Y, Kaji R. The value of serum uric acid as a prognostic biomarker in amyotrophic lateral sclerosis: Evidence from a meta-analysis. Clin Neurol Neurosurg 2021; 203:106566. [PMID: 33706058 DOI: 10.1016/j.clineuro.2021.106566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 02/08/2021] [Accepted: 02/17/2021] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To determine the value of uric acid (UA) as a prognostic biomarker for amyotrophic lateral sclerosis (ALS) using a meta-analysis of hazard ratio-based studies. METHODS We included data from Tokushima University (47 patients with ALS) and three previous studies (1835 patients with ALS) with a hazard ratio (HR) identified by a systematic computational search. A total of four studies and 1882 patients were enrolled in the pooled analysis. We pooled HRs of death or tracheostomy, which were estimated by a Cox proportional hazard model, using a random-effects model. Heterogeneity was assessed by Q statistic, and a p value < 0.1 was considered significant heterogeneity. Furthermore, sensitivity analysis was performed to assess the effect of each single study and the robustness of the summary effect. We evaluated publication bias by visual assessment of the funnel plot and Egger's test, and adjusted the bias using a trim-and-fill method. RESULTS This meta-analysis revealed that UA could be a prognostic factor for ALS (all, HR = 0.87, p < 0.001; men, HR = 0.83, p < 0.001; women, HR = 0.76, p < 0.001). The included studies were homogeneous (all, p = 0.43; men, p = 0.9; women, p = 0.49). Sensitivity analysis confirmed the robustness of these summary effects. Publication bias was detected, which was adjusted for by a trim-and-fill method. The adjusted results showed significant summary effects (all, HR = 0.88, p = 0.002; men, HR = 0.83, p < 0.001; women, HR = 0.77, p < 0.001). CONCLUSION The present meta-analysis suggests that the serum UA level could be a prognostic biomarker in patients with ALS. Sensitivity analyses and the trim-and-fill method supported the robustness of these results.
Collapse
Affiliation(s)
- Shotaro Haji
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Wataru Sako
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan.
| | - Nagahisa Murakami
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yusuke Osaki
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Takahiro Furukawa
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan; Department of Neurology, Shinko Hospital, Kobe, Japan
| | - Yuishin Izumi
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Ryuji Kaji
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan; Department of Neurology, National Hospital Organization Utano Hospital, Kyoto, Japan
| |
Collapse
|
36
|
Mencke P, Boussaad I, Romano CD, Kitami T, Linster CL, Krüger R. The Role of DJ-1 in Cellular Metabolism and Pathophysiological Implications for Parkinson's Disease. Cells 2021; 10:347. [PMID: 33562311 PMCID: PMC7915027 DOI: 10.3390/cells10020347] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 11/16/2022] Open
Abstract
DJ-1 is a multifunctional protein associated with pathomechanisms implicated in different chronic diseases including neurodegeneration, cancer and diabetes. Several of the physiological functions of DJ-1 are not yet fully understood; however, in the last years, there has been increasing evidence for a potential role of DJ-1 in the regulation of cellular metabolism. Here, we summarize the current knowledge on specific functions of DJ-1 relevant to cellular metabolism and their role in modulating metabolic pathways. Further, we illustrate pathophysiological implications of the metabolic effects of DJ-1 in the context of neurodegeneration in Parkinson´s disease.
Collapse
Affiliation(s)
- Pauline Mencke
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg;
| | - Ibrahim Boussaad
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg;
| | - Chiara D. Romano
- Biospecimen Research Group, Integrated Biobank of Luxembourg, Luxembourg Institute of Health (LIH), 3531 Dudelange, Luxembourg;
- Enzymology & Metabolism, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg;
| | - Toshimori Kitami
- RIKEN Outpost Laboratory, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg;
| | - Carole L. Linster
- Enzymology & Metabolism, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg;
| | - Rejko Krüger
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg;
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), 1210 Luxembourg (Belair), Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), 1445 Strassen, Luxembourg
| |
Collapse
|
37
|
Hung AY, Schwarzschild MA. Approaches to Disease Modification for Parkinson's Disease: Clinical Trials and Lessons Learned. Neurotherapeutics 2020; 17:1393-1405. [PMID: 33205384 PMCID: PMC7851299 DOI: 10.1007/s13311-020-00964-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2020] [Indexed: 12/16/2022] Open
Abstract
Despite many clinical trials over the last three decades, the goal of demonstrating that a treatment slows the progression of Parkinson's disease (PD) remains elusive. Research advances have shed new insight into cellular pathways contributing to PD pathogenesis and offer increasingly compelling therapeutic targets. Here we review recent and ongoing clinical trials employing novel strategies toward disease modification, including those targeting alpha-synuclein and those repurposing drugs approved for other indications. Active and passive immunotherapy approaches are being studied with the goal to modify the spread of alpha-synuclein pathology in the brain. Classes of currently available drugs that have been proposed to have potential disease-modifying effects for PD include calcium channel blockers, antioxidants, anti-inflammatory agents, iron-chelating agents, glucagon-like peptide 1 agonists, and cAbl tyrosine kinase inhibitors. The mechanistic diversity of these treatments offers hope, but to date, results from these trials have been disappointing. Nevertheless, they provide useful lessons in guiding future therapeutic development.
Collapse
Affiliation(s)
- Albert Y Hung
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA.
| | - Michael A Schwarzschild
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
- MassGeneral Institute for Neurodegenerative Disease, 114 16th Street, Charlestown, MA, 02129, USA
| |
Collapse
|
38
|
Ellmore TM, Suescun J, Castriotta RJ, Schiess MC. A Study of the Relationship Between Uric Acid and Substantia Nigra Brain Connectivity in Patients With REM Sleep Behavior Disorder and Parkinson's Disease. Front Neurol 2020; 11:815. [PMID: 32849245 PMCID: PMC7419698 DOI: 10.3389/fneur.2020.00815] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 06/29/2020] [Indexed: 01/28/2023] Open
Abstract
Low levels of the natural antioxidant uric acid (UA) and the presence of REM sleep behavior disorder (RBD) are both associated with an increased likelihood of developing Parkinson's disease (PD). RBD and PD are also accompanied by basal ganglia dysfunction including decreased nigrostriatal and nigrocortical resting state functional connectivity. Despite these independent findings, the relationship between UA and substantia nigra (SN) functional connectivity remains unknown. In the present study, voxelwise analysis of covariance was used in a cross-sectional design to explore the relationship between UA and whole-brain SN functional connectivity using the eyes-open resting state fMRI method in controls without RBD, patients with idiopathic RBD, and PD patients with and without RBD. The results showed that controls exhibited a positive relationship between UA and SN functional connectivity with left lingual gyrus. The positive relationship was reduced in patients with RBD and PD with RBD, and the relationship was found to be negative in PD patients. These results are the first to show differential relationships between UA and SN functional connectivity among controls, prodromal, and diagnosed PD patients in a ventral occipital region previously documented to be metabolically and structurally altered in RBD and PD. More investigation, including replication in longitudinal designs with larger samples, is needed to understand the pathophysiological significance of these changes.
Collapse
Affiliation(s)
- Timothy M Ellmore
- Department of Psychology, The City College of New York, New York, NY, United States
| | - Jessika Suescun
- Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, TX, United States
| | - Richard J Castriotta
- Department of Clinical Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| | - Mya C Schiess
- Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, TX, United States
| |
Collapse
|
39
|
Von Seggern M, Szarowicz C, Swanson M, Cavotta S, Pike ST, Lamberts JT. Purine molecules in Parkinson's disease: Analytical techniques and clinical implications. Neurochem Int 2020; 139:104793. [PMID: 32650026 DOI: 10.1016/j.neuint.2020.104793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 10/23/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that primarily affects patients over the age of 65. PD is characterized by loss of neurons in the substantia nigra and dopamine deficiency in the striatum. Once PD is clinically diagnosed by the observation of motor dysfunction, the disease is already in its advance stages. Consequently, there is a major push to identify clinical biomarkers that are useful for the earlier detection of PD. Using untargeted metabolomics, several research groups have identified purine molecules, and specifically urate, as important biomarkers related to PD. This review will summarize recent findings in the field of purine metabolomics and biomarker identification for PD, including in the areas of PD pathophysiology, diagnosis, prognosis and treatment. In addition, this article will summarize and examine the primary research techniques that are employed to quantify purine molecules in both experimental systems and human subjects.
Collapse
Affiliation(s)
| | - Carlye Szarowicz
- College of Arts & Sciences, Ferris State University, Big Rapids, MI, USA; Shimadzu Core Laboratory for Academic and Research Excellence, Ferris State University, Big Rapids, MI, USA
| | - Matthew Swanson
- College of Arts & Sciences, Ferris State University, Big Rapids, MI, USA; Shimadzu Core Laboratory for Academic and Research Excellence, Ferris State University, Big Rapids, MI, USA
| | - Samantha Cavotta
- College of Pharmacy, Ferris State University, Big Rapids, MI, USA
| | - Schuyler T Pike
- College of Arts & Sciences, Ferris State University, Big Rapids, MI, USA; Shimadzu Core Laboratory for Academic and Research Excellence, Ferris State University, Big Rapids, MI, USA
| | | |
Collapse
|
40
|
Chang KH, Chen CM. The Role of Oxidative Stress in Parkinson's Disease. Antioxidants (Basel) 2020; 9:antiox9070597. [PMID: 32650609 PMCID: PMC7402083 DOI: 10.3390/antiox9070597] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/24/2022] Open
Abstract
Parkinson’s disease (PD) is caused by progressive neurodegeneration of dopaminergic (DAergic) neurons with abnormal accumulation of α-synuclein in substantia nigra (SN). Studies have suggested the potential involvement of dopamine, iron, calcium, mitochondria and neuroinflammation in contributing to overwhelmed oxidative stress and neurodegeneration in PD. Function studies on PD-causative mutations of SNCA, PRKN, PINK1, DJ-1, LRRK2, FBXO7 and ATP13A2 further indicate the role of oxidative stress in the pathogenesis of PD. Therefore, it is reasonable that molecules involved in oxidative stress, such as DJ-1, coenzyme Q10, uric acid, 8-hydroxy-2’-deoxyguanosin, homocysteine, retinoic acid/carotenes, vitamin E, glutathione peroxidase, superoxide dismutase, xanthine oxidase and products of lipid peroxidation, could be candidate biomarkers for PD. Applications of antioxidants to modulate oxidative stress could be a strategy in treating PD. Although a number of antioxidants, such as creatine, vitamin E, coenzyme Q10, pioglitazone, melatonin and desferrioxamine, have been tested in clinical trials, none of them have demonstrated conclusive evidence to ameliorate the neurodegeneration in PD patients. Difficulties in clinical studies may be caused by the long-standing progression of neurodegeneration, lack of biomarkers for premotor stage of PD and inadequate drug delivery across blood–brain barrier. Solutions for these challenges will be warranted for future studies with novel antioxidative treatment in PD patients.
Collapse
Affiliation(s)
| | - Chiung-Mei Chen
- Correspondence: ; Tel.: +886-3-3281200 (ext. 8347); Fax: +886-3-3288849
| |
Collapse
|
41
|
Jung JH, Chung SJ, Yoo HS, Lee YH, Baik K, Ye BS, Sohn YH, Lee PH. Sex-specific association of urate and levodopa-induced dyskinesia in Parkinson's disease. Eur J Neurol 2020; 27:1948-1956. [PMID: 32441832 DOI: 10.1111/ene.14337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/14/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE As a major antioxidant, uric acid (UA) is known to be associated with the clinical progression of Parkinson's disease (PD). This study investigated whether baseline UA levels are associated with the risk for levodopa-induced dyskinesia (LID) in PD in a sex-dependent manner. METHODS In all, 152 patients with de novo PD (78 males and 74 females) who were followed up for >2 years were enrolled. The effect of baseline serum UA levels on LID-free survival was assessed by Cox regression, separately for sex, whilst being adjusted for potential confounding factors. The optimal UA level cut-off value to determine the high-risk group for LID was set using Contal and O'Quigley's method. RESULTS Levodopa-induced dyskinesia developed in 23 (29.5%) male patients and 30 (40.5%) female patients. Cox regression showed a significant interaction between UA level and sex. Higher UA levels were associated with a higher risk for LID in male PD patients (hazard ratio 1.380; 95% confidence interval 1.038-1.835; P = 0.027), although this relationship was not observed in female PD patients. The optimal UA level cut-off for LID in male PD was 7.2 mg/dl, and the high UA group had a 5.7-fold higher risk of developing LID than the low UA group. CONCLUSIONS Contrary to a presumptive beneficial role of UA, the present study demonstrated that higher UA levels are associated with increased risk of LID occurrence in male patients with PD, suggesting a sex-dependent role of UA in LID.
Collapse
Affiliation(s)
- J H Jung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - S J Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
| | - H S Yoo
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Y H Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - K Baik
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - B S Ye
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Y H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - P H Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
42
|
Lee YH, Chung SJ, Yoo HS, Lee Y, Sohn YH, Cha J, Lee PH. Gender-specific effect of urate on white matter integrity in Parkinson's disease. Parkinsonism Relat Disord 2020; 75:41-47. [PMID: 32474403 DOI: 10.1016/j.parkreldis.2020.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 02/25/2020] [Accepted: 05/08/2020] [Indexed: 02/04/2023]
Abstract
OBJECTIVES To investigate the potential protective influence of serum uric acid (UA) level on white matter (WM) microstructural changes in de novo Parkinson's disease (PD). METHODS We enrolled a total of 184 patients with drug-naïve de novo PD and 59 age and gender-matched controls that underwent diffusion tensor imaging (DTI). Based on the distribution, serum UA levels were stratified into tertiles in PD patients by gender. Using tract-based spatial statistics (TBSS) analysis, fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were used to compare WM integrity between the groups. RESULTS Interaction analysis showed that interaction effect on FA values between gender and UA levels in PD was significant in widespread WM areas, including frontal-parieto-temporal, corpus callosum, bilateral internal and external capsule, and thalamic regions. Multiple regression analysis revealed that FA values had a significantly positive correlation with UA levels across widespread WM areas in male patients. However, there was no significant correlation between DTI measures and UA levels in female patients. In a group comparison in male patients, PD with the lowest UA level (PD-L-UA) group showed significantly lower FA and higher MD and RD values in frontal-parieto-temporal WM regions than PD with the highest UA level (PD-H-UA) group. However, female patients did not show significant difference of DTI measures between PD-L-UA and PD-H-UA groups. CONCLUSIONS The present study demonstrated that the serum UA levels may have the potentially gender-specific close relationship with WM integrity in the early stage of PD.
Collapse
Affiliation(s)
- Yang Hyun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.
| | - Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.
| | - Han Soo Yoo
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.
| | - Yoonju Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.
| | - Jungho Cha
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA; Nash Family Center for Advanced Circuit Therapeutics, Ichan School of Medicine at Mount Sinai, New York, NY, USA.
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
43
|
Sleeman I, Lawson RA, Yarnall AJ, Duncan GW, Johnston F, Khoo TK, Burn DJ. Urate and Homocysteine: Predicting Motor and Cognitive Changes in Newly Diagnosed Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2020; 9:351-359. [PMID: 30909247 PMCID: PMC6597987 DOI: 10.3233/jpd-181535] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Urate and homocysteine are potential biomarkers for disease progression in Parkinson's disease (PD). Baseline serum urate concentration has been shown to predict motor but not cognitive decline. The relationship between serum homocysteine concentration and cognitive and motor impairment is unknown. OBJECTIVES The aim of this study was to examine the association between baseline serum urate and homocysteine, and prospective measures of disease progression and cognition over 54 months in early PD. METHODS 154 newly diagnosed PD participants and 99 age-matched controls completed a schedule of assessments at baseline, 18, 36 and 54 months. The Movement Disorders Society Unified Parkinson's Disease Scale Part III (MDS-UPDRS III) was used to assess motor severity. The Montreal Cognitive Assessment (MoCA) was used to assess global cognition. Serum samples drawn at baseline were analysed for urate, homocysteine, red cell folate and vitamin B12 concentrations. RESULTS Baseline urate was 331.4±83.8 and 302.7±78.0μmol/L for control and PD participants, respectively (p = 0.015). Baseline homocysteine was 9.6±3.3 and 11.1±3.8μmol/L for controls and PD participants, respectively (p < 0.01). Linear mixed effects modelling showed that lower baseline urate (β= 0.02, p < 0.001) and higher homocysteine (β= 0.29, p < 0.05) predicted decline in motor function. Only higher homocysteine concentrations at baseline, however, predicted declining MoCA scores over 54 months (β= 0.11, p < 0.01). CONCLUSIONS Lower serum urate concentration is associated with worsening motor function; while higher homocysteine concentration is associated with change in motor function and cognitive decline. Therefore, urate and homocysteine may be suitable biomarkers for predicting motor and cognitive decline in early PD.
Collapse
Affiliation(s)
- Isobel Sleeman
- Institute of Applied Health Sciences, University of Aberdeen, UK.,Institute of Neuroscience, Newcastle University, UK
| | | | | | - Gordon W Duncan
- Institute of Neuroscience, Newcastle University, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Tien K Khoo
- School of Medicine and Menzies Health Institute Queensland, Griffith University, Australia.,School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
| | - David J Burn
- Faculty of Medical Sciences, Newcastle University, UK
| |
Collapse
|
44
|
Franco R, Rivas-Santisteban R, Reyes-Resina I, Navarro G, Martínez-Pinilla E. Microbiota and Other Preventive Strategies and Non-genetic Risk Factors in Parkinson's Disease. Front Aging Neurosci 2020; 12:12. [PMID: 32226375 PMCID: PMC7080700 DOI: 10.3389/fnagi.2020.00012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/15/2020] [Indexed: 12/15/2022] Open
Abstract
The exact cause of Parkinson’s disease (PD), the second most prevalent neurodegenerative disease in modern societies, is still unknown. Many scientists point out that PD is caused by a complex interaction between different factors. Although the main risk factor is age, there are other influences, genetic and environmental, that individually or in combination may trigger neurodegenerative changes leading to PD. Nowadays, research remains focused on better understanding which environmental factors are related to the risk of developing PD and why. In line with the knowledge on evidence on exposures that prevent/delay PD onset or that impact on disease progression, the aims of this review were: (i) to comment on the non-genetic risk factors that mainly affect idiopathic PD; and (ii) to comment on seemingly reliable preventive interventions. We discuss both environmental factors that may affect the central nervous system (CNS) or the intestinal tract, and the likely mechanisms underlying noxious or protective actions. Knowledge on risk, protective factors, and mechanisms may help to envisage why nigral dopaminergic neurons are so vulnerable in PD and, eventually, to design new strategies for PD prevention and/or anti-PD therapy. This article reviews the variety of the known and suspected environmental factors, such as lifestyle, gut microbiota or pesticide exposition, and distinguishes between those that are harmful or beneficial for the PD acquisition or progression. In fact, the review covers one of the most novel players in the whole picture, and we address the role of microbiota on keeping a healthy CNS and/or on preventing the “side-effects” related to aging.
Collapse
Affiliation(s)
- Rafael Franco
- Chemistry School, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Rivas-Santisteban
- Chemistry School, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Gemma Navarro
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos III, Madrid, Spain.,Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
| | - Eva Martínez-Pinilla
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain.,Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
45
|
Cabău G, Crișan TO, Klück V, Popp RA, Joosten LAB. Urate-induced immune programming: Consequences for gouty arthritis and hyperuricemia. Immunol Rev 2020; 294:92-105. [PMID: 31853991 PMCID: PMC7065123 DOI: 10.1111/imr.12833] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022]
Abstract
Trained immunity is a process in which innate immune cells undergo functional reprogramming in response to pathogens or damage-associated molecules leading to an enhanced non-specific immune response to subsequent stimulation. While this capacity to respond more strongly to stimuli is beneficial for host defense, in some circumstances it can lead to maladaptive programming and chronic inflammation. Gout is characterized by persistent low-grade inflammation and is associated with an increased number of comorbidities. Hyperuricemia is the main risk factor for gout and is linked to the development of comorbidities. Several experimental studies have shown that urate can mechanistically alter the inflammatory capacity of myeloid cells, while observational studies have indicated an association of hyperuricemia to a wide spectrum of common adult inflammatory diseases. In this review, we argue that hyperuricemia is a main culprit in the development of the long-term systemic inflammation seen in gout. We revisit existing evidence for urate-induced transcriptional and epigenetic reprogramming that could lead to an altered functional state of circulating monocytes consisting in enhanced responsiveness and maladaptive immune responses. By discussing specific functional adaptations of monocytes and macrophages induced by soluble urate or monosodium urate crystals and their contribution to inflammation in vitro and in vivo, we further enforce that urate is a metabolite that can induce innate immune memory and we discuss future research and possible new therapeutic approaches for gout and its comorbidities.
Collapse
Affiliation(s)
- Georgiana Cabău
- Department of Medical GeneticsIuliu Haţieganu” University of Medicine and PharmacyCluj‐NapocaRomania
| | - Tania O. Crișan
- Department of Medical GeneticsIuliu Haţieganu” University of Medicine and PharmacyCluj‐NapocaRomania
| | - Viola Klück
- Department of Internal MedicineRadboud Institute of Molecular Life Sciences (RIMLS)Radboud University Medical CenterNijmegenThe Netherlands
| | - Radu A. Popp
- Department of Medical GeneticsIuliu Haţieganu” University of Medicine and PharmacyCluj‐NapocaRomania
| | - Leo A. B. Joosten
- Department of Medical GeneticsIuliu Haţieganu” University of Medicine and PharmacyCluj‐NapocaRomania
- Department of Internal MedicineRadboud Institute of Molecular Life Sciences (RIMLS)Radboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
46
|
Baik K, Chung SJ, Yoo HS, Lee YH, Jung JH, Sohn YH, Lee PH. Sex‐dependent association of urate on the patterns of striatal dopamine depletion in Parkinson’s disease. Eur J Neurol 2020; 27:773-778. [DOI: 10.1111/ene.14152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/09/2020] [Indexed: 02/06/2023]
Affiliation(s)
- K. Baik
- Department of Neurology Yonsei University College of Medicine Seoul South Korea
| | - S. J. Chung
- Department of Neurology Yonsei University College of Medicine Seoul South Korea
| | - H. S. Yoo
- Department of Neurology Yonsei University College of Medicine Seoul South Korea
| | - Y. H. Lee
- Department of Neurology Yonsei University College of Medicine Seoul South Korea
| | - J. H. Jung
- Department of Neurology Yonsei University College of Medicine Seoul South Korea
| | - Y. H. Sohn
- Department of Neurology Yonsei University College of Medicine Seoul South Korea
| | - P. H. Lee
- Department of Neurology Yonsei University College of Medicine Seoul South Korea
- Severance Biomedical Science Institute Yonsei University College of Medicine Seoul South Korea
| |
Collapse
|
47
|
Ghanta MK, Elango P, L V K S B. Current Therapeutic Strategies and Perspectives for Neuroprotection in Parkinson's Disease. Curr Pharm Des 2020; 26:4738-4746. [PMID: 32065086 DOI: 10.2174/1381612826666200217114658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/10/2020] [Indexed: 02/04/2023]
Abstract
Parkinson's disease is a progressive neurodegenerative disorder of dopaminergic striatal neurons in basal ganglia. Treatment of Parkinson's disease (PD) through dopamine replacement strategies may provide improvement in early stages and this treatment response is related to dopaminergic neuronal mass which decreases in advanced stages. This treatment failure was revealed by many studies and levodopa treatment became ineffective or toxic in chronic stages of PD. Early diagnosis and neuroprotective agents may be a suitable approach for the treatment of PD. The essentials required for early diagnosis are biomarkers. Characterising the striatal neurons, understanding the status of dopaminergic pathways in different PD stages may reveal the effects of the drugs used in the treatment. This review updates on characterisation of striatal neurons, electrophysiology of dopaminergic pathways in PD, biomarkers of PD, approaches for success of neuroprotective agents in clinical trials. The literature was collected from the articles in database of PubMed, MedLine and other available literature resources.
Collapse
Affiliation(s)
- Mohan K Ghanta
- Department of Pharmacology, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai-600116, Tamil Nadu, India
| | - P Elango
- Department of Pharmacology, Panimalar Medical College Hospital & Research Institute, Poonamallee, Chennai-600123, Tamil Nadu, India
| | - Bhaskar L V K S
- Department of Zoology, Guru Ghasidas University, Bilaspur, 495009 (CG), India
| |
Collapse
|
48
|
Abstract
In a range of neurological conditions, including movement disorders, sex-related differences are emerging not only in brain anatomy and function, but also in pathogenesis, clinical features and response to treatment. In Parkinson disease (PD), for example, oestrogens can influence the severity of motor symptoms, whereas elevation of androgens can exacerbate tic disorders. Nevertheless, the real impact of sex differences in movement disorders remains under-recognized. In this article, we provide an up-to-date review of sex-related differences in PD and the most common hyperkinetic movement disorders, namely, essential tremor, dystonia, Huntington disease and other chorea syndromes, and Tourette syndrome and other chronic tic disorders. We highlight the most relevant clinical aspects of movement disorders that differ between men and women. Increased recognition of these differences and their impact on patient care could aid the development of tailored approaches to the management of movement disorders and enable the optimization of preclinical research and clinical studies.
Collapse
|
49
|
Abstract
Parkinson's disease (PD) is a chronic, debilitating neurodegenerative disorder characterized clinically by a variety of progressive motor and nonmotor symptoms. Currently, there is a dearth of diagnostic tools available to predict, diagnose or mitigate disease risk or progression, leading to a challenging dilemma within the healthcare management system. The search for a reliable biomarker for PD that reflects underlying pathology is a high priority in PD research. Currently, there is no reliable single biomarker predictive of risk for motor and cognitive decline, and there have been few longitudinal studies of temporal progression. A combination of multiple biomarkers might facilitate earlier diagnosis and more accurate prognosis in PD. In this review, we focus on the recent developments of serial biomarkers for PD from a variety of clinical, biochemical, genetic and neuroimaging perspectives.
Collapse
Affiliation(s)
- Anastasia Bougea
- Neurochemistry Laboratory, 1st Department of Neurology and Movement Disorders, Medical School, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece; Neuroscience Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| |
Collapse
|
50
|
Lee DY, Oh M, Kim SJ, Oh JS, Chung SJ, Kim JS. Bilirubin-Related Differential Striatal [18F]FP-CIT Uptake in Parkinson Disease. Clin Nucl Med 2019; 44:855-859. [PMID: 31490312 DOI: 10.1097/rlu.0000000000002749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE OF THE REPORT Oxidative stress is a leading factor in the pathogenesis of idiopathic Parkinson disease (IPD). Two intrinsic antioxidative molecules, bilirubin and uric acid, are known to protect dopaminergic neurons from oxidative stress in IPD. The objective of this study was to determine the relationship between basal serum levels of 2 molecules and dopaminergic deficit assessed by dopamine transporter imaging with F-fluorinated-N-3-fluoropropyl-2-β-carboxymethoxy-3-β-(4-iodophenyl)nortropane ([F]FP-CIT) PET/CT in patients with early-stage drug-naive IPD. METHODS Cases of IPD patients who possess the levels of uric acid and bilirubin within a month from [F]FP-CIT PET/CT from January 2011 to December 2016 were retrospectively reviewed. As a control, the same criteria applied to patients with essential tremor (ET). PET images were analyzed using volume-of-interest templates for 12 striatal subregions and 1 occipital area, and the specific-to-nonspecific binding ratio (SNBR) was calculated. RESULTS One hundred five patients with drug-naive, early-stage IPD and 62 patients with ET were finally included. Levels of bilirubin were significantly higher in the IPD group than in controls (P = 0.026), and bilirubin level was the factor showing the most correlations with SNBR in IPD (P < 0.001), whereas uric acid showed no such difference or relationship. Furthermore, levels of bilirubin showed a positive correlation with SNBR in more affected posterior putamen in the IPD group (Pearson correlation coefficient, ρ = 0.456; P < 0.001), but a negative one in the ET group (ρ = -0.440, P < 0.001). CONCLUSIONS Bilirubin, not uric acid, was the most significant antioxidant marker for dopaminergic deficit in early-stage drug-naive IPD assessed by [F]FP-CIT PET/CT.
Collapse
Affiliation(s)
| | | | | | | | - Sun Ju Chung
- Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | |
Collapse
|