1
|
Hoffman-Zacharska D, Sulek A. The New Face of Dynamic Mutation-The CAA [CAG]n CAA CAG Motif as a Mutable Unit in the TBP Gene Causative for Spino-Cerebellar Ataxia Type 17. Int J Mol Sci 2024; 25:8190. [PMID: 39125760 PMCID: PMC11312008 DOI: 10.3390/ijms25158190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Since 1991, several genetic disorders caused by unstable trinucleotide repeats (TNRs) have been identified, collectively referred to as triplet repeat diseases (TREDs). They share a common mutation mechanism: the expansion of repeats (dynamic mutations) due to the propensity of repeated sequences to form unusual DNA structures during replication. TREDs are characterized as neurodegenerative diseases or complex syndromes with significant neurological components. Spinocerebellar ataxia type 17 (SCA17) falls into the former category and is caused by the expansion of mixed CAA/CAG repeats in the TBP gene. To date, a five-unit organization of this region [(CAG)3 (CAA)3] [(CAG)n] [CAA CAG CAA] [(CAG)n] [CAA CAG], with expansion in the second [(CAG)n] unit being the most common, has been proposed. In this study, we propose an alternative organization scheme for the repeats. A search of the PubMed database was conducted to identify articles reporting both the number and composition of GAC/CAA repeats in TBP alleles. Nineteen reports were selected. The sequences of all identified CAG/CAA repeats in the TBP locus, including 67 cases (probands and b relatives), were analyzed in terms of their repetition structure and stability in inheritance, if possible. Based on the analysis of three units [(CAG)3 (CAA)2] [CAA (CAG)n CAA CAG] [CAA (CAG)n CAA CAG], the organization of repeats is proposed. Detailed analysis of the CAG/CAA repeat structure, not just the number of repeats, in TBP-expanded alleles should be performed, as it may have a prognostic value in the prediction of stability/instability during transmission and the possible anticipation of the disease.
Collapse
Affiliation(s)
- Dorota Hoffman-Zacharska
- Department of Medical Genetics, Institute of Mother and Child, 02-106 Warsaw, Poland
- Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland;
| | - Anna Sulek
- Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland;
- Faculty of Medicine, Lazarski University, 02-662 Warsaw, Poland
| |
Collapse
|
2
|
Spoto G, Ceraolo G, Butera A, Di Rosa G, Nicotera AG. Exploring the Genetic Landscape of Chorea in Infancy and Early Childhood: Implications for Diagnosis and Treatment. Curr Issues Mol Biol 2024; 46:5632-5654. [PMID: 38921008 PMCID: PMC11202702 DOI: 10.3390/cimb46060337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/01/2024] [Accepted: 06/02/2024] [Indexed: 06/27/2024] Open
Abstract
Chorea is a hyperkinetic movement disorder frequently observed in the pediatric population, and, due to advancements in genetic techniques, an increasing number of genes have been associated with this disorder. In genetic conditions, chorea may be the primary feature of the disorder, or be part of a more complex phenotype characterized by epileptic encephalopathy or a multisystemic syndrome. Moreover, it can appear as a persistent disorder (chronic chorea) or have an episodic course (paroxysmal chorea). Managing chorea in childhood presents challenges due to its varied clinical presentation, often involving a spectrum of hyperkinetic movement disorders alongside neuropsychiatric and multisystemic manifestations. Furthermore, during infancy and early childhood, transient motor phenomena resembling chorea occurring due to the rapid nervous system development during this period can complicate the diagnosis. This review aims to provide an overview of the main genetic causes of pediatric chorea that may manifest during infancy and early childhood, focusing on peculiarities that can aid in differential diagnosis among different phenotypes and discussing possible treatment options.
Collapse
Affiliation(s)
- Giulia Spoto
- Unit of Child Neurology and Psychiatry, Department of Biomedical Sciences, Dental Sciences & Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy;
| | - Graziana Ceraolo
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Ambra Butera
- Unit of Child Neurology and Psychiatry, Department of Chemical, Biological, Farmaceutical & Environmental Science, University of Messina, 98125 Messina, Italy;
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Biomedical Sciences, Dental Sciences & Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy;
| | - Antonio Gennaro Nicotera
- Unit of Child Neurology and Psychiatry, Maternal-Infantile Department, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
3
|
Henriques C, Lopes MM, Silva AC, Lobo DD, Badin RA, Hantraye P, Pereira de Almeida L, Nobre RJ. Viral-based animal models in polyglutamine disorders. Brain 2024; 147:1166-1189. [PMID: 38284949 DOI: 10.1093/brain/awae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/26/2023] [Accepted: 12/30/2023] [Indexed: 01/30/2024] Open
Abstract
Polyglutamine disorders are a complex group of incurable neurodegenerative disorders caused by an abnormal expansion in the trinucleotide cytosine-adenine-guanine tract of the affected gene. To better understand these disorders, our dependence on animal models persists, primarily relying on transgenic models. In an effort to complement and deepen our knowledge, researchers have also developed animal models of polyglutamine disorders employing viral vectors. Viral vectors have been extensively used to deliver genes to the brain, not only for therapeutic purposes but also for the development of animal models, given their remarkable flexibility. In a time- and cost-effective manner, it is possible to use different transgenes, at varying doses, in diverse targeted tissues, at different ages, and in different species, to recreate polyglutamine pathology. This paper aims to showcase the utility of viral vectors in disease modelling, share essential considerations for developing animal models with viral vectors, and provide a comprehensive review of existing viral-based animal models for polyglutamine disorders.
Collapse
Affiliation(s)
- Carina Henriques
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Miguel M Lopes
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (III), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Ana C Silva
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (III), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Diana D Lobo
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (III), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Romina Aron Badin
- CEA, DRF, Institute of Biology François Jacob, Molecular Imaging Research Center (MIRCen), 92265 Fontenay-aux-Roses, France
- CNRS, CEA, Paris-Sud University, Université Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), 92265 Fontenay-aux-Roses, France
| | - Philippe Hantraye
- CEA, DRF, Institute of Biology François Jacob, Molecular Imaging Research Center (MIRCen), 92265 Fontenay-aux-Roses, France
- CNRS, CEA, Paris-Sud University, Université Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), 92265 Fontenay-aux-Roses, France
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Rui Jorge Nobre
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (III), University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
4
|
Kumar M, Tyagi N, Faruq M. The molecular mechanisms of spinocerebellar ataxias for DNA repeat expansion in disease. Emerg Top Life Sci 2023; 7:289-312. [PMID: 37668011 DOI: 10.1042/etls20230013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023]
Abstract
Spinocerebellar ataxias (SCAs) are a heterogenous group of neurodegenerative disorders which commonly inherited in an autosomal dominant manner. They cause muscle incoordination due to degeneration of the cerebellum and other parts of nervous system. Out of all the characterized (>50) SCAs, 14 SCAs are caused due to microsatellite repeat expansion mutations. Repeat expansions can result in toxic protein gain-of-function, protein loss-of-function, and/or RNA gain-of-function effects. The location and the nature of mutation modulate the underlying disease pathophysiology resulting in varying disease manifestations. Potential toxic effects of these mutations likely affect key major cellular processes such as transcriptional regulation, mitochondrial functioning, ion channel dysfunction and synaptic transmission. Involvement of several common pathways suggests interlinked function of genes implicated in the disease pathogenesis. A better understanding of the shared and distinct molecular pathogenic mechanisms in these diseases is required to develop targeted therapeutic tools and interventions for disease management. The prime focus of this review is to elaborate on how expanded 'CAG' repeats contribute to the common modes of neurotoxicity and their possible therapeutic targets in management of such devastating disorders.
Collapse
Affiliation(s)
- Manish Kumar
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Nishu Tyagi
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Mohammed Faruq
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| |
Collapse
|
5
|
Saito R, Tada Y, Oikawa D, Sato Y, Seto M, Satoh A, Kume K, Ueki N, Nakashima M, Hayashi S, Toyoshima Y, Tokunaga F, Kawakami H, Kakita A. Spinocerebellar ataxia type 17-digenic TBP/STUB1 disease: neuropathologic features of an autopsied patient. Acta Neuropathol Commun 2022; 10:177. [PMID: 36476347 PMCID: PMC9727856 DOI: 10.1186/s40478-022-01486-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Spinocerebellar ataxia (SCA) type 17-digenic TBP/STUB1 disease (SCA17-DI) has been recently segregated from SCA17, caused by digenic inheritance of two gene mutations - intermediate polyglutamine-encoding CAG/CAA repeat expansions (polyQ) in TBP (TBP41 - 49) and STUB1 heterozygosity - the former being associated with SCA17, and the latter with SCA48 and SCAR16 (autosomal recessive). In SCA17, most patients carry intermediate TBP41 - 49 alleles but show incomplete penetrance, and the missing heritability can be explained by a new entity whereby TBP41 - 49 requires the STUB1 variant to be symptomatic. The STUB1 gene encodes the chaperone-associated E3 ubiquitin ligase (CHIP) involved in ubiquitin-mediated proteasomal control of protein homeostasis. However, reports of the neuropathology are limited and role of STUB1 mutations in SCA17-DI remain unknown. Here we report the clinicopathologic features of identical twin siblings, one of whom was autopsied and was found to carry an intermediate allele (41 and 38 CAG/CAA repeats) in TBP and a heterozygous missense mutation in STUB1 (p.P243L). These patients developed autosomal recessive Huntington's disease-like symptoms. Brain MRI showed diffuse atrophy of the cerebellum and T2WI revealed hyperintense lesions in the basal ganglia and periventricular deep white matter. The brain histopathology of the patient shared features characteristic of SCA17, such as degeneration of the cerebellar cortex and caudate nucleus, and presence of 1C2-positive neurons. Here we show that mutant CHIP fails to generate the polyubiquitin chain due to disrupted folding of the entire U box domain, thereby affecting the E3 activity of CHIP. When encountering patients with cerebellar ataxia, especially those with Huntington's disease-like symptoms, genetic testing for STUB1 as well as TBP should be conducted for diagnosis of SCA17-DI, even in cases of sporadic or autosomal recessive inheritance.
Collapse
Affiliation(s)
- Rie Saito
- grid.260975.f0000 0001 0671 5144Departments of Pathology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8585 Japan
| | - Yui Tada
- grid.257022.00000 0000 8711 3200Department of Molecular Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553 Japan
| | - Daisuke Oikawa
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, 1- 4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585 Japan
| | - Yusuke Sato
- grid.265107.70000 0001 0663 5064Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-cho Minami, Tottori, 680-8552 Japan
| | - Makiko Seto
- Section of Neurology, Nagasaki Kita Hospital, 800 Motomurago, Togitsu-cho, Nishisonogi-gun, Nagasaki, 851-2103 Japan
| | - Akira Satoh
- Section of Neurology, Nagasaki Kita Hospital, 800 Motomurago, Togitsu-cho, Nishisonogi-gun, Nagasaki, 851-2103 Japan
| | - Kodai Kume
- grid.257022.00000 0000 8711 3200Department of Molecular Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553 Japan
| | - Nozomi Ueki
- grid.174567.60000 0000 8902 2273Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
| | - Masahiro Nakashima
- grid.174567.60000 0000 8902 2273Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
| | - Shintaro Hayashi
- grid.260975.f0000 0001 0671 5144Departments of Pathology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8585 Japan ,Department of Neurology, Mishima Hospital, 1713-8, Fujikawa, Nagaoka, Niigata, 940-2302 Japan
| | - Yasuko Toyoshima
- grid.260975.f0000 0001 0671 5144Departments of Pathology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8585 Japan ,Department of Neurology, Brain Disease Center, Agano Hospital, 6317-5, Yasuda, Agano, Niigata, 959- 2221 Japan
| | - Fuminori Tokunaga
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, 1- 4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585 Japan
| | - Hideshi Kawakami
- grid.257022.00000 0000 8711 3200Department of Molecular Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553 Japan
| | - Akiyoshi Kakita
- grid.260975.f0000 0001 0671 5144Departments of Pathology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8585 Japan ,grid.260975.f0000 0001 0671 5144Department of Pathology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8585 Japan
| |
Collapse
|
6
|
Bruno F, Laganà V, Di Lorenzo R, Bruni AC, Maletta R. Calabria as a Genetic Isolate: A Model for the Study of Neurodegenerative Diseases. Biomedicines 2022; 10:biomedicines10092288. [PMID: 36140389 PMCID: PMC9496333 DOI: 10.3390/biomedicines10092288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Although originally multi-ethnic in its structure, nowadays the Calabria region of southern Italy represents an area with low genetic heterogeneity and a high level of consanguinity that allows rare mutations to be maintained due to the founder effect. A complex research methodology—ranging from clinical activity to the genealogical reconstruction of families/populations across the centuries, the creation of databases, and molecular/genetic research—was modelled on the characteristics of the Calabrian population for more than three decades. This methodology allowed the identification of several novel genetic mutations or variants associated with neurodegenerative diseases. In addition, a higher prevalence of several hereditary neurodegenerative diseases has been reported in this population, such as Alzheimer’s disease, frontotemporal dementia, Parkinson’s disease, Niemann–Pick type C disease, spinocerebellar ataxia, Creutzfeldt–Jakob disease, and Gerstmann–Straussler–Scheinker disease. Here, we summarize and discuss the results of research data supporting the view that Calabria could be considered as a genetic isolate and could represent a model, a sort of outdoor laboratory—similar to very few places in the world—useful for the advancement of knowledge on neurodegenerative diseases.
Collapse
Affiliation(s)
- Francesco Bruno
- Regional Neurogenetic Centre (CRN), Department of Primary Care, ASP Catanzaro, 88046 Lamezia Terme, Italy
- Association for Neurogenetic Research (ARN), 88046 Lamezia Terme, Italy
- Correspondence: (F.B.); (A.C.B.)
| | - Valentina Laganà
- Association for Neurogenetic Research (ARN), 88046 Lamezia Terme, Italy
| | | | - Amalia C. Bruni
- Regional Neurogenetic Centre (CRN), Department of Primary Care, ASP Catanzaro, 88046 Lamezia Terme, Italy
- Association for Neurogenetic Research (ARN), 88046 Lamezia Terme, Italy
- Correspondence: (F.B.); (A.C.B.)
| | - Raffaele Maletta
- Regional Neurogenetic Centre (CRN), Department of Primary Care, ASP Catanzaro, 88046 Lamezia Terme, Italy
- Association for Neurogenetic Research (ARN), 88046 Lamezia Terme, Italy
| |
Collapse
|
7
|
Zhang S, Shen L, Jiao B. Cognitive Dysfunction in Repeat Expansion Diseases: A Review. Front Aging Neurosci 2022; 14:841711. [PMID: 35478698 PMCID: PMC9036481 DOI: 10.3389/fnagi.2022.841711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
With the development of the sequencing technique, more than 40 repeat expansion diseases (REDs) have been identified during the past two decades. Moreover, the clinical features of these diseases show some commonality, and the nervous system, especially the cognitive function was affected in part by these diseases. However, the specific cognitive domains impaired in different diseases were inconsistent. Here, we survey literature on the cognitive consequences of the following disorders presenting cognitive dysfunction and summarizing the pathogenic genes, epidemiology, and different domains affected by these diseases. We found that the cognitive domains affected in neuronal intranuclear inclusion disease (NIID) were widespread including the executive function, memory, information processing speed, attention, visuospatial function, and language. Patients with C9ORF72-frontotemporal dementia (FTD) showed impairment in executive function, memory, language, and visuospatial function. While in Huntington's disease (HD), the executive function, memory, and information processing speed were affected, in the fragile X-associated tremor/ataxia syndrome (FXTAS), executive function, memory, information processing speed, and attention were impaired. Moreover, the spinocerebellar ataxias showed broad damage in almost all the cognitive domains except for the relatively intact language ability. Some other diseases with relatively rare clinical data also indicated cognitive dysfunction, such as myotonic dystrophy type 1 (DM1), progressive myoclonus epilepsy (PME), Friedreich ataxia (FRDA), Huntington disease like-2 (HDL2), and cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS). We drew a cognitive function landscape of the related REDs that might provide an aspect for differential diagnosis through cognitive domains and effective non-specific interventions for these diseases.
Collapse
Affiliation(s)
- Sizhe Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- *Correspondence: Bin Jiao
| |
Collapse
|
8
|
Chen CC, Yao NW, Lin CW, Su WS, Wu CT, Chang C, Hsieh-Li HM. Neuroimaging Spectrum at Pre-, Early, and Late Symptomatic Stages of SCA17 Mice. THE CEREBELLUM 2021; 19:487-500. [PMID: 32270465 DOI: 10.1007/s12311-020-01127-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Spinocerebellar ataxia (SCA) is a hereditary neurodegenerative disease. We have generated SCA17 transgenic mice bearing human TBP with 109 CAG repeats under the Purkinje cell-specific L7/pcp2 promoter. These mice recapitulate the patients' phenotypes and are suitable for the study of the SCA17 pathomechanism. Magnetic resonance imaging (MRI) and immunostainings were performed to identify the neuroimaging spectrum during disease progression. The results indicate that despite an overall normal appearance at birth, postnatal brain damage takes place rapidly in SCA17. Cerebellar atrophy, fourth-ventricle enlargement, and reduced cerebellar N-acetylaspartate levels were detected at the presymptomatic stage, when the mice were juvenile. The aberrations, which included reductions in body weight; cerebral size; striatal size; and the mean, radial, and axial diffusivities of the cerebellum, became more salient as the disease progressed to the old, late-symptomatic stage. Phosphorylated H2A histone family, member X (γH2AX) immunostaining revealed that the cerebellum underwent severe cell senescence in the old stage while the striatum appeared relatively unaffected by aging. Morphometric analysis indicated that the cerebellar atrophy occurred in all subregions with aging. The data establish that the SCA17 mouse brain appears normal at birth but becomes aberrant at the presymptomatic/juvenile stage. More widespread deficits add to the pathological spectrum at the old stage. The study provides information for the expression and expansion of L7/pcp2 promoter and implies the disease progression of SCA17 patients.
Collapse
Affiliation(s)
- Chiao-Chi Chen
- Institute of Biomedical Sciences, Academic Sinica, Taipei, Taiwan
| | - Nai-Wei Yao
- Institute of Biomedical Sciences, Academic Sinica, Taipei, Taiwan
| | - Chia-Wei Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Wei-Shuo Su
- Department of Applied Mathematics, National ChiaoTung University, Hsinchu, Taiwan
| | - Chin-Tien Wu
- Department of Applied Mathematics, National ChiaoTung University, Hsinchu, Taiwan
| | - Chen Chang
- Institute of Biomedical Sciences, Academic Sinica, Taipei, Taiwan.
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan.
| |
Collapse
|
9
|
I D, Proskokova T, Sikora N, Abramycheva N, Illarioshkin S. Spinocerebellar ataxia 17: full phenotype in a 42 CAG/CAA-repeats carrier. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:100-105. [DOI: 10.17116/jnevro2021121121100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Lin CW, Fan CH, Chang YC, Hsieh-Li HM. ERK activation precedes Purkinje cell loss in mice with Spinocerebellar ataxia type 17. Neurosci Lett 2020; 738:135337. [PMID: 32877710 DOI: 10.1016/j.neulet.2020.135337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/27/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022]
Abstract
Spinocerebellar ataxia type 17 (SCA17) is an autosomal dominant neurodegenerative disease caused by CAG expansion in the gene encoding the TATA-binding protein (TBP). The neurological features of SCA17 are Purkinje cell loss and gliosis. We have generated SCA17 transgenic mice which recapitulate the patients' phenotypes and are suitable for the study of the SCA17 pathomechanism. Our previous study identified the activation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) occurred in the SCA17 cerebella, this study aims to study the role of ERK activation in SCA17. The levels of pERK, calbindin, and gliosis markers on the mouse cerebellum at 4-8 weeks old were analyzed to elucidate the correlation among behavioral performance, ERK activation and Purkinje cell degeneration. The motor incoordination was initiated in SCA17 mice at 6 weeks old. We found that the presence of TBP nuclear aggregation and microglia activation were observed at 4 weeks old. Gliosis of astrocytes and Bergmann glia, pERK, Bax/Bcl2 ratio, and caspase-3 were significantly increased in the 6-week-old SCA17 mouse cerebellum. In addition to the polyglutamine-protein aggregation in Purkinje cells caused apoptosis cell-autonomously, a significant body of evidence have shown that ERK pathways involves in neuronal apoptosis. Our study showed that the activation of ERK in the astrocytes and Bergmann glia was identified as preceding motor deficits, which suggest the elevated gliosis by ERK activation may contribute to neuronal apoptosis in SCA17 mice.
Collapse
Affiliation(s)
- Chia-Wei Lin
- Department of Life Science, National Taiwan Normal University, Taiwan
| | - Chia-Hao Fan
- Department of Life Science, National Taiwan Normal University, Taiwan
| | - Ya-Chin Chang
- Department of Pharmacy, Taiwan Adventist Hospital, Taiwan
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taiwan.
| |
Collapse
|
11
|
Chung YH, Lin CW, Huang HY, Chen SL, Huang HJ, Sun YC, Lee GC, Lee-Chen GJ, Chang YC, Hsieh-Li HM. Targeting Inflammation, PHA-767491 Shows a Broad Spectrum in Protein Aggregation Diseases. J Mol Neurosci 2020; 70:1140-1152. [PMID: 32170713 DOI: 10.1007/s12031-020-01521-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/28/2020] [Indexed: 12/12/2022]
Abstract
Many protein aggregation diseases (PAD) affect the nervous system. Deposits of aggregated disease-specific proteins are found within or around the neuronal cells of neurodegenerative diseases. Although the main protein component is disease-specific, oligomeric aggregates are presumed to be the key agents causing the neurotoxicity. Evidence has shown that protein aggregates cause a chronic inflammatory reaction in the brain, resulting in neurodegeneration. Therefore, strategies targeting anti-inflammation could be beneficial to the therapeutics of PAD. PHA-767491 was originally identified as an inhibitor of CDC7/CDK9 and was found to reduce TDP-43 phosphorylation and prevent neurodegeneration in TDP-43 transgenic animals. We recently identified PHA-767491 as a GSK-3β inhibitor. In this study, we established mouse hippocampal primary culture with tau-hyperphosphorylation through the activation of GSK-3β using Wortmannin and GF109203X. We found that PHA-767491 significantly improved the neurite outgrowth of hippocampal primary neurons against the neurotoxicity induced by GSK-3β. We further showed that PHA-767491 had neuroprotective ability in hippocampal primary culture under oligomeric Aβ treatment. In addition, PHA-767491 attenuated the neuroinflammation in mouse cerebellar slice culture with human TBP-109Q agitation. Further study of SCA17 transgenic mice carrying human TBP-109Q showed that PHA-767491 ameliorated the gait ataxia and the inflammatory response both centrally and peripherally. Our findings suggest that PHA-767491 has a broad spectrum of activity in the treatment of different PAD and that this activity could be based on the anti-inflammation mechanism.
Collapse
Affiliation(s)
- Yu-Han Chung
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chia-Wei Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Hsin-Yu Huang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Shu-Ling Chen
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Hei-Jen Huang
- Department of Nursing, Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Ying-Chieh Sun
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Guan-Chiun Lee
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ya-Ching Chang
- Department of Pharmacy, Taiwan Adventist Hospital, Taipei, Taiwan.
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan.
| |
Collapse
|
12
|
Rossi M, Farcy N, Starkstein SE, Merello M. Nosology and Phenomenology of Psychosis in Movement Disorders. Mov Disord Clin Pract 2020; 7:140-153. [PMID: 32071931 PMCID: PMC7011839 DOI: 10.1002/mdc3.12882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/02/2019] [Accepted: 12/01/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Psychotic symptoms, such as delusions and hallucinations, are part of the clinical picture of several conditions presenting movement disorders. Phenomenology and epidemiology of psychosis in Parkinson's disease have received wide attention; however, the presence of psychosis in other movement disorders is, comparatively, less well known. OBJECTIVES To review psychotic symptoms present in different movement disorders. METHODS A comprehensive and structured literature search was performed to identify and analyze data on patients with movement disorders and comorbid psychosis. RESULTS In monogenic parkinsonisms, such as PARK-GBA, PARK-LRRK2, and PARK-SNCA, visual hallucinations related to dopamine replacement therapy are frequent as well as are delusions in PARK-LRRK2 and PARK-SNCA, but not in PARK-GBA. Different types of delusions and hallucinations are found in Huntington's disease and other choreic disorders. In Tourette's syndrome, paranoid delusions as well as visual, olfactory, and auditory hallucinations have been described, which usually develop after an average of 10 years of disease. Delusions in ataxias are more frequent in ATX-TBP, ATX-ATN1, and ATX-ATXN3, whereas it is rare in Friedreich's ataxia. Psychosis is also a prominent and frequent clinical feature in Fahr's disease, Wilson's disease, neurodegeneration with brain iron accumulation, and some lysosomal storage disorders, whereas it is uncommon in atypical parkinsonisms and dystonia. Psychosis usually occurs at late disease stages, but may appear as onset symptoms of the disease, especially in Wilson's disease, Huntington's disease, late-onset Tays-Sachs, and Niemann-Pick. CONCLUSION Psychosis is a frequent comorbidity in most hyper- and hypokinetic movement disorders. Appropriate recognition is relevant both in the early and late disease stages.
Collapse
Affiliation(s)
- Malco Rossi
- Movement Disorders Section, Neuroscience DepartmentRaul Carrea Institute for Neurological Research (FLENI)Buenos AiresArgentina
- Pontificia Universidad Catolica Argentina (UCA)Buenos AiresArgentina
| | - Nicole Farcy
- Movement Disorders Section, Neuroscience DepartmentRaul Carrea Institute for Neurological Research (FLENI)Buenos AiresArgentina
| | - Sergio E. Starkstein
- School of Psychiatry and Clinical NeurosciencesUniversity of Western AustraliaCrawleyWAAustralia
| | - Marcelo Merello
- Movement Disorders Section, Neuroscience DepartmentRaul Carrea Institute for Neurological Research (FLENI)Buenos AiresArgentina
- Pontificia Universidad Catolica Argentina (UCA)Buenos AiresArgentina
- Argentine National Scientific and Technological Research Council (CONICET)Buenos AiresArgentina
| |
Collapse
|
13
|
Olszewska DA, Fallon EM, Pastores GM, Murphy K, Blanco A, Lynch T, Murphy SM. Autosomal Dominant Gene Negative Frontotemporal Dementia-Think of SCA17. THE CEREBELLUM 2019; 18:654-658. [PMID: 30617627 DOI: 10.1007/s12311-018-0998-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
SCA 17 is a rare, autosomal dominant disorder caused by TBP gene CAG/CAA repeat expansion. Ataxia and dementia are common. The presence of frontal dysfunction at outset of the disease may mimic frontotemporal dementia (FTD). Parkinsonism, chorea, dystonia, and pyramidal signs may occur. We report an Irish family with autosomal dominant partially penetrant frontal dementia with cerebellar atrophy due to SCA17 and present detailed neuropsychological assessment for the first time. A 44-year-old doctor presented with 18-month history of behavioral problems. She slowed down, became apathetic, and unable to multitask. She became more irritable and short tempered, and her work performance deteriorated. Brain MRI showed cerebellar atrophy and cerebellar hypometabolism was noted on FDG-PET. A sister developed personality changes at age 45 with apathy, and had problems with memory and social skills; another sister at age 39 became dysarthric and unsteady. A brother at age 52 demonstrated emotional lability, and became dysarthric, unsteady, and slowed down. Their mother aged 73 had an abnormal antalgic gait due to arthritis; their father was jocular and disinhibited. MAPT testing detected an exon 9 c.726C>T variant in the proband. Subsequent testing in nine siblings and both parents failed to show co-segregation with disease. SCA17 testing revealed a TBP gene 43 repeat expansion that co-segregated in all affected siblings and in the mother whose gait problems were initially attributed to arthritis. In over 80% of cases of FTD with clear autosomal dominant inheritance, causative gene defects involve MAPT, GRN, or C9orf72 mutations. A minority involves VCP, FUS, and CHMP2B. As evident from our case, SCA17 testing should also be considered, especially if cerebellar atrophy if found on imaging. Segregation analysis is crucial. MAPT variant (c.726C>T exon 9) detected in the family was deemed a polymorphism.
Collapse
Affiliation(s)
- Diana Angelika Olszewska
- Department of Neurology, Dublin Neurological Institute, Mater Misericordiae University Hospital, 57 Eccles Street, Dublin 7, Ireland.
| | - E M Fallon
- Department of Neurology, Dublin Neurological Institute, Mater Misericordiae University Hospital, 57 Eccles Street, Dublin 7, Ireland
| | - G M Pastores
- National Centre for Inherited Metabolic Disorders, Mater Misericordiae University Hospital, Dublin, Ireland
| | - K Murphy
- Department of Neurology, Sligo University Hospital, Sligo, Ireland
| | - A Blanco
- Department of Neuropsychology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - T Lynch
- Department of Neurology, Dublin Neurological Institute, Mater Misericordiae University Hospital, 57 Eccles Street, Dublin 7, Ireland
| | - S M Murphy
- Department of Neurology, The Adelaide and Meath Hospitals, Tallaght, Dublin, Ireland.,Academic Unit of Neurology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
14
|
Grimaldi S, Cupidi C, Smirne N, Bernardi L, Giacalone F, Piccione G, Basiricò S, Mangano GD, Nardello R, Orsi L, Grosso E, Laganà V, Mitolo M, Maletta RG, Bruni AC. The largest caucasian kindred with dentatorubral-pallidoluysian atrophy: A founder mutation in italy. Mov Disord 2019; 34:1919-1924. [PMID: 31755148 DOI: 10.1002/mds.27879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/01/2019] [Accepted: 08/25/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Dentatorubral-pallidoluysian atrophy is a hereditary neurodegenerative disease prevalently reported in Japan but rare in Caucasians. The objective of this study was to reconstruct the pedigree of Italian dentatorubral-pallidoluysian atrophy familial cases describing their clinical features. METHODS We investigated 6 apparently unrelated dentatorubral-pallidoluysian atrophy families comprising a total of 51 affected individuals: 13 patients were clinically examined, and for 38 patients clinical data were collected from clinical sources. The dentatorubral-pallidoluysian atrophy diagnosis was genetically confirmed in 18 patients. Genealogical data from historical archives were analyzed. RESULTS All 6 families were unified in a large pedigree deriving from a founder couple originating from Monte San Giuliano (Italy) in the late 1500s, with 51 affected subjects over the last 4 generations. Wide phenotypical variability in age at onset and clinical features was confirmed. Epilepsy was more frequent in juvenile cases than in late adults, with cognitive/psychiatric and motor disorders observed regardless of age at onset. CONCLUSIONS We have described the largest Caucasian dentatorubral-pallidoluysian atrophy pedigree from a single founder couple. The introduction of the dentatorubral-pallidoluysian atrophy gene in Italy could have arisen as a result of trade relationships between the Spanish or Portuguese and the Japanese in the 1500s. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Silvia Grimaldi
- Consorzio Siciliano di Riabilitazione - Associazione Italiana Assistenza Spastici (CSR-AIAS), Paceco, Trapani, Italy
| | - Chiara Cupidi
- Regional Neurogenetic Center (CRN), ASP Catanzaro, Lamezia Terme, Italy
| | - Nicoletta Smirne
- Regional Neurogenetic Center (CRN), ASP Catanzaro, Lamezia Terme, Italy
| | - Livia Bernardi
- Regional Neurogenetic Center (CRN), ASP Catanzaro, Lamezia Terme, Italy
| | - Fabio Giacalone
- Consorzio Siciliano di Riabilitazione - Associazione Italiana Assistenza Spastici (CSR-AIAS), Paceco, Trapani, Italy
| | - Giuseppina Piccione
- Consorzio Siciliano di Riabilitazione - Associazione Italiana Assistenza Spastici (CSR-AIAS), Paceco, Trapani, Italy
| | - Salvatore Basiricò
- Consorzio Siciliano di Riabilitazione - Associazione Italiana Assistenza Spastici (CSR-AIAS), Paceco, Trapani, Italy
| | - Giuseppe Donato Mangano
- Child Neuropsychiatry Unit, Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro,", University of Palermo, Palermo, Italy
| | - Rosaria Nardello
- Child Neuropsychiatry Unit, Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro,", University of Palermo, Palermo, Italy
| | - Laura Orsi
- Neurology 1, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Enrico Grosso
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Valentina Laganà
- Regional Neurogenetic Center (CRN), ASP Catanzaro, Lamezia Terme, Italy
| | - Micaela Mitolo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Diagnostica Funzionale Neuroradiologica, Bologna, Italy
| | | | | |
Collapse
|
15
|
Chen SJ, Lee NC, Chien YH, Hwu WL, Lin CH. Heterogeneous nonataxic phenotypes of spinocerebellar ataxia in a Taiwanese population. Brain Behav 2019; 9:e01414. [PMID: 31523939 PMCID: PMC6790309 DOI: 10.1002/brb3.1414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/10/2019] [Accepted: 08/26/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Spinocerebellar ataxia (SCA) presents with variable clinical presentations in addition to ataxia. The aim of this study was to reappraise the diverse nonataxic clinical characteristics of the five most common SCA subtypes in the Asian population. METHODS The clinical presentations of 90 patients with genetically confirmed SCA1, SCA2, SCA3, SCA6, or SCA17 were assessed retrospectively between November 2008 and September 2018 at a tertiary referral center in Taiwan. RESULTS Parkinsonism was the most common nonataxic phenotype (21.1%), with a greater prevalence than Caucasian and other Asian SCA carriers. Patients with parkinsonism feature had fewer CAG repeats in SCA2 (31.0 ± 4.5 vs. 36.9 ± 6.0, p = .03) and SCA3 (65.6 ± 7.9 vs. 70.0 ± 4.2, p = .02) compared to those with pure ataxia presentation. The average age of symptom onset was significantly higher in the parkinsonism group of SCA2 (51.5 ± 8.9 vs. 35.3 ± 12.6 years, p = .007) than those with pure ataxia. Focal or segmental dystonia was identified in 4.4% of SCA patients (n = 2 each SCA2 and SCA3). Nonmotor symptoms, including impaired cognition (6.1% of SCA2 and 8.3% of SCA3 patients) and depression (9.1% of SCA2 and 8.3% of SCA3 patients), were also common nonataxic features in our SCA patients. CONCLUSIONS Parkinsonism, dystonia, and cognitive-psychiatric symptoms are common features in patients with SCA mutations in our population. Our study identifies a different clinical spectrum of SCA1, SCA2, SCA3, SCA6, and SCA17 compared to Caucasians.
Collapse
Affiliation(s)
- Szu-Ju Chen
- Department of Neurology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.,National Taiwan University Hospital Bei-Hu Branch, Taipei, Taiwan
| | - Ni-Chung Lee
- Department of Medical Genetics and Pediatrics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yin-Hsiu Chien
- Department of Medical Genetics and Pediatrics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wuh-Liang Hwu
- Department of Medical Genetics and Pediatrics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
16
|
Abstract
Spinocerebellar ataxia type 17 (SCA17) is caused by polyglutamine (polyQ) expansion in the TATA box-binding protein (TBP), which functions as a general transcription factor. Like other polyQ expansion-mediated diseases, SCA17 is characterized by late-onset and selective neurodegeneration, despite the disease protein being ubiquitously expressed in the body. To date, the pathogenesis of polyQ diseases is not fully understood, and there are no effective treatments for these devastating disorders. The well-characterized function of TBP and typical neurodegeneration in SCA17 give us opportunities to understand how polyQ expansion causes selective neurodegeneration and to develop effective therapeutics. In this review, we discuss the molecular mechanisms behind SCA17, focusing on transcriptional dysregulation as its major cause. Mounting evidence suggests that reversing transcriptional alterations induced by mutant TBP and reducing the expression of mutant TBP are promising strategies to treat SCA17.
Collapse
Affiliation(s)
- Qiong Liu
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Yongcheng Pan
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Xiao-Jiang Li
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China.
| | - Shihua Li
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| |
Collapse
|
17
|
Comparable progression of spinocerebellar ataxias between Caucasians and Chinese. Parkinsonism Relat Disord 2019; 62:156-162. [DOI: 10.1016/j.parkreldis.2018.12.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 12/15/2018] [Accepted: 12/19/2018] [Indexed: 11/22/2022]
|
18
|
Toyoshima Y, Takahashi H. Spinocerebellar Ataxia Type 17 (SCA17). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1049:219-231. [PMID: 29427105 DOI: 10.1007/978-3-319-71779-1_10] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
In 1999, a polyglutamine expansion was identified in the transcription factor TATA-binding protein (TBP) in a patient with ataxia with negative family history. Subsequently, CAG/CAA repeat expansions in the TBP gene were identified in families with spinocerebellar ataxia (SCA), establishing this repeat expansion as the underlying mutation in SCA type 17 (SCA17). There are several characteristic differences between SCA17 and other polyglutamine diseases. First, SCA17 shows a complex and variable clinical phenotype, in some cases overlapping that of Huntington's disease. Second, compared to the other SCA subtypes caused by expanded trinucleotide repeats, anticipation in SCA17 kindreds is rare because of the characteristic structure of the TBP gene. And thirdly, SCA17 patients often have diagnostic problems that may arise from non-penetrance. Because the gap between normal and abnormal repeat numbers is very narrow, it is difficult to determine a cutoff value for pathologic CAG repeat number in SCA17. Herein, we review the clinical, genetic and pathologic features of SCA17.
Collapse
Affiliation(s)
- Yasuko Toyoshima
- Department of Pathology, Brain Research Institute, University of Niigata, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan.
| | - Hitoshi Takahashi
- Department of Pathology, Brain Research Institute, University of Niigata, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| |
Collapse
|
19
|
Synergistic Toxicity of Polyglutamine-Expanded TATA-Binding Protein in Glia and Neuronal Cells: Therapeutic Implications for Spinocerebellar Ataxia 17. J Neurosci 2017; 37:9101-9115. [PMID: 28821675 DOI: 10.1523/jneurosci.0111-17.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 07/09/2017] [Accepted: 07/24/2017] [Indexed: 01/12/2023] Open
Abstract
Spinocerebellar ataxia 17 (SCA17) is caused by polyglutamine (polyQ) repeat expansion in the TATA-binding protein (TBP) and is among a family of neurodegenerative diseases in which polyQ expansion leads to preferential neuronal loss in the brain. Although previous studies have demonstrated that expression of polyQ-expanded proteins in glial cells can cause neuronal injury via noncell-autonomous mechanisms, these studies investigated animal models that overexpress transgenic mutant proteins. Since glial cells are particularly reactive to overexpressed mutant proteins, it is important to investigate the in vivo role of glial dysfunction in neurodegeneration when mutant polyQ proteins are endogenously expressed. In the current study, we generated two conditional TBP-105Q knock-in mouse models that specifically express mutant TBP at the endogenous level in neurons or in astrocytes. We found that mutant TBP expression in neuronal cells or astrocytes alone only caused mild neurodegeneration, whereas severe neuronal toxicity requires the expression of mutant TBP in both neuronal and glial cells. Coculture of neurons and astrocytes further validated that mutant TBP in astrocytes promoted neuronal injury. We identified activated inflammatory signaling pathways in mutant TBP-expressing astrocytes, and blocking nuclear factor κB (NF-κB) signaling in astrocytes ameliorated neurodegeneration. Our results indicate that the synergistic toxicity of mutant TBP in neuronal and glial cells plays a critical role in SCA17 pathogenesis and that targeting glial inflammation could be a potential therapeutic approach for SCA17 treatment.SIGNIFICANCE STATEMENT Mutant TBP with polyglutamine expansion preferentially affects neuronal viability in SCA17 patients. Whether glia, the cells that support and protect neurons, contribute to neurodegeneration in SCA17 remains mostly unexplored. In this study, we provide both in vivo and in vitro evidence arguing that endogenous expression of mutant TBP in neurons and glia synergistically impacts neuronal survival. Hyperactivated inflammatory signaling pathways, particularly the NF-κB pathway, underlie glia-mediated neurotoxicity. Moreover, blocking NF-κB activity with small chemical inhibitors alleviated such neurotoxicity. Our study establishes glial dysfunction as an important component of SCA17 pathogenesis and suggests targeting glial inflammation as a potential therapeutic approach for SCA17 treatment.
Collapse
|
20
|
Kyriakou EI, Nguyen HP, Homberg JR, Van der Harst JE. Home-cage anxiety levels in a transgenic rat model for Spinocerebellar ataxia type 17 measured by an approach-avoidance task: The light spot test. J Neurosci Methods 2017; 300:48-58. [PMID: 28823507 DOI: 10.1016/j.jneumeth.2017.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 08/05/2017] [Accepted: 08/11/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Measuring anxiety in a reliable manner is essential for behavioural phenotyping of rodent models such as the rat model for Spinocerebellar ataxia type 17 (SCA17) where anxiety is reported in patients. An automated tool for assessing anxiety within the home cage can minimize human intervention, stress of handling, transportation and novelty. NEW METHOD We applied the anxiety test "light spot" (LS) (white led directed at the food-hopper) to our transgenic SCA17 rat model in the PhenoTyper 4500® to extend the knowledge of this automated tool for behavioural phenotyping and to verify an anxiety-like phenotype at three different disease stages for use in future therapeutic studies. RESULTS Locomotor activity was increased in SCA17 rats at 6 and 9 months during the first 15min of the LS, potentially reflecting increased risk assessment. Both genotypes responded to the test with lower duration in the LS zone and higher time spent inside the shelter compared to baseline. COMPARISON WITH EXISTING METHODS We present the first data of a rat model subjected to the LS. The LS can be considered more biologically relevant than a traditional test as it measures anxiety in a familiar situation. CONCLUSIONS The LS successfully evoked avoidance and shelter-seeking in rats. SCA17 rats showed a stronger approach-avoidance conflict reflected by increased activity in the area outside the LS. This home cage test, continuously monitoring pre- and post-effects, provides the opportunity for in-depth analysis, making it a potentially useful tool for detecting subtle or complex anxiety-related traits in rodents.
Collapse
Affiliation(s)
- Elisavet I Kyriakou
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands; Noldus Information Technology BV, Wageningen, The Netherlands; Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany
| | - Huu Phuc Nguyen
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076, Tübingen, Germany; Centre for Rare Diseases, University of Tübingen, 72076, Tübingen, Germany.
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Johanneke E Van der Harst
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands; Noldus Information Technology BV, Wageningen, The Netherlands
| |
Collapse
|
21
|
Abstract
Frontotemporal dementia (FTD) is the second most common cause of dementia following Alzheimer's disease (AD). Between 20 and 50% of cases are familial. Mutations in MAPT, GRN and C9orf72 are found in 60% of familial FTD cases. C9orf72 mutations are the most common and account for 25%. Rarer mutations (<5%) occur in other genes such as VPC, CHMP2B, TARDP, FUS, ITM2B, TBK1 and TBP. The diagnosis is often challenging due to symptom overlap with AD and other conditions. We review the genetics, clinical presentations, neuroimaging, neuropathology, animal studies and therapeutic trials in FTD. We describe clinical scenarios including the original family with the tau stem loop mutation (+14) and also the recently discovered 'missing tau' mutation +15 that 'closed the loop' in 2015.
Collapse
|
22
|
Cui Y, Yang S, Li XJ, Li S. Genetically modified rodent models of SCA17. J Neurosci Res 2017; 95:1540-1547. [PMID: 27859490 PMCID: PMC5508981 DOI: 10.1002/jnr.23984] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/21/2016] [Accepted: 10/11/2016] [Indexed: 12/16/2022]
Abstract
Spinocerebellar ataxia type 17 (SCA17) is a type of autosomal dominant cerebellar ataxia (ADCA) characterized by variable manifestations, including cerebellar ataxia, dementia, and psychiatric symptoms. Since the identification of a CAG repeat expansion in the TATA-box binding protein (TBP) gene in a patient with ataxia in 1999 and then verification of this expansion in patients with SCA17 in 2001, several SCA17 rodent models, including both knock-in and transgenic models in mice and rats, have been established to explore the phenotypic features and pathogenesis of SCA17. These animal models revealed different pathological changes and phenotypes that are associated with the expression of mutant TBP protein and the CAG repeat lengths. It is important to understand how mutant TBP can cause differential pathological events in SCA17 animal models. In this review, we summarize and compare these animal models for the nature of transgenes and their expression as well as phenotypical features. We also discuss potential directions for future studies. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yiting Cui
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People’s Republic of China
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, Georgia 30322, USA
| | - Su Yang
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, Georgia 30322, USA
| | - Xiao-Jiang Li
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, Georgia 30322, USA
| | - Shihua Li
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, Georgia 30322, USA
| |
Collapse
|
23
|
Lindsay E, Storey E. Cognitive Changes in the Spinocerebellar Ataxias Due to Expanded Polyglutamine Tracts: A Survey of the Literature. Brain Sci 2017; 7:brainsci7070083. [PMID: 28708110 PMCID: PMC5532596 DOI: 10.3390/brainsci7070083] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/27/2017] [Accepted: 07/06/2017] [Indexed: 12/18/2022] Open
Abstract
The dominantly-inherited ataxias characterised by expanded polyglutamine tracts—spinocere bellar ataxias (SCAs) 1, 2, 3, 6, 7, 17, dentatorubral pallidoluysian atrophy (DRPLA) and, in part, SCA 8—have all been shown to result in various degrees of cognitive impairment. We survey the literature on the cognitive consequences of each disorder, attempting correlation with their published neuropathological, magnetic resonance imaging (MRI) and clinical features. We suggest several psychometric instruments for assessment of executive function, whose results are unlikely to be confounded by visual, articulatory or upper limb motor difficulties. Finally, and with acknowledgement of the inadequacies of the literature to date, we advance a tentative classification of these disorders into three groups, based on the reported severity of their cognitive impairments, and correlated with their neuropathological topography and MRI findings: group 1—SCAs 6 and 8—mild dysexecutive syndrome based on disruption of cerebello-cortical circuitry; group 2—SCAs 1, 2, 3, and 7—more extensive deficits based largely on disruption of striatocortical in addition to cerebello-cerebral circuitry; and group 3—SCA 17 and DRPLA—in which cognitive impairment severe enough to cause a dementia syndrome is a frequent feature.
Collapse
Affiliation(s)
- Evelyn Lindsay
- Department of Medicine (Neuroscience), Monash University (Alfred Hospital Campus), Commercial Road, Melbourne, VIC 3004, Australia.
| | - Elsdon Storey
- Department of Medicine (Neuroscience), Monash University (Alfred Hospital Campus), Commercial Road, Melbourne, VIC 3004, Australia.
| |
Collapse
|
24
|
Gallo M, Frangipane F, Cupidi C, De Bartolo M, Turone S, Ferrari C, Nacmias B, Grimaldi G, Laganà V, Colao R, Bernardi L, Anfossi M, Conidi ME, Vasso F, Curcio SAM, Mirabelli M, Smirne N, Torchia G, Muraca MG, Puccio G, Di Lorenzo R, Piccininni M, Tedde A, Maletta RG, Sorbi S, Bruni AC. The novel PSEN1 M84V mutation associated to frontal dysexecutive syndrome, spastic paraparesis, and cerebellar atrophy in a dominant Alzheimer's disease family. Neurobiol Aging 2017; 56:213.e7-213.e12. [PMID: 28532646 DOI: 10.1016/j.neurobiolaging.2017.04.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 12/30/2022]
Abstract
We identified the novel PSEN1 pathogenic mutation M84V in 3 patients belonging to a large kindred affected by autosomal dominant Alzheimer's disease (AD). The clinical phenotype was characterized by early onset dementia in 14 affected subjects over 3 generations. Detailed clinical, imaging and genetic assessment was performed. We highlighted the presence of unusual symptoms such as frontal executive syndrome, psychosis and spastic paraparesis in these patients. Spastic paraparesis has been reported in other PSEN1 mutations in adjacent codons, suggesting that the position of the genetic defect may affect the clinical expression, although this phenotype can occur in mutations throughout the whole PSEN1 gene. Brain magnetic resonance imaging showed diffuse cortical atrophy, but also atrophy of cerebellar lobules, mainly involving Crus I, in 2 patients without cerebellar motor deficits. These neuroimaging results were consistent with recent findings about the association between sporadic AD and distinct and circumscribed cerebellar atrophy. The present work acknowledged the novel PSEN1 pathogenic mutation M84V and might contribute to the ongoing debate about the involvement of cerebellum in AD.
Collapse
Affiliation(s)
- Maura Gallo
- Regional Neurogenetic Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy
| | | | - Chiara Cupidi
- Regional Neurogenetic Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy
| | - Matteo De Bartolo
- Neurofisiopatologia, Distretto Ionio Sud, ASP CS, Rossano (CS), Italy
| | - Sabina Turone
- Neurofisiopatologia, Distretto Ionio Sud, ASP CS, Rossano (CS), Italy
| | - Camilla Ferrari
- IRCCS Don Gnocchi, Florence, Italy; Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Giuliana Grimaldi
- Groupe de Recherche Interdisciplinaire du Mouvement, ULB, Erasme, Brussels, Belgium
| | - Valentina Laganà
- Regional Neurogenetic Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy
| | - Rosanna Colao
- Regional Neurogenetic Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy
| | - Livia Bernardi
- Regional Neurogenetic Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy
| | - Maria Anfossi
- Regional Neurogenetic Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy
| | | | - Franca Vasso
- Regional Neurogenetic Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy
| | | | - Maria Mirabelli
- Regional Neurogenetic Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy
| | - Nicoletta Smirne
- Regional Neurogenetic Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy
| | - Giusi Torchia
- Regional Neurogenetic Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy
| | | | - Gianfranco Puccio
- Regional Neurogenetic Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy
| | | | - Maristella Piccininni
- Department of Neurology, San Giovanni di Dio Hospital, USL Toscana Centro-Florence, Florence, Italy
| | - Andrea Tedde
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | | | - Sandro Sorbi
- IRCCS Don Gnocchi, Florence, Italy; Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | | |
Collapse
|
25
|
Kyriakou EI, Manfré G, Spadaro JA, Nguyen HP, Harst JEVD, Homberg JR. Anxiety and risk assessment-related traits in a rat model of Spinocerebellar ataxia type 17. Behav Brain Res 2016; 321:106-112. [PMID: 28017852 DOI: 10.1016/j.bbr.2016.12.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 12/13/2016] [Accepted: 12/16/2016] [Indexed: 11/15/2022]
Abstract
Anxiety as a common feature of several neurodegenerative/polyglutamine diseases is an important aspect for the face validity of an animal model for Spinocerebellar Ataxia type 17 (SCA17). Risk assessment and anxiety-like traits were characterised in 3-6-9 months old rats of a transgenic model for SCA17 using the standard behavioural test elevated plus maze. In addition, c-Fos immunostainings in the basolateral amygdala evaluated neuronal activation in correlation to the behavioural responses. The most prominent behavioural effect was a higher level of risk assessment in the transgenic rats. In addition, an increase in anxiety-related behaviour in these rats was found. Although the EPM caused no overall effect on c-Fos expression, a negative correlation with the anxiety-like behavioural response was observed. Our results suggest that the SCA17 rat model displays an anxious phenotype already at 3 months of age resembling the generalized anxiety in early symptomatic SCA17 patients, thus confirming the validity of this rat model.
Collapse
Affiliation(s)
- Elisavet I Kyriakou
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands; Noldus Information Technology BV, Wageningen, The Netherlands; Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany.
| | - Giuseppe Manfré
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands; Noldus Information Technology BV, Wageningen, The Netherlands; Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Jesús A Spadaro
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Huu Phuc Nguyen
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany; Centre for Rare Diseases, University of Tübingen, 72076 Tübingen, Germany.
| | - Johanneke E Van der Harst
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands; Noldus Information Technology BV, Wageningen, The Netherlands
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
26
|
Yang S, Li XJ, Li S. Molecular mechanisms underlying Spinocerebellar Ataxia 17 (SCA17) pathogenesis. Rare Dis 2016; 4:e1223580. [PMID: 28032013 PMCID: PMC5154381 DOI: 10.1080/21675511.2016.1223580] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/31/2016] [Accepted: 08/05/2016] [Indexed: 11/01/2022] Open
Abstract
Spinocerebellar ataxia 17 (SCA17) belongs to the family of 9 genetically inherited, late-onset neurodegenerative diseases, which are caused by polyglutamine (polyQ) expansion in different proteins. In SCA17, the polyQ expansion occurs in the TATA box binding protein (TBP), which functions as a general transcription factor. Patients with SCA17 suffer from a broad array of motor and non-motor defects, and their life expectancy is normally within 20 y after the initial appearance of symptoms. Currently there is no effective treatment, but remarkable efforts have been devoted to tackle this devastating disorder. In this review, we will summarize our current knowledge about the molecular mechanisms underlying the pathogenesis of SCA17, with a primary focus on transcriptional dysregulations. We believe that impaired transcriptional activities caused by mutant TBP with polyQ expansion is a major form of toxicity contributing to SCA17 pathogenesis, and rectifying the altered level of downstream transcripts represents a promising therapeutic approach for the treatment of SCA17.
Collapse
Affiliation(s)
- Su Yang
- Department of Human Genetics, Emory University School of Medicine , Atlanta, GA, USA
| | - Xiao-Jiang Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shihua Li
- Department of Human Genetics, Emory University School of Medicine , Atlanta, GA, USA
| |
Collapse
|
27
|
Kyriakou EI, van der Kieft JG, de Heer RC, Spink A, Nguyen HP, Homberg JR, van der Harst JE. Automated quantitative analysis to assess motor function in different rat models of impaired coordination and ataxia. J Neurosci Methods 2016; 268:171-81. [DOI: 10.1016/j.jneumeth.2015.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 11/30/2015] [Accepted: 12/02/2015] [Indexed: 12/20/2022]
|
28
|
Huang S, Yang S, Guo J, Yan S, Gaertig MA, Li S, Li XJ. Large Polyglutamine Repeats Cause Muscle Degeneration in SCA17 Mice. Cell Rep 2015; 13:196-208. [PMID: 26387956 PMCID: PMC4598297 DOI: 10.1016/j.celrep.2015.08.060] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 07/23/2015] [Accepted: 08/21/2015] [Indexed: 01/17/2023] Open
Abstract
In polyglutamine (polyQ) diseases, large polyQ repeats cause juvenile cases with different symptoms than those of adult-onset patients, who carry smaller expanded polyQ repeats. The mechanisms behind the differential pathology mediated by different polyQ repeat lengths remain unknown. By studying knockin mouse models of spinal cerebellar ataxia-17 (SCA17), we found that a large polyQ (105 glutamines) in the TATA-box-binding protein (TBP) preferentially causes muscle degeneration and reduces the expression of muscle-specific genes. Direct expression of TBP with different polyQ repeats in mouse muscle revealed that muscle degeneration is mediated only by the large polyQ repeats. Different polyQ repeats differentially alter TBP's interaction with neuronal and muscle-specific transcription factors. As a result, the large polyQ repeat decreases the association of MyoD with TBP and DNA promoters. Our findings suggest that specific alterations in protein interactions by large polyQ repeats may account for the unique pathology in juvenile polyQ diseases.
Collapse
Affiliation(s)
- Shanshan Huang
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Room 355, Atlanta, GA 30322, USA; Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430032, China
| | - Su Yang
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Room 355, Atlanta, GA 30322, USA
| | - Jifeng Guo
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Room 355, Atlanta, GA 30322, USA
| | - Sen Yan
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Room 355, Atlanta, GA 30322, USA; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 10010, China
| | - Marta A Gaertig
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Room 355, Atlanta, GA 30322, USA
| | - Shihua Li
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Room 355, Atlanta, GA 30322, USA.
| | - Xiao-Jiang Li
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Room 355, Atlanta, GA 30322, USA; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 10010, China.
| |
Collapse
|
29
|
Maas RP, van Gaalen J, Klockgether T, van de Warrenburg BP. The preclinical stage of spinocerebellar ataxias. Neurology 2015; 85:96-103. [DOI: 10.1212/wnl.0000000000001711] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 03/09/2015] [Indexed: 02/01/2023] Open
|
30
|
Parkinsonism in spinocerebellar ataxia. BIOMED RESEARCH INTERNATIONAL 2015; 2015:125273. [PMID: 25866756 PMCID: PMC4383270 DOI: 10.1155/2015/125273] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/29/2014] [Accepted: 10/13/2014] [Indexed: 11/17/2022]
Abstract
Spinocerebellar ataxia (SCA) presents heterogeneous clinical phenotypes, and parkinsonism is reported in diverse SCA subtypes. Both levodopa responsive Parkinson disease (PD) like phenotype and atypical parkinsonism have been described especially in SCA2, SCA3, and SCA17 with geographic differences in prevalence. SCA2 is the most frequently reported subtype of SCA related to parkinsonism worldwide. Parkinsonism in SCA2 has unique genetic characteristics, such as low number of expansions and interrupted structures, which may explain the sporadic cases with low penetrance. Parkinsonism in SCA17 is more remarkable in Asian populations especially in Korea. In addition, an unclear cutoff of the pathologic range is the key issue in SCA17 related parkinsonism. SCA3 is more common in western cohorts. SCA6 and SCA8 have also been reported with a PD-like phenotype. Herein, we reviewed the epidemiologic, clinical, genetic, and pathologic features of parkinsonism in SCAs.
Collapse
|
31
|
Truant R, Raymond LA, Xia J, Pinchev D, Burtnik A, Atwal RS. Canadian Association of Neurosciences Review: Polyglutamine Expansion Neurodegenerative Diseases. Can J Neurol Sci 2014; 33:278-91. [PMID: 17001815 DOI: 10.1017/s031716710000514x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
ABSTRACT:Since the early 1990s, DNA triplet repeat expansions have been found to be the cause in an ever increasing number of genetic neurologic diseases. A subset of this large family of genetic diseases has the expansion of a CAG DNA triplet in the open reading frame of a coding exon. The result of this DNA expansion is the expression of expanded glutamine amino acid repeat tracts in the affected proteins, leading to the term, Polyglutamine Diseases, which is applied to this sub-family of diseases. To date, nine distinct genes are known to be linked to polyglutamine diseases, including Huntington's disease, Machado-Joseph Disease and spinobulbar muscular atrophy or Kennedy's disease. Most of the polyglutamine diseases are characterized clinically as spinocerebellar ataxias. Here we discuss recent successes and advancements in polyglutamine disease research, comparing these different diseases with a common genetic flaw at the level of molecular biology and early drug design for a family of diseases where many new research tools for these genetic disorders have been developed. Polyglutamine disease research has successfully used interdisciplinary collaborative efforts, informative multiple mouse genetic models and advanced tools of pharmaceutical industry research to potentially serve as the prototype model of therapeutic research and development for rare neurodegenerative diseases.
Collapse
Affiliation(s)
- Ray Truant
- Department of Biochemistry and Biomedical Sciences McMaster University, Hamilton, ON, Canada
| | | | | | | | | | | |
Collapse
|
32
|
From mild ataxia to huntington disease phenocopy: the multiple faces of spinocerebellar ataxia 17. Case Rep Neurol Med 2014; 2014:643289. [PMID: 25349749 PMCID: PMC4202309 DOI: 10.1155/2014/643289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/25/2014] [Indexed: 11/20/2022] Open
Abstract
Introduction. Spinocerebellar ataxia 17 (SCA 17) is a rare autosomal dominant cerebellar ataxia (ADCA) caused by a CAG/CAA expansion in the TBP gene, reported from a limited number of countries. It is a very heterogeneous ADCA characterized by ataxia, cognitive decline, psychiatric symptoms, and involuntary movements, with some patients presenting with Huntington disease (HD) phenocopies. The SCA 17 expansion is stable during parent-child transmission and intrafamilial phenotypic homogeneity has been reported. However, significant phenotypic variability within families has also been observed. Report of the Family. We presently report a Greek family with a pathological expansion of 54 repeats at the SCA 17 locus that displayed remarkable phenotypic variability. Among 3 affected members, one presented with HD phenocopy; one with progressive ataxia, dementia, chorea, dystonia, and seizures, and one with mild slowly progressive ataxia with minor cognitive and affective symptoms. Conclusions. This is the first family with SCA 17 identified in Greece and highlights the multiple faces of this rare disorder, even within the same family.
Collapse
|
33
|
Matilla-Dueñas A, Ashizawa T, Brice A, Magri S, McFarland KN, Pandolfo M, Pulst SM, Riess O, Rubinsztein DC, Schmidt J, Schmidt T, Scoles DR, Stevanin G, Taroni F, Underwood BR, Sánchez I. Consensus paper: pathological mechanisms underlying neurodegeneration in spinocerebellar ataxias. CEREBELLUM (LONDON, ENGLAND) 2014; 13:269-302. [PMID: 24307138 PMCID: PMC3943639 DOI: 10.1007/s12311-013-0539-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Intensive scientific research devoted in the recent years to understand the molecular mechanisms or neurodegeneration in spinocerebellar ataxias (SCAs) are identifying new pathways and targets providing new insights and a better understanding of the molecular pathogenesis in these diseases. In this consensus manuscript, the authors discuss their current views on the identified molecular processes causing or modulating the neurodegenerative phenotype in spinocerebellar ataxias with the common opinion of translating the new knowledge acquired into candidate targets for therapy. The following topics are discussed: transcription dysregulation, protein aggregation, autophagy, ion channels, the role of mitochondria, RNA toxicity, modulators of neurodegeneration and current therapeutic approaches. Overall point of consensus includes the common vision of neurodegeneration in SCAs as a multifactorial, progressive and reversible process, at least in early stages. Specific points of consensus include the role of the dysregulation of protein folding, transcription, bioenergetics, calcium handling and eventual cell death with apoptotic features of neurons during SCA disease progression. Unresolved questions include how the dysregulation of these pathways triggers the onset of symptoms and mediates disease progression since this understanding may allow effective treatments of SCAs within the window of reversibility to prevent early neuronal damage. Common opinions also include the need for clinical detection of early neuronal dysfunction, for more basic research to decipher the early neurodegenerative process in SCAs in order to give rise to new concepts for treatment strategies and for the translation of the results to preclinical studies and, thereafter, in clinical practice.
Collapse
Affiliation(s)
- A Matilla-Dueñas
- Health Sciences Research Institute Germans Trias i Pujol (IGTP), Ctra. de Can Ruti, Camí de les Escoles s/n, Badalona, Barcelona, Spain,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Age-dependent decrease in chaperone activity impairs MANF expression, leading to Purkinje cell degeneration in inducible SCA17 mice. Neuron 2014; 81:349-65. [PMID: 24462098 DOI: 10.1016/j.neuron.2013.12.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2013] [Indexed: 12/14/2022]
Abstract
Although protein-misfolding-mediated neurodegenerative diseases have been linked to aging, how aging contributes to selective neurodegeneration remains unclear. We established spinocerebellar ataxia 17 (SCA17) knockin mice that inducibly express one copy of mutant TATA box binding protein (TBP) at different ages by tamoxifen-mediated Cre recombination. We find that more mutant TBP accumulates in older mouse and that this accumulation correlates with age-related decreases in Hsc70 and chaperone activity. Consistently, older SCA17 mice experienced earlier neurological symptom onset and more severe Purkinje cell degeneration. Mutant TBP shows decreased association with XBP1s, resulting in the reduced transcription of mesencephalic astrocyte-derived neurotrophic factor (MANF), which is enriched in Purkinje cells. Expression of Hsc70 improves the TBP-XBP1s interaction and MANF transcription, and overexpression of MANF ameliorates mutant TBP-mediated Purkinje cell degeneration via protein kinase C (PKC)-dependent signaling. These findings suggest that the age-related decline in chaperone activity affects polyglutamine protein function that is important for the viability of specific types of neurons.
Collapse
|
35
|
Uncommon Dementias. NEURODEGENER DIS 2014. [DOI: 10.1007/978-1-4471-6380-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
36
|
Portal E, Riess O, Nguyen HP. Automated home cage assessment shows behavioral changes in a transgenic mouse model of spinocerebellar ataxia type 17. Behav Brain Res 2013; 250:157-65. [PMID: 23665119 DOI: 10.1016/j.bbr.2013.04.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 04/09/2013] [Accepted: 04/24/2013] [Indexed: 11/26/2022]
Abstract
Spinocerebellar Ataxia type 17 (SCA17) is an autosomal dominantly inherited, neurodegenerative disease characterized by ataxia, involuntary movements, and dementia. A novel SCA17 mouse model having a 71 polyglutamine repeat expansion in the TATA-binding protein (TBP) has shown age related motor deficit using a classic motor test, yet concomitant weight increase might be a confounding factor for this measurement. In this study we used an automated home cage system to test several motor readouts for this same model to confirm pathological behavior results and evaluate benefits of automated home cage in behavior phenotyping. Our results confirm motor deficits in the Tbp/Q71 mice and present previously unrecognized behavioral characteristics obtained from the automated home cage, indicating its use for high-throughput screening and testing, e.g. of therapeutic compounds.
Collapse
Affiliation(s)
- Esteban Portal
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | | | | |
Collapse
|
37
|
Roos RA. Genetic diagnosis of hyperkinetic movement disorders. ACTA ACUST UNITED AC 2013; 6:439-47. [PMID: 23480808 DOI: 10.1517/17530059.2012.704017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION People with hyperkinetic movements have always attracted the attention of the public and professionals. Alert colleagues noticed families in which a disease passed from generation to generation around Lake Maracaibo in Venezuela. This study led in 1993 to the localization of the gene for Huntington disease on chromosome 4. The genetic basis of many other familial and sporadic diseases has been identified on human DNA. AREAS COVERED The clinical presentation of hyperkinesias remains the starting point for diagnosis, but differential diagnosis is a long, difficult process, the first step being to differentiate between inherited and non-inherited forms. The need to know the diagnosis is of major importance for patient and family. Knowledge about the cause limits the number of extra diagnostics. This review of the literature presents the most frequently occurring genetically-determined forms of hyperkinesias, mainly chorea and dystonia and tries to give some practical guidelines. EXPERT OPINION The final part of the review will offer some thoughts and views for future development in a world which probably has more knowledge than we can handle. The drive to find a diagnosis is rewarded by the patient but one also needs to reflect on the use of medical care.
Collapse
Affiliation(s)
- Raymund Ac Roos
- Leiden University Medical Centre, Department of Neurology , K5Q 112, LUMC, PO Box 9600, 2300RC Leiden , The Netherlands +0031 71 526 2197 ; +0031 71 524 8253 ;
| |
Collapse
|
38
|
Camero S, Benítez MJ, Jiménez JS. Anomalous Protein–DNA Interactions Behind Neurological Disorders. PROTEIN-NUCLEIC ACIDS INTERACTIONS 2013; 91:37-63. [DOI: 10.1016/b978-0-12-411637-5.00002-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Belluzzo M, Musho-Ilbeh S, Monti F, Pizzolato G. A case of nocturnal frontal lobe epilepsy in a patient with spinocerebellar ataxia type 17. Seizure 2012; 21:805-6. [DOI: 10.1016/j.seizure.2012.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/17/2012] [Accepted: 08/18/2012] [Indexed: 11/29/2022] Open
|
40
|
Seidel K, Siswanto S, Brunt ERP, den Dunnen W, Korf HW, Rüb U. Brain pathology of spinocerebellar ataxias. Acta Neuropathol 2012; 124:1-21. [PMID: 22684686 DOI: 10.1007/s00401-012-1000-x] [Citation(s) in RCA: 285] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/25/2012] [Accepted: 05/25/2012] [Indexed: 12/22/2022]
Abstract
The autosomal dominant cerebellar ataxias (ADCAs) represent a heterogeneous group of neurodegenerative diseases with progressive ataxia and cerebellar degeneration. The current classification of this disease group is based on the underlying genetic defects and their typical disease courses. According to this categorization, ADCAs are divided into the spinocerebellar ataxias (SCAs) with a progressive disease course, and the episodic ataxias (EA) with episodic occurrences of ataxia. The prominent disease symptoms of the currently known and genetically defined 31 SCA types result from damage to the cerebellum and interconnected brain grays and are often accompanied by more specific extra-cerebellar symptoms. In the present review, we report the genetic and clinical background of the known SCAs and present the state of neuropathological investigations of brain tissue from SCA patients in the final disease stages. Recent findings show that the brain is commonly seriously affected in the polyglutamine SCAs (i.e. SCA1, SCA2, SCA3, SCA6, SCA7, and SCA17) and that the patterns of brain damage in these diseases overlap considerably in patients suffering from advanced disease stages. In the more rarely occurring non-polyglutamine SCAs, post-mortem neuropathological data currently are scanty and investigations have been primarily performed in vivo by means of MRI brain imaging. Only a minority of SCAs exhibit symptoms and degenerative patterns allowing for a clear and unambiguous diagnosis of the disease, e.g. retinal degeneration in SCA7, tau aggregation in SCA11, dentate calcification in SCA20, protein depositions in the Purkinje cell layer in SCA31, azoospermia in SCA32, and neurocutaneous phenotype in SCA34. The disease proteins of polyglutamine ataxias and some non-polyglutamine ataxias aggregate as cytoplasmic or intranuclear inclusions and serve as morphological markers. Although inclusions may impair axonal transport, bind transcription factors, and block protein quality control, detailed molecular and pathogenetic consequences remain to be determined.
Collapse
Affiliation(s)
- Kay Seidel
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe University, Theodor-Stern-Kai 7, 60950, Frankfurt/Main, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Brockmann K, Reimold M, Globas C, Hauser TK, Walter U, Machulla HJ, Rolfs A, Schöls L. PET and MRI Reveal Early Evidence of Neurodegeneration in Spinocerebellar Ataxia Type 17. J Nucl Med 2012; 53:1074-80. [DOI: 10.2967/jnumed.111.101543] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
42
|
Reetz K, Dogan I, Rolfs A, Binkofski F, Schulz JB, Laird AR, Fox PT, Eickhoff SB. Investigating function and connectivity of morphometric findings--exemplified on cerebellar atrophy in spinocerebellar ataxia 17 (SCA17). Neuroimage 2012; 62:1354-66. [PMID: 22659444 DOI: 10.1016/j.neuroimage.2012.05.058] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/07/2012] [Accepted: 05/22/2012] [Indexed: 10/28/2022] Open
Abstract
Spinocerebellar ataxia type 17 (SCA17) is a rare autosomal dominant neurodegenerative disorder characterized by progressive cerebellar ataxia but also a broad spectrum of other neuropsychiatric signs. As anatomical and structural studies have shown severe cerebellar atrophy in SCA17 and a differentiation of the human cerebellum into an anterior sensorimotor and posterior cognitive/emotional partition has been implicated, we aimed at investigating functional connectivity patterns of two cerebellar clusters of atrophy revealed by a morphometric analysis in SCA17 patients. In particular, voxel-based morphometry (VBM) revealed a large cluster of atrophy in SCA17 in the bilateral anterior cerebellum (lobule V) and another one in the left posterior cerebellum (lobules IX, VIIb, VIIIA, VIIIB). These two cerebellar clusters were used as seeds for functional connectivity analyses using task-based meta-analytic connectivity modeling (MACM) and task-free resting state connectivity analysis. Results demonstrated first consistent functional connectivity throughout the cerebellum itself; the anterior cerebellar seed showed stronger connectivity to lobules V, VI and to some extent I-IV, and the posterior cerebellar seed to the posterior lobules VI-IX. Importantly, the cerebellar anterior seed also showed consistently stronger functional connectivity than the posterior one with pre- and motor areas as well as the primary somatosensory cortex. In turn, task-based task-independent functional connectivity analyses revealed that the cerebellar posterior seed was linked with fronto-temporo-parietal areas as well as partly the insula and the thalamus, i.e., brain regions implicated in cognitive and affective processes. Functional characterization of experiments activating either cerebellar seed further corroborated this notion, revealing mainly motor-related functions for the anterior cluster and predominantly cognitive functions were associated for the posterior one. The differential functional connectivity of the cerebellar anterior and posterior cluster highlights the manifold connections and dichotomy of the human cerebellum, providing additional valuable information about probably disrupted cerebellar-cerebral connections and reflecting the brunt of motor but also the broad spectrum of neuropsychiatric deficits in SCA17.
Collapse
Affiliation(s)
- Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Pauwelsstrasse 30, D-52074 Aachen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Ingram MAC, Orr HT, Clark HB. Genetically engineered mouse models of the trinucleotide-repeat spinocerebellar ataxias. Brain Res Bull 2012; 88:33-42. [PMID: 21810454 PMCID: PMC3227776 DOI: 10.1016/j.brainresbull.2011.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 07/12/2011] [Accepted: 07/17/2011] [Indexed: 12/29/2022]
Abstract
The spinocerebellar ataxias (SCAs) are dominantly inherited disorders that primarily affect coordination of motor function but also frequently involve other brain functions. The models described in this review address mechanisms of trinucleotide-repeat expansions, particularly those relating to polyglutamine expression in the mutant proteins. Modeling chronic late-onset human ataxias in mice is difficult because of their short life-span. While this potential hindrance has been partially overcome by using over-expression of the mutant gene, and/or worsening of the mutation by increasing the length of the trinucleotide repeat expansion, interpretation of results from such models and extrapolation to the human condition should be cautious. Nevertheless, genetically engineered murine models of these diseases have enhanced our understanding of the pathogenesis of many of these conditions. A common theme in many of the polyglutamine-repeat diseases is nuclear localization of mutant protein, with resultant effects on gene regulation. Conditional mutant models and transgenic knock-down therapy have demonstrated the potential for reversibility of disease when production of mutant protein is halted. Several other genetically engineered murine models of SCA also have begun to show utility in the identification and assessment of more classical drug-based therapeutic modalities.
Collapse
Affiliation(s)
- Melissa A C Ingram
- Department of Laboratory Medicine and Pathology, Institute of Translational Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
44
|
Huang S, Ling JJ, Yang S, Li XJ, Li S. Neuronal expression of TATA box-binding protein containing expanded polyglutamine in knock-in mice reduces chaperone protein response by impairing the function of nuclear factor-Y transcription factor. ACTA ACUST UNITED AC 2011; 134:1943-58. [PMID: 21705419 DOI: 10.1093/brain/awr146] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The polyglutamine diseases consist of nine neurodegenerative disorders including spinocerebellar ataxia type 17 that is caused by a polyglutamine tract expansion in the TATA box-binding protein. In all polyglutamine diseases, polyglutamine-expanded proteins are ubiquitously expressed throughout the body but cause selective neurodegeneration. Understanding the specific effects of polyglutamine-expanded proteins, when expressed at the endogenous levels, in neurons is important for unravelling the pathogenesis of polyglutamine diseases. However, addressing this important issue using mouse models that either overly or ubiquitously express mutant polyglutamine proteins in the brain and body has proved difficult. To investigate the pathogenesis of spinocerebellar ataxia 17, we generated a conditional knock-in mouse model that expresses one copy of the mutant TATA box-binding protein gene, which encodes a 105-glutamine repeat, selectively in neuronal cells at the endogenous level. Neuronal expression of mutant TATA box-binding protein causes age-dependent neurological symptoms in mice and the degeneration of cerebellar Purkinje cells. Mutant TATA box-binding protein binds more tightly to the transcription factor nuclear factor-Y, inhibits its association with the chaperone protein promoter, as well as the promoter activity and reduces the expression of the chaperones Hsp70, Hsp25 and HspA5, and their response to stress. These findings demonstrate how mutant TATA box-binding protein at the endogenous level affects neuronal function, with important implications for the pathogenesis and treatment of polyglutamine diseases.
Collapse
Affiliation(s)
- Shanshan Huang
- Department of Human Genetics, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
45
|
Chang YC, Lin CY, Hsu CM, Lin HC, Chen YH, Lee-Chen GJ, Su MT, Ro LS, Chen CM, Hsieh-Li HM. Neuroprotective effects of granulocyte-colony stimulating factor in a novel transgenic mouse model of SCA17. J Neurochem 2011; 118:288-303. [PMID: 21554323 DOI: 10.1111/j.1471-4159.2011.07304.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Spinocerebellar ataxia type 17 (SCA17) is an autosomal dominant inherited disorder characterized by degeneration of spinocerebellar tracts and selected brainstem neurons owing to the expansion of a CAG repeat of the human TATA-binding protein (hTBP) gene. To gain insight into the pathogenesis of this hTBP mutation, we generated transgenic mice with the mutant hTBP gene driven by the Purkinje specific protein (Pcp2/L7) gene promoter. Mice with the expanded hTBP allele developed ataxia within 2-5 months. Behavioral analysis of L7-hTBP transgenic mice showed reduced fall latency in a rotarod assay. Purkinje cell degeneration was identified by immunostaining of calbindin and IP3R1. Reactive gliosis and neuroinflammation occurred in the transgenic cerebellum, accompanied by up-regulation of GFAP and Iba1. The L7-hTBP transgenic mice were thus confirmed to recapitulate the SCA17 phenotype and were used as a disease model to explore the potential of granulocyte-colony stimulating factor in SCA17 treatment. Our results suggest that granulocyte-colony stimulating factor has a neuroprotective effect in these transgenic mice, ameliorating their neurological and behavioral deficits. These data indicate that the expression of the mutant hTBP in Purkinje cells is sufficient to produce cell degeneration and an ataxia phenotype, and constitutes a good model for better analysis of the neurodegeneration in SCA17.
Collapse
Affiliation(s)
- Ya-Chin Chang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Whaley NR, Fujioka S, Wszolek ZK. Autosomal dominant cerebellar ataxia type I: a review of the phenotypic and genotypic characteristics. Orphanet J Rare Dis 2011; 6:33. [PMID: 21619691 PMCID: PMC3123548 DOI: 10.1186/1750-1172-6-33] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 05/28/2011] [Indexed: 12/26/2022] Open
Abstract
Type I autosomal dominant cerebellar ataxia (ADCA) is a type of spinocerebellar ataxia (SCA) characterized by ataxia with other neurological signs, including oculomotor disturbances, cognitive deficits, pyramidal and extrapyramidal dysfunction, bulbar, spinal and peripheral nervous system involvement. The global prevalence of this disease is not known. The most common type I ADCA is SCA3 followed by SCA2, SCA1, and SCA8, in descending order. Founder effects no doubt contribute to the variable prevalence between populations. Onset is usually in adulthood but cases of presentation in childhood have been reported. Clinical features vary depending on the SCA subtype but by definition include ataxia associated with other neurological manifestations. The clinical spectrum ranges from pure cerebellar signs to constellations including spinal cord and peripheral nerve disease, cognitive impairment, cerebellar or supranuclear ophthalmologic signs, psychiatric problems, and seizures. Cerebellar ataxia can affect virtually any body part causing movement abnormalities. Gait, truncal, and limb ataxia are often the most obvious cerebellar findings though nystagmus, saccadic abnormalities, and dysarthria are usually associated. To date, 21 subtypes have been identified: SCA1-SCA4, SCA8, SCA10, SCA12-SCA14, SCA15/16, SCA17-SCA23, SCA25, SCA27, SCA28 and dentatorubral pallidoluysian atrophy (DRPLA). Type I ADCA can be further divided based on the proposed pathogenetic mechanism into 3 subclasses: subclass 1 includes type I ADCA caused by CAG repeat expansions such as SCA1-SCA3, SCA17, and DRPLA, subclass 2 includes trinucleotide repeat expansions that fall outside of the protein-coding regions of the disease gene including SCA8, SCA10 and SCA12. Subclass 3 contains disorders caused by specific gene deletions, missense mutation, and nonsense mutation and includes SCA13, SCA14, SCA15/16, SCA27 and SCA28. Diagnosis is based on clinical history, physical examination, genetic molecular testing, and exclusion of other diseases. Differential diagnosis is broad and includes secondary ataxias caused by drug or toxic effects, nutritional deficiencies, endocrinopathies, infections and post-infection states, structural abnormalities, paraneoplastic conditions and certain neurodegenerative disorders. Given the autosomal dominant pattern of inheritance, genetic counseling is essential and best performed in specialized genetic clinics. There are currently no known effective treatments to modify disease progression. Care is therefore supportive. Occupational and physical therapy for gait dysfunction and speech therapy for dysarthria is essential. Prognosis is variable depending on the type of ADCA and even among kindreds.
Collapse
|
47
|
Reetz K, Kleiman A, Klein C, Lencer R, Zuehlke C, Brockmann K, Rolfs A, Binkofski F. CAG repeats determine brain atrophy in spinocerebellar ataxia 17: a VBM study. PLoS One 2011; 6:e15125. [PMID: 21311576 PMCID: PMC3023761 DOI: 10.1371/journal.pone.0015125] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 10/22/2010] [Indexed: 11/18/2022] Open
Abstract
Background Abnormal repeat length has been associated with an earlier age of onset and more severe disease progression in the rare neurodegenerative disorder spinocerebellar ataxia 17 (SCA17). Methodology/Principal Findings To determine whether specific structural brain degeneration and rate of disease progression in SCA17 might be associated with the CAG repeat size, observer-independent voxel-based morphometry was applied to high-resolution magnetic resonance images of 16 patients with SCA17 and 16 age-matched healthy controls. The main finding contrasting SCA17 patients with healthy controls demonstrated atrophy in the cerebellum bilaterally. Multiple regression analyses with available genetic data and also post-hoc correlations revealed an inverse relationship again with cerebellar atrophy. Moreover, we found an inverse relationship between the CAG repeat length and rate of disease progression. Conclusions Our results highlight the fundamental role of the cerebellum in this neurodegenerative disease and support the genotype-phenotype relationship in SCA17 patients. Genetic factors may determine individual susceptibility to neurodegeneration and rate of disease progression.
Collapse
Affiliation(s)
- Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine, Research Center Jülich GmbH, Jülich, Germany
- Jülich-Aachen Research Alliance (JARA) Translational Brain Medicine, Aachen, Germany
| | - Alexandra Kleiman
- Department of Neurology, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine, Research Center Jülich GmbH, Jülich, Germany
- Jülich-Aachen Research Alliance (JARA) Translational Brain Medicine, Aachen, Germany
| | - Christine Klein
- Department of Neurology, University of Luebeck, Luebeck, Germany
- Schilling Section of Clinical and Molecular Neurogenetics, University of Luebeck, Luebeck, Germany
| | - Rebekka Lencer
- Department of Psychiatry and Psychotherapy, University of Luebeck, Luebeck, Germany
| | - Christine Zuehlke
- Institute of Human Genetics, University of Luebeck, Luebeck, Germany
| | - Kathrin Brockmann
- Medical Faculty, Albrecht-Kossel Institute for Neuroregeneration, University of Rostock, Rostock, Germany
| | - Arndt Rolfs
- Medical Faculty, Albrecht-Kossel Institute for Neuroregeneration, University of Rostock, Rostock, Germany
| | - Ferdinand Binkofski
- Division for Cognitive Neurology, RWTH Aachen University, Aachen, Germany
- * E-mail:
| |
Collapse
|
48
|
Abstract
The spinocerebellar ataxias (SCA) are a large group of inherited disorders affecting the cerebellum and its afferent and efferent pathways. Their hallmark symptom is slowly progressive, symmetrical, midline, and appendicular ataxia. Some may also have associated hyperkinetic movements (chorea, dystonia, myoclonus, postural/action tremor, restless legs, rubral tremor, tics), which may aid in differential diagnosis and provide treatable targets to improve performance and quality of life in these progressive, incurable conditions. The typical dominant ataxias with associated hyperkinetic movements are SCA1-3, 6-8, 12, 14, 15, 17, 19-21, and 27. The common recessive ataxias with associated hyperkinetic movements are ataxia telangiectasia and Friedreich's ataxia. Fragile X tremor-ataxia syndrome (FXTAS) and multiple-system atrophy (a sporadic ataxia which is felt to have a genetic substrate) also have hyperkinetic features. A careful work-up should be done in all apparently sporadic cases, to rule out acquired causes of ataxia, some of which can cause hyperkinetic movements in addition to ataxia. Some testing should be done even in individuals with a confirmed genetic cause, as the presence of a secondary factor (nutritional deficiency, thyroid dysfunction) can contribute to the phenotype.
Collapse
Affiliation(s)
- Susan L Perlman
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
49
|
Abstract
Historically basic neuroscience research has made several important contributions to the cell biology of the nucleus, in particular the elucidation of nuclear structures and compartments. As research progressed towards elucidating the mechanism of neurological disease at the cellular and molecular levels, it is now providing insight into the importance and basis of coordination of nuclear pathways within the nucleus and with other cellular compartments. Ataxias, lethal neurodegenerative diseases that are distinguished by a progressive loss of motor coordination, stem from disruption of nuclear function.
Collapse
Affiliation(s)
- Harry T Orr
- Institute of Translational Neuroscience, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
50
|
Krogias C, Postert T, Eyding J. Transcranial Sonography in Ataxia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2010; 90:217-35. [DOI: 10.1016/s0074-7742(10)90016-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|