1
|
Chung S, Bacon T, Rath JF, Alivar A, Coelho S, Amorapanth P, Fieremans E, Novikov DS, Flanagan SR, Bacon JH, Lui YW. Callosal Interhemispheric Communication in Mild Traumatic Brain Injury: A Mediation Analysis on WM Microstructure Effects. AJNR Am J Neuroradiol 2024; 45:788-794. [PMID: 38637026 PMCID: PMC11288603 DOI: 10.3174/ajnr.a8213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/27/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND AND PURPOSE Because the corpus callosum connects the left and right hemispheres and a variety of WM bundles across the brain in complex ways, damage to the neighboring WM microstructure may specifically disrupt interhemispheric communication through the corpus callosum following mild traumatic brain injury. Here we use a mediation framework to investigate how callosal interhemispheric communication is affected by WM microstructure in mild traumatic brain injury. MATERIALS AND METHODS Multishell diffusion MR imaging was performed on 23 patients with mild traumatic brain injury within 1 month of injury and 17 healthy controls, deriving 11 diffusion metrics, including DTI, diffusional kurtosis imaging, and compartment-specific standard model parameters. Interhemispheric processing speed was assessed using the interhemispheric speed of processing task (IHSPT) by measuring the latency between word presentation to the 2 hemivisual fields and oral word articulation. Mediation analysis was performed to assess the indirect effect of neighboring WM microstructures on the relationship between the corpus callosum and IHSPT performance. In addition, we conducted a univariate correlation analysis to investigate the direct association between callosal microstructures and IHSPT performance as well as a multivariate regression analysis to jointly evaluate both callosal and neighboring WM microstructures in association with IHSPT scores for each group. RESULTS Several significant mediators in the relationships between callosal microstructure and IHSPT performance were found in healthy controls. However, patients with mild traumatic brain injury appeared to lose such normal associations when microstructural changes occurred compared with healthy controls. CONCLUSIONS This study investigates the effects of neighboring WM microstructure on callosal interhemispheric communication in healthy controls and patients with mild traumatic brain injury, highlighting that neighboring noncallosal WM microstructures are involved in callosal interhemispheric communication and information transfer. Further longitudinal studies may provide insight into the temporal dynamics of interhemispheric recovery following mild traumatic brain injury.
Collapse
Affiliation(s)
- Sohae Chung
- From the Department of Radiology (S. Chung, A.A., S. Coelho, E.F., D.S.N., Y.W.L.), Center for Advanced Imaging Innovation and Research, NY University Grossman School of Medicine, New York, New York
- Department of Radiology (S. Chung, A.A., S. Coehlo, E.F., D.S.N., Y.W.L.), Bernard and Irene Schwartz Center for Biomedical Imaging, NY University Grossman School of Medicine, New York, New York
| | - Tamar Bacon
- Department of Neurology (T.B., J.H.B.), NY University Grossman School of Medicine, New York, New York
| | - Joseph F Rath
- Department of Rehabilitation Medicine (J.F.R., P.A., S.R.F.), New York University Grossman School of Medicine, New York, New York
| | - Alaleh Alivar
- From the Department of Radiology (S. Chung, A.A., S. Coelho, E.F., D.S.N., Y.W.L.), Center for Advanced Imaging Innovation and Research, NY University Grossman School of Medicine, New York, New York
- Department of Radiology (S. Chung, A.A., S. Coehlo, E.F., D.S.N., Y.W.L.), Bernard and Irene Schwartz Center for Biomedical Imaging, NY University Grossman School of Medicine, New York, New York
| | - Santiago Coelho
- From the Department of Radiology (S. Chung, A.A., S. Coelho, E.F., D.S.N., Y.W.L.), Center for Advanced Imaging Innovation and Research, NY University Grossman School of Medicine, New York, New York
- Department of Radiology (S. Chung, A.A., S. Coehlo, E.F., D.S.N., Y.W.L.), Bernard and Irene Schwartz Center for Biomedical Imaging, NY University Grossman School of Medicine, New York, New York
| | - Prin Amorapanth
- Department of Rehabilitation Medicine (J.F.R., P.A., S.R.F.), New York University Grossman School of Medicine, New York, New York
| | - Els Fieremans
- From the Department of Radiology (S. Chung, A.A., S. Coelho, E.F., D.S.N., Y.W.L.), Center for Advanced Imaging Innovation and Research, NY University Grossman School of Medicine, New York, New York
- Department of Radiology (S. Chung, A.A., S. Coehlo, E.F., D.S.N., Y.W.L.), Bernard and Irene Schwartz Center for Biomedical Imaging, NY University Grossman School of Medicine, New York, New York
| | - Dmitry S Novikov
- From the Department of Radiology (S. Chung, A.A., S. Coelho, E.F., D.S.N., Y.W.L.), Center for Advanced Imaging Innovation and Research, NY University Grossman School of Medicine, New York, New York
- Department of Radiology (S. Chung, A.A., S. Coehlo, E.F., D.S.N., Y.W.L.), Bernard and Irene Schwartz Center for Biomedical Imaging, NY University Grossman School of Medicine, New York, New York
| | - Steven R Flanagan
- Department of Rehabilitation Medicine (J.F.R., P.A., S.R.F.), New York University Grossman School of Medicine, New York, New York
| | - Joshua H Bacon
- Department of Neurology (T.B., J.H.B.), NY University Grossman School of Medicine, New York, New York
| | - Yvonne W Lui
- From the Department of Radiology (S. Chung, A.A., S. Coelho, E.F., D.S.N., Y.W.L.), Center for Advanced Imaging Innovation and Research, NY University Grossman School of Medicine, New York, New York
- Department of Radiology (S. Chung, A.A., S. Coehlo, E.F., D.S.N., Y.W.L.), Bernard and Irene Schwartz Center for Biomedical Imaging, NY University Grossman School of Medicine, New York, New York
| |
Collapse
|
2
|
Zhou F, Wu L, Qian L, Kuang H, Zhan J, Li J, Cheung GL, Ding A, Gong H. The Relationship Between Cortical Morphological and Functional Topological Properties and Clinical Manifestations in Patients with Posttraumatic Diffuse Axonal Injury: An Individual Brain Network Study. Brain Topogr 2023; 36:936-945. [PMID: 37615797 DOI: 10.1007/s10548-023-00964-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/15/2023] [Indexed: 08/25/2023]
Abstract
To evaluate the altered network topological properties and their clinical relevance in patients with posttraumatic diffuse axonal injury (DAI). Forty-seven participants were recruited in this study, underwent 3D T1-weighted and resting-state functional MRI, and had single-subject morphological brain networks (MBNs) constructed by Kullback-Leibler divergence and functional brain networks (FBNs) constructed by Pearson correlation measurement interregional similarity. The global and regional properties were analyzed and compared using graph theory and network-based statistics (NBS), and the relationship with clinical manifestations was assessed. Compared with those of the healthy subjects, MBNs of patients with DAI showed a higher path length ([Formula: see text]: P = 0.021, [Formula: see text]: P = 0.011), lower clustering ([Formula: see text]: P = 0.002) and less small-worldness ([Formula: see text]: P = 0.002), but there was no significant difference in the global properties of FBNs (P: 0.161-0.216). For nodal properties of MBNs and FBNs, several regions showed significant differences between patients with DAI and healthy controls (HCs) (P < 0.05, FDR corrected). NBS analysis revealed that MBNs have more altered morphological connections in the frontal parietal control network and interhemispheric connections (P < 0.05). DAI-related global or nodal properties of MBNs were correlated with physical disability or dyscognition (P < 0.05/7, with Bonferroni correction), and the alteration of functional topology properties mediates this relationship. Our results suggested that disrupted morphological topology properties, which are mediated by FBNs and correlated with clinical manifestations of DAI, play a critical role in the short-term and medium-term phases after trauma.
Collapse
Affiliation(s)
- Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
- Neuroimaging Laboratory, Jiangxi Medical Imaging Research Institute, Nanchang, 330006, China
| | - Lin Wu
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
- Neuroimaging Laboratory, Jiangxi Medical Imaging Research Institute, Nanchang, 330006, China
| | - Long Qian
- Department of Biomedical Engineering, College of Engineering, Peking University, No.60 Yannan Yuan, Beijing, 100871, China
| | - Hongmei Kuang
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
- Neuroimaging Laboratory, Jiangxi Medical Imaging Research Institute, Nanchang, 330006, China
| | - Jie Zhan
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
- Neuroimaging Laboratory, Jiangxi Medical Imaging Research Institute, Nanchang, 330006, China
| | - Jian Li
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
- Neuroimaging Laboratory, Jiangxi Medical Imaging Research Institute, Nanchang, 330006, China
| | - Gerald L Cheung
- Spin Imaging Technology Co., Ltd, No.6 Fengxin Road, Nanjing, 210012, China
| | - Aimin Ding
- Department of Radiology, The First People's Hospital of Fuzhou and The Fifth Affiliated Hospital, Nanchang University, Fuzhou, 344000, China.
| | - Honghan Gong
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China.
- Neuroimaging Laboratory, Jiangxi Medical Imaging Research Institute, Nanchang, 330006, China.
| |
Collapse
|
3
|
Vedaei F, Mashhadi N, Zabrecky G, Monti D, Navarreto E, Hriso C, Wintering N, Newberg AB, Mohamed FB. Identification of chronic mild traumatic brain injury using resting state functional MRI and machine learning techniques. Front Neurosci 2023; 16:1099560. [PMID: 36699521 PMCID: PMC9869678 DOI: 10.3389/fnins.2022.1099560] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Mild traumatic brain injury (mTBI) is a major public health concern that can result in a broad spectrum of short-term and long-term symptoms. Recently, machine learning (ML) algorithms have been used in neuroscience research for diagnostics and prognostic assessment of brain disorders. The present study aimed to develop an automatic classifier to distinguish patients suffering from chronic mTBI from healthy controls (HCs) utilizing multilevel metrics of resting-state functional magnetic resonance imaging (rs-fMRI). Sixty mTBI patients and forty HCs were enrolled and allocated to training and testing datasets with a ratio of 80:20. Several rs-fMRI metrics including fractional amplitude of low-frequency fluctuation (fALFF), regional homogeneity (ReHo), degree centrality (DC), voxel-mirrored homotopic connectivity (VMHC), functional connectivity strength (FCS), and seed-based FC were generated from two main analytical categories: local measures and network measures. Statistical two-sample t-test was employed comparing between mTBI and HCs groups. Then, for each rs-fMRI metric the features were selected extracting the mean values from the clusters showing significant differences. Finally, the support vector machine (SVM) models based on separate and multilevel metrics were built and the performance of the classifiers were assessed using five-fold cross-validation and via the area under the receiver operating characteristic curve (AUC). Feature importance was estimated using Shapley additive explanation (SHAP) values. Among local measures, the range of AUC was 86.67-100% and the optimal SVM model was obtained based on combined multilevel rs-fMRI metrics and DC as a separate model with AUC of 100%. Among network measures, the range of AUC was 80.42-93.33% and the optimal SVM model was obtained based on the combined multilevel seed-based FC metrics. The SHAP analysis revealed the DC value in the left postcentral and seed-based FC value between the motor ventral network and right superior temporal as the most important local and network features with the greatest contribution to the classification models. Our findings demonstrated that different rs-fMRI metrics can provide complementary information for classifying patients suffering from chronic mTBI. Moreover, we showed that ML approach is a promising tool for detecting patients with mTBI and might serve as potential imaging biomarker to identify patients at individual level. Clinical trial registration [clinicaltrials.gov], identifier [NCT03241732].
Collapse
Affiliation(s)
- Faezeh Vedaei
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Najmeh Mashhadi
- Department of Computer Science and Engineering, University of California Santa Cruz, Santa Cruz, CA, United States
| | - George Zabrecky
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Daniel Monti
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Emily Navarreto
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Chloe Hriso
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Nancy Wintering
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Andrew B. Newberg
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Feroze B. Mohamed
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
4
|
Dodd WS, Panther EJ, Pierre K, Hernandez JS, Patel D, Lucke-Wold B. Traumatic Brain Injury and Secondary Neurodegenerative Disease. TRAUMA CARE 2022; 2:510-522. [PMID: 36211982 PMCID: PMC9541088 DOI: 10.3390/traumacare2040042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023] Open
Abstract
Traumatic brain injury (TBI) is a devastating event with severe long-term complications. TBI and its sequelae are one of the leading causes of death and disability in those under 50 years old. The full extent of secondary brain injury is still being intensely investigated; however, it is now clear that neurotrauma can incite chronic neurodegenerative processes. Chronic traumatic encephalopathy, Parkinson's disease, and many other neurodegenerative syndromes have all been associated with a history of traumatic brain injury. The complex nature of these pathologies can make clinical assessment, diagnosis, and treatment challenging. The goal of this review is to provide a concise appraisal of the literature with focus on emerging strategies to improve clinical outcomes. First, we review the pathways involved in the pathogenesis of neurotrauma-related neurodegeneration and discuss the clinical implications of this rapidly evolving field. Next, because clinical evaluation and neuroimaging are essential to the diagnosis and management of neurodegenerative diseases, we analyze the clinical investigations that are transforming these areas of research. Finally, we briefly review some of the preclinical therapies that have shown the most promise in improving outcomes after neurotrauma.
Collapse
Affiliation(s)
- William S. Dodd
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Eric J. Panther
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Kevin Pierre
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jairo S. Hernandez
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Devan Patel
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
5
|
McDonald MA, Tayebi M, McGeown JP, Kwon EE, Holdsworth SJ, Danesh‐Meyer HV. A window into eye movement dysfunction following mTBI: A scoping review of magnetic resonance imaging and eye tracking findings. Brain Behav 2022; 12:e2714. [PMID: 35861623 PMCID: PMC9392543 DOI: 10.1002/brb3.2714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/11/2022] [Accepted: 05/23/2022] [Indexed: 12/01/2022] Open
Abstract
Mild traumatic brain injury (mTBI), commonly known as concussion, is a complex neurobehavioral phenomenon affecting six in 1000 people globally each year. Symptoms last between days and years as microstructural damage to axons and neurometabolic changes result in brain network disruption. There is no clinically available objective biomarker to diagnose the severity of injury or monitor recovery. However, emerging evidence suggests eye movement dysfunction (e.g., saccades and smooth pursuits) in patients with mTBI. Patients with a higher symptom burden and prolonged recovery time following injury may show higher degrees of eye movement dysfunction. Likewise, recent advances in magnetic resonance imaging (MRI) have revealed both white matter tract damage and functional network alterations in mTBI patients, which involve areas responsible for the ocular motor control. This scoping review is presented in three sections: Section 1 explores the anatomical control of eye movements to aid the reader with interpreting the discussion in subsequent sections. Section 2 examines the relationship between abnormal MRI findings and eye tracking after mTBI based on the available evidence. Finally, Section 3 communicates gaps in our knowledge about MRI and eye tracking, which should be addressed in order to substantiate this emerging field.
Collapse
Affiliation(s)
- Matthew A. McDonald
- Department of OphthalmologyUniversity of AucklandAucklandNew Zealand
- Mātai Medical Research InstituteGisborneNew Zealand
| | - Maryam Tayebi
- Department of OphthalmologyUniversity of AucklandAucklandNew Zealand
- Auckland Bioengineering InstituteUniversity of AucklandAucklandNew Zealand
| | - Joshua P. McGeown
- Mātai Medical Research InstituteGisborneNew Zealand
- Auckland University of Technology Traumatic Brain Injury NetworkAucklandNew Zealand
| | - Eryn E. Kwon
- Department of OphthalmologyUniversity of AucklandAucklandNew Zealand
- Mātai Medical Research InstituteGisborneNew Zealand
- Auckland Bioengineering InstituteUniversity of AucklandAucklandNew Zealand
| | - Samantha J Holdsworth
- Department of OphthalmologyUniversity of AucklandAucklandNew Zealand
- Mātai Medical Research InstituteGisborneNew Zealand
- Department of Anatomy and Medical ImagingUniversity of AucklandAucklandNew Zealand
| | - Helen V Danesh‐Meyer
- Department of OphthalmologyUniversity of AucklandAucklandNew Zealand
- Eye InstituteAucklandNew Zealand
| |
Collapse
|
6
|
Frankowski JC, Tierno A, Pavani S, Cao Q, Lyon DC, Hunt RF. Brain-wide reconstruction of inhibitory circuits after traumatic brain injury. Nat Commun 2022; 13:3417. [PMID: 35701434 PMCID: PMC9197933 DOI: 10.1038/s41467-022-31072-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/31/2022] [Indexed: 11/09/2022] Open
Abstract
Despite the fundamental importance of understanding the brain's wiring diagram, our knowledge of how neuronal connectivity is rewired by traumatic brain injury remains remarkably incomplete. Here we use cellular resolution whole-brain imaging to generate brain-wide maps of the input to inhibitory neurons in a mouse model of traumatic brain injury. We find that somatostatin interneurons are converted into hyperconnected hubs in multiple brain regions, with rich local network connections but diminished long-range inputs, even at areas not directly damaged. The loss of long-range input does not correlate with cell loss in distant brain regions. Interneurons transplanted into the injury site receive orthotopic local and long-range input, suggesting the machinery for establishing distant connections remains intact even after a severe injury. Our results uncover a potential strategy to sustain and optimize inhibition after traumatic brain injury that involves spatial reorganization of the direct inputs to inhibitory neurons across the brain.
Collapse
Affiliation(s)
- Jan C Frankowski
- Department of Anatomy & Neurobiology, University of California, Irvine, CA, 92697, USA
| | - Alexa Tierno
- Department of Anatomy & Neurobiology, University of California, Irvine, CA, 92697, USA.
| | - Shreya Pavani
- Department of Anatomy & Neurobiology, University of California, Irvine, CA, 92697, USA
| | - Quincy Cao
- Department of Anatomy & Neurobiology, University of California, Irvine, CA, 92697, USA
| | - David C Lyon
- Department of Anatomy & Neurobiology, University of California, Irvine, CA, 92697, USA
| | - Robert F Hunt
- Department of Anatomy & Neurobiology, University of California, Irvine, CA, 92697, USA. .,Epilepsy Research Center, University of California, Irvine, CA, 92697, USA. .,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, 92697, USA. .,Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, 92697, USA. .,Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
7
|
Vedaei F, Newberg AB, Alizadeh M, Muller J, Shahrampour S, Middleton D, Zabrecky G, Wintering N, Bazzan AJ, Monti DA, Mohamed FB. Resting-State Functional MRI Metrics in Patients With Chronic Mild Traumatic Brain Injury and Their Association With Clinical Cognitive Performance. Front Hum Neurosci 2022; 15:768485. [PMID: 35027887 PMCID: PMC8751629 DOI: 10.3389/fnhum.2021.768485] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/29/2021] [Indexed: 12/27/2022] Open
Abstract
Mild traumatic brain injury (mTBI) accounts for more than 80% of people experiencing brain injuries. Symptoms of mTBI include short-term and long-term adverse clinical outcomes. In this study, resting-state functional magnetic resonance imaging (rs-fMRI) was conducted to measure voxel-based indices including fractional amplitude of low-frequency fluctuation (fALFF), regional homogeneity (ReHo), and functional connectivity (FC) in patients suffering from chronic mTBI; 64 patients with chronic mTBI at least 3 months post injury and 40 healthy controls underwent rs-fMRI scanning. Partial correlation analysis controlling for age and gender was performed within mTBI cohort to explore the association between rs-fMRI metrics and neuropsychological scores. Compared with controls, chronic mTBI patients showed increased fALFF in the left middle occipital cortex (MOC), right middle temporal cortex (MTC), and right angular gyrus (AG), and increased ReHo in the left MOC and left posterior cingulate cortex (PCC). Enhanced FC was observed from left MOC to right precuneus; from right MTC to right superior temporal cortex (STC), right supramarginal, and left inferior parietal cortex (IPC); and from the seed located at right AG to left precuneus, left superior medial frontal cortex (SMFC), left MTC, left superior temporal cortex (STC), and left MOC. Furthermore, the correlation analysis revealed a significant correlation between neuropsychological scores and fALFF, ReHo, and seed-based FC measured from the regions with significant group differences. Our results demonstrated that alterations of low-frequency oscillations in chronic mTBI could be representative of disruption in emotional circuits, cognitive performance, and recovery in this cohort.
Collapse
Affiliation(s)
- Faezeh Vedaei
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Andrew B Newberg
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States.,Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Mahdi Alizadeh
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jennifer Muller
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Shiva Shahrampour
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Devon Middleton
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - George Zabrecky
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Nancy Wintering
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Anthony J Bazzan
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Daniel A Monti
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Feroze B Mohamed
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
8
|
Huang S, Shen Q, Watts LT, Long JA, O'Boyle M, Nguyen T, Muir E, Duong TQ. Resting-State Functional Magnetic Resonance Imaging of Interhemispheric Functional Connectivity in Experimental Traumatic Brain Injury. Neurotrauma Rep 2021; 2:526-540. [PMID: 34901946 PMCID: PMC8655818 DOI: 10.1089/neur.2021.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although resting-state functional magnetic resonance imaging (rsfMRI) has the potential to offer insights into changes in functional connectivity networks after traumatic brain injury (TBI), there are few studies that examine the effects of moderate TBI for monitoring functional recovery in experimental TBI, and thus the neural correlates of brain recovery from moderate TBI remain incompletely understood. Non-invasive rsfMRI was used to longitudinally investigate changes in interhemispheric functional connectivity (IFC) after a moderate TBI to the unilateral sensorimotor cortex in rats (n = 9) up to 14 days. Independent component analysis of the rsfMRI data was performed. Correlations of rsfMRI sensorimotor networks were made with changes in behavioral scores, lesion volume, and T2- and diffusion-weighted images across time. TBI animals showed less localized rsfMRI patterns in the sensorimotor network compared to sham (n = 6) and normal (n = 5) animals. rsfMRI clusters in the sensorimotor network showed less bilateral symmetry compared to sham and normal animals, indicative of IFC disruption. With time after injury, many of the rsfMRI patterns in the sensorimotor network showed more bilateral symmetry, indicative of IFC recovery. The disrupted IFC in the sensorimotor and subsequent partial recovery showed a positive correlation with changes in behavioral scores. Overall, rsfMRI detected widespread disruption and subsequent recovery of IFC within the sensorimotor networks post-TBI, which correlated with behavioral changes. Therefore, rsfMRI offers the means to probe functional brain reorganization and thus has the potential to serve as an imaging marker to longitudinally stage TBI and monitor for novel treatments.
Collapse
Affiliation(s)
- Shiliang Huang
- Research Imaging Institute, UT Health San Antonio, San Antonio, Texas, USA
| | - Qiang Shen
- Research Imaging Institute, UT Health San Antonio, San Antonio, Texas, USA.,Department of Radiology, UT Health San Antonio, San Antonio, Texas, USA
| | - Lora Talley Watts
- Department of Clinical and Applied Science Education, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, Texas, USA
| | - Justin A Long
- Research Imaging Institute, UT Health San Antonio, San Antonio, Texas, USA
| | - Michael O'Boyle
- Research Imaging Institute, UT Health San Antonio, San Antonio, Texas, USA
| | - Tony Nguyen
- Department of Radiology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York, New York, USA
| | - Eric Muir
- Department of Radiology, Stony Brook Medicine, Stony Brook, New York, USA
| | - Timothy Q Duong
- Department of Radiology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York, New York, USA
| |
Collapse
|
9
|
Zhang J, Chang Y, Ding S. Disrupted hypothalamic functional connectivity related to cognitive impairment after diffuse axonal injury. Medicine (Baltimore) 2021; 100:e27805. [PMID: 35049180 PMCID: PMC9191382 DOI: 10.1097/md.0000000000027805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 10/27/2021] [Indexed: 11/26/2022] Open
Abstract
This study aims to investigate whether there is imaging evidence of disrupted hypothalamic functional connectivity (FC) in patients with diffuse axonal injury (DAI) and relationships with cognitive impairment.Resting-state functional magnetic resonance imaging (fMRI) data were acquired from acute patients with diagnosed DAI (n = 30) and healthy controls (HC) (n = 30). We first assessed hypothalamic FC with seed-based analysis. Furthermore, the lateral and medial hypothalamic seed was selected to show distinct functional connectivity in DAI. In addition, partial correlation was used to measure the clinical associations with the altered hypothalamic FC in DAI patients.Compared with HC, DAI group showed significantly increased hypothalamic FC with superior temporal gyrus, and the regions around the operculum. Furthermore, there was a significant negative correlation between the connectivity coefficient of hypothalamus to right and left superior temporal gyrus and the disability rating scale scores in DAI group. When the seed regions were divided into lateral and medial hypothalamus, except for increased connectivity of medial hypothalamus (P < .01 with correction), we more observed that decreased left lateral hypothalamic connectivity was positively correlated with mini-mental state examination (MMSE) scores.Our results suggest that there are alterations of hypothalamic FC in DAI and offer further understanding of clinical symptoms including related cognitive impairment.
Collapse
|
10
|
Im S, Lee J, Kim S. Preliminary Comparison of Subcortical Structures in Elderly Subclinical Depression: Structural Analysis with 3T MRI. Exp Neurobiol 2021; 30:183-202. [PMID: 33972469 PMCID: PMC8118753 DOI: 10.5607/en20056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/19/2021] [Accepted: 02/17/2021] [Indexed: 01/23/2023] Open
Abstract
Depression in the elderly population has shown increased likelihood of neurological disorders due to structural changes in the subcortical area. However, further investigation into depression related subcortical changes is needed due to mismatches in structural analysis results between studies as well as scarcities in research regarding subcortical connectivity patterns of subclinical depression populations. This study aims to investigate structural differences in subcortical regions of aged participants with subclinical depression using 3Tesla MRI. In structural analysis, volumes of each subcortical region were measured to observe the volumetric difference and asymmetry between groups, but no significant difference was found. In addition, fractional anisotropy (FA) and apparent diffusion coefficient (ADC) did not show any significant differences between groups. Structural analysis using probabilistic tractography indicated that the connection strength between left nucleus accumbens-right hippocampus, and right thalamus-right caudate was higher in the control group than the subclinical depression group. The differences in subcortical connection strength of subclinical depression groups, have shown to correlate with emotional and cognitive disorders, such as anxiety and memory impairment. We believe that the analysis of structural differences and cross-regional network measures in subcortical structures can help identify neurophysiological changes occurring in subclinical depression.
Collapse
Affiliation(s)
- SangJin Im
- Lee Gil Ya Cancer & Diabetes Institute, Gachon University, Incheon 21999, Korea
| | - Jeonghwan Lee
- Department of Psychiatry, Chungbuk National University College of Medicine, Cheongju 28644, Korea
| | - Siekyeong Kim
- Department of Psychiatry, Chungbuk National University College of Medicine, Cheongju 28644, Korea
| |
Collapse
|
11
|
Zhou F, Zhan J, Gong T, Xu W, Kuang H, Li J, Wang Y, Gong H. Characterizing Static and Dynamic Fractional Amplitude of Low-Frequency Fluctuation and its Prediction of Clinical Dysfunction in Patients with Diffuse Axonal Injury. Acad Radiol 2021; 28:e63-e70. [PMID: 32204986 DOI: 10.1016/j.acra.2020.02.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/27/2020] [Accepted: 02/13/2020] [Indexed: 12/24/2022]
Abstract
RATIONALE AND OBJECTIVES Recently, advanced magnetic resonance imaging has been widely adopted to investigate altered structure and functional activities in patients with diffuse axonal injury (DAI), this patient presumed to be caused by shearing forces and results in significant neurological effects. However, little is known regarding cerebral temporal dynamics and its predictive ability in the clinical dysfunction of DAI. MATERIALS AND METHODS In this study, static and dynamic fractional amplitude of low-frequency fluctuation (fALFF), an improved approach to detect the intensity of intrinsic neural activities, and their temporal variability were applied to examine the alteration between DAI patients (n = 24) and healthy controls (n = 26) at the voxel level. Then, the altered functional index was used to explore the clinical relationship and predict dysfunction in DAI patients. RESULTS We discovered that, compared to healthy controls, DAI patients showed commonly altered regions of static fALFF, and its variability was mainly located in the left cerebellum posterior lobe. Furthermore, decreased static fALFF values over the left cerebellum posterior lobe and bilateral medial frontal gyrus showed significant correlations with disease duration and Mini-Mental State Examination scores. More important, the increased temporal variability of dynamic fALFF in the left caudate could predict the severity of the Glasgow Coma Scale score in DAI patients. CONCLUSION Overall, these results suggested selective abnormalities in intrinsic neural activities with reduced intensity and increased variability, and this novel predictive marker may be developed as a useful indicator for future connectomics or artificial intelligence analyses.
Collapse
Affiliation(s)
- Fuqing Zhou
- Department of Radiology, The People's Hospital of Yichun City, Yichun, 336000, People's Republic of China; Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, 330006, People's Republic of China; Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, People's Republic of China.
| | - Jie Zhan
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, 330006, People's Republic of China; Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, People's Republic of China
| | - Tao Gong
- Department of Radiology, The People's Hospital of Yichun City, Yichun, 336000, People's Republic of China
| | - Wenhua Xu
- Department of Orthopedics & Traumatology, The People's Hospital of Yichun City, Yichun, People's Republic of China
| | - Hongmei Kuang
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, 330006, People's Republic of China; Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, People's Republic of China
| | - Jian Li
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, 330006, People's Republic of China; Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, People's Republic of China
| | - Yinhua Wang
- Department of Radiology, The People's Hospital of Yichun City, Yichun, 336000, People's Republic of China
| | - Honghan Gong
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, 330006, People's Republic of China; Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, People's Republic of China
| |
Collapse
|
12
|
Puig J, Ellis MJ, Kornelsen J, Figley TD, Figley CR, Daunis-i-Estadella P, Mutch WAC, Essig M. Magnetic Resonance Imaging Biomarkers of Brain Connectivity in Predicting Outcome after Mild Traumatic Brain Injury: A Systematic Review. J Neurotrauma 2020; 37:1761-1776. [PMID: 32228145 DOI: 10.1089/neu.2019.6623] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Josep Puig
- Department of Radiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Radiology (IDI), Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr. Josep Trueta, Girona, Spain
| | - Michael J. Ellis
- Canada North Concussion Network, Winnipeg, Manitoba, Canada
- Department of Surgery and Pediatrics and Child Health, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Section of Neurosurgery, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Pan Am Concussion Program, Winnipeg, Manitoba, Canada
- Childrens Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Jennifer Kornelsen
- Department of Radiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Center, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Teresa D. Figley
- Department of Radiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Center, Winnipeg, Manitoba, Canada
| | - Chase R. Figley
- Department of Radiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Center, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Pepus Daunis-i-Estadella
- Department of Computer Science, Applied Mathematics and Statistics, Universitat de Girona, Girona, Spain
| | - W. Alan C. Mutch
- Canada North Concussion Network, Winnipeg, Manitoba, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Center, Winnipeg, Manitoba, Canada
- Department of Anesthesiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Marco Essig
- Department of Radiology, Perioperative and Pain Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Canada North Concussion Network, Winnipeg, Manitoba, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Center, Winnipeg, Manitoba, Canada
| |
Collapse
|
13
|
D'Souza MM, Kumar M, Choudhary A, Kaur P, Kumar P, Rana P, Trivedi R, Sekhri T, Singh AK. Alterations of connectivity patterns in functional brain networks in patients with mild traumatic brain injury: A longitudinal resting-state functional magnetic resonance imaging study. Neuroradiol J 2020; 33:186-197. [PMID: 31992126 DOI: 10.1177/1971400920901706] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIM In the present study, we aimed to characterise changes in functional brain networks in individuals who had sustained uncomplicated mild traumatic brain injury (mTBI). We assessed the progression of these changes into the chronic phase. We also attempted to explore how these changes influenced the severity of post-concussion symptoms as well as the cognitive profile of the patients. METHODS A total of 65 patients were prospectively recruited for an advanced magnetic resonance imaging (MRI) scan within 7 days of sustaining mTBI. Of these, 25 were reassessed at 6 months post injury. Differences in functional brain networks were analysed between cases and age- and sex-matched healthy controls using independent component analysis of resting-state functional MRI. RESULTS Our study revealed reduced functional connectivity in multiple networks, including the anterior default mode network, central executive network, somato-motor and auditory network in patients who had sustained mTBI. A negative correlation between network connectivity and severity of post-concussive symptoms was observed. Follow-up studies performed 6 months after injury revealed an increase in network connectivity, along with an improvement in the severity of post-concussion symptoms. Neurocognitive tests performed at this time point revealed a positive correlation between the functional connectivity and the test scores, along with a persistence of negative correlation between network connectivity and post-concussive symptom severity. CONCLUSION Our results suggest that uncomplicated mTBI is associated with specific abnormalities in functional brain networks that evolve over time and may contribute to the severity of post-concussive symptoms and cognitive deficits.
Collapse
Affiliation(s)
| | - Mukesh Kumar
- Institute of Nuclear Medicine and Allied Sciences, India
| | | | - Prabhjot Kaur
- Institute of Nuclear Medicine and Allied Sciences, India
| | - Pawan Kumar
- Institute of Nuclear Medicine and Allied Sciences, India
| | - Poonam Rana
- Institute of Nuclear Medicine and Allied Sciences, India
| | - Richa Trivedi
- Institute of Nuclear Medicine and Allied Sciences, India
| | - Tarun Sekhri
- Institute of Nuclear Medicine and Allied Sciences, India
| | | |
Collapse
|
14
|
Morrison TR, Kulkarni P, Cai X, Iriah S, Aggarwal D, Lu SF, Simon NG, Madularu D, Ferris CF. Treating head injury using a novel vasopressin 1a receptor antagonist. Neurosci Lett 2019; 714:134565. [PMID: 31639422 DOI: 10.1016/j.neulet.2019.134565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/14/2019] [Indexed: 01/10/2023]
Abstract
Arginine vasopressin (AVP) is a chemical signal in the brain that influences cerebral vascular resistance and brain water permeability. Increases in AVP contribute to the pathophysiology of brain edema following traumatic brain injury (TBI). These effects are mediated through AVP V1a receptors that are expressed in cortical and subcortical brain areas. This exploratory study characterizes the effects of a novel, V1a receptor antagonist, AVN576, on behavioral and magnetic resonance imaging (MRI) measures after severe TBI. Male Sprague Dawley rats were impacted twice producing contusions in the forebrain, putative cerebral edema, and cognitive deficits. Rats were treated with AVN576 after initial impact for 5 days and then tested for changes in cognition. MRI was used to assess brain injury, enlargement of the ventricles, and resting state functional connectivity. Vehicle treated rats had significant deficits in learning and memory, enlarged ventricular volumes, and hypoconnectivity in hippocampal circuitry. AVN576 treatment eliminated the enlargement of the lateral ventricles and deficits in cognitive function while increasing connectivity in hippocampal circuitry. These data corroborate the extensive literature that drugs selectively targeting the AVP V1a receptor could be used to treat TBI in the clinic.
Collapse
Affiliation(s)
- Thomas R Morrison
- Northeastern University, Center for Translational NeuroImaging, Boston, MA, United States
| | - Praveen Kulkarni
- Northeastern University, Center for Translational NeuroImaging, Boston, MA, United States
| | - Xuezhu Cai
- Northeastern University, Center for Translational NeuroImaging, Boston, MA, United States
| | - Sade Iriah
- Northeastern University, Center for Translational NeuroImaging, Boston, MA, United States
| | - Dipak Aggarwal
- Northeastern University, Center for Translational NeuroImaging, Boston, MA, United States
| | - Shi-Fang Lu
- Azevan Pharmaceuticals, Bethlehem, PA, United States; Dept. of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| | - Neal G Simon
- Azevan Pharmaceuticals, Bethlehem, PA, United States; Dept. of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| | - Dan Madularu
- Northeastern University, Center for Translational NeuroImaging, Boston, MA, United States
| | - Craig F Ferris
- Northeastern University, Center for Translational NeuroImaging, Boston, MA, United States; Dept of Psychology and Pharmaceutical Sciences, Boston, MA, United States.
| |
Collapse
|
15
|
Loane C, Argyropoulos GPD, Roca-Fernández A, Lage C, Sheerin F, Ahmed S, Zamboni G, Mackay C, Irani SR, Butler CR. Hippocampal network abnormalities explain amnesia after VGKCC-Ab related autoimmune limbic encephalitis. J Neurol Neurosurg Psychiatry 2019; 90:965-974. [PMID: 31072956 PMCID: PMC6820158 DOI: 10.1136/jnnp-2018-320168] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/01/2019] [Accepted: 03/10/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Limbic encephalitis associated with antibodies to components of the voltage-gated potassium channel complex (VGKCC-Ab-LE) often leads to hippocampal atrophy and persistent memory impairment. Its long-term impact on regions beyond the hippocampus, and the relationship between brain damage and cognitive outcome, are poorly understood. We investigated the nature of structural and functional brain abnormalities following VGKCC-Ab-LE and its role in residual memory impairment. METHOD A cross-sectional group study was conducted. Twenty-four VGKCC-Ab-LE patients (20 male, 4 female; mean (SD) age 63.86 (11.31) years) were recruited post-acutely along with age- and sex-matched healthy controls for neuropsychological assessment, structural MRI and resting-state functional MRI (rs-fMRI). Structural abnormalities were determined using volumetry and voxel-based morphometry; rs-fMRI data were analysed to investigate hippocampal functional connectivity (FC). Associations of memory performance with neuroimaging measures were examined. RESULTS Patients showed selective memory impairment. Structural analyses revealed focal hippocampal atrophy within the medial temporal lobes, correlative atrophy in the mediodorsal thalamus, and additional volume reduction in the posteromedial cortex. There was no association between regional volumes and memory performance. Instead, patients demonstrated reduced posteromedial cortico-hippocampal and inter-hippocampal FC, which correlated with memory scores (r = 0.553; r = 0.582, respectively). The latter declined as a function of time since the acute illness (r = -0.531). CONCLUSION VGKCC-Ab-LE results in persistent isolated memory impairment. Patients have hippocampal atrophy with further reduced mediodorsal thalamic and posteromedial cortical volumes. Crucially, reduced FC of remaining hippocampal tissue correlates more closely with memory function than does regional atrophy.
Collapse
Affiliation(s)
- Clare Loane
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Institute of Cognitive Neuroscience, University College London Medical School, London, UK
| | | | | | - Carmen Lage
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Unidad de Deterioro Cognitivo, Servicio de Neurología, Hospital Universitario Marques de Valdecilla, Santander, Spain
| | - Fintan Sheerin
- Department of Neuroradiology, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Samrah Ahmed
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Giovanna Zamboni
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Clare Mackay
- Oxford Centre for Human Brain Activity, University of Oxford, Oxford, UK
| | - Sarosh R Irani
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | |
Collapse
|
16
|
Argyropoulos GPD, Loane C, Roca-Fernandez A, Lage-Martinez C, Gurau O, Irani SR, Butler CR. Network-wide abnormalities explain memory variability in hippocampal amnesia. eLife 2019; 8:e46156. [PMID: 31282861 PMCID: PMC6639076 DOI: 10.7554/elife.46156] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 07/05/2019] [Indexed: 01/11/2023] Open
Abstract
Patients with hippocampal amnesia play a central role in memory neuroscience but the neural underpinnings of amnesia are hotly debated. We hypothesized that focal hippocampal damage is associated with changes across the extended hippocampal system and that these, rather than hippocampal atrophy per se, would explain variability in memory between patients. We assessed this hypothesis in a uniquely large cohort of patients (n = 38) after autoimmune limbic encephalitis, a syndrome associated with focal structural hippocampal pathology. These patients showed impaired recall, recognition and maintenance of new information, and remote autobiographical amnesia. Besides hippocampal atrophy, we observed correlatively reduced thalamic and entorhinal cortical volume, resting-state inter-hippocampal connectivity and activity in posteromedial cortex. Associations of hippocampal volume with recall, recognition, and remote memory were fully mediated by wider network abnormalities, and were only direct in forgetting. Network abnormalities may explain the variability across studies of amnesia and speak to debates in memory neuroscience.
Collapse
Affiliation(s)
- Georgios PD Argyropoulos
- Memory Research Group, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| | - Clare Loane
- Memory Research Group, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUnited Kingdom
| | - Adriana Roca-Fernandez
- Memory Research Group, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| | - Carmen Lage-Martinez
- Memory Research Group, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
- Valdecilla Biomedical Research InstituteUniversity Hospital Marqués de ValdecillaSantanderSpain
| | - Oana Gurau
- Memory Research Group, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| | - Sarosh R Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| | - Christopher R Butler
- Memory Research Group, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
17
|
Molteni E, Pagani E, Strazzer S, Arrigoni F, Beretta E, Boffa G, Galbiati S, Filippi M, Rocca MA. Fronto-temporal vulnerability to disconnection in paediatric moderate and severe traumatic brain injury. Eur J Neurol 2019; 26:1183-1190. [PMID: 30964589 DOI: 10.1111/ene.13963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/03/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND In patients with moderate and severe paediatric traumatic brain injury (TBI), we investigated the presence and severity of white matter (WM) tract damage, cortical lobar and deep grey matter (GM) atrophies, their interplay and their correlation with outcome rating scales. METHODS Diffusion tensor (DT) and 3D T1-weighted MRI scans were obtained from 22 TBI children (13 boys; mean age at insult = 11.6 years; 72.7% in chronic condition) and 31 age-matched healthy children. Patients were tested with outcome rating scales and the Wechsler Intelligence Scale for Children (WISC). DT MRI indices were obtained from several supra- and infra-tentorial WM tracts. Cortical lobar and deep GM volumes were derived. Comparisons between patients and controls, and between patients in acute (<6 months from the event) vs. chronic (≥6 months) condition were performed. RESULTS Patients showed a widespread pattern of decreased WM FA and GM atrophy. Compared to acute, chronic patients showed severer atrophy in the right frontal lobe and reduced FA in the left inferior longitudinal fasciculus and corpus callosum (CC). Decreased axial diffusivity was observed in acute patients versus controls in the inferior fronto-occipital fasciculus and CC. Chronic patients showed increased axial diffusivity in the same structures. Uncinate fasciculus DT MRI abnormalities correlated with atrophy in the frontal and temporal lobes. Hippocampal atrophy correlated with reduced WISC scores, whereas putamen atrophy correlated with lower functional independence measure scores. CONCLUSIONS The study isolated a distributed fronto-temporal network of structures particularly vulnerable to axonal damage and atrophy that may contribute to cognitive deficits following TBI.
Collapse
Affiliation(s)
- E Molteni
- Acquired Brain Injury Unit, Scientific Institute IRCCS Eugenio Medea, Lecco, Italy
| | - E Pagani
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - S Strazzer
- Acquired Brain Injury Unit, Scientific Institute IRCCS Eugenio Medea, Lecco, Italy
| | - F Arrigoni
- Acquired Brain Injury Unit, Scientific Institute IRCCS Eugenio Medea, Lecco, Italy
| | - E Beretta
- Acquired Brain Injury Unit, Scientific Institute IRCCS Eugenio Medea, Lecco, Italy
| | - G Boffa
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - S Galbiati
- Acquired Brain Injury Unit, Scientific Institute IRCCS Eugenio Medea, Lecco, Italy
| | - M Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - M A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
18
|
Thalamic atrophy and dysfunction in patients with mild-to-moderate traumatic diffuse axonal injury: a short-term and mid-term MRI study. Neuroreport 2019; 29:1282-1287. [PMID: 30080741 PMCID: PMC6143221 DOI: 10.1097/wnr.0000000000001106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Disrupted white matter structure has been established in patients with diffuse axonal injury (DAI), but morphological changes in gray matter and local intrinsic activity in the short and midterm (before 6 months) have not been documented in DAI patients. We hypothesized that regionally selective atrophy observed in deep gray matter in the short-term and mid-term periods in patients with mild-to-moderate DAI, local atrophy, and/or dysfunction would be related to clinical characteristics. We evaluated the changes in regional density and synchronization in 18 DAI patients separately using Diffeomorphic Anatomical Registration through Exponentiated Lie algebra-enhanced voxel-based morphometry and regional homogeneity (ReHo). Compared with the controls, DAI patients showed a decreased density in the bilateral thalami and decreased ReHo values in the ventral anterior and ventral lateral nuclei of the bilateral thalami. Pearson's correlation analysis showed that decreased density in the bilateral thalami was correlated negatively with time since injury and decreased ReHo values in the ventral anterior and ventral lateral nuclei of the bilateral thalami were associated with a worsened motor assessment scale. These findings suggest that mild-to-moderate traumatic DAI within the short and midterm could lead to thalamic atrophy and that dysfunction in the bilateral thalami is associated with declining motor function. This study could potentially provide complementary evidence as an important element in longitudinal studies.
Collapse
|
19
|
Sours C, Kinnison J, Padmala S, Gullapalli RP, Pessoa L. Altered segregation between task-positive and task-negative regions in mild traumatic brain injury. Brain Imaging Behav 2019; 12:697-709. [PMID: 28456880 DOI: 10.1007/s11682-017-9724-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Changes in large-scale brain networks that accompany mild traumatic brain injury (mTBI) were investigated using functional magnetic resonance imaging (fMRI) during the N-back working memory task at two cognitive loads (1-back and 2-back). Thirty mTBI patients were examined during the chronic stage of injury and compared to 28 control participants. Demographics and behavioral performance were matched across groups. Due to the diffuse nature of injury, we hypothesized that there would be an imbalance in the communication between task-positive and Default Mode Network (DMN) regions in the context of effortful task execution. Specifically, a graph-theoretic measure of modularity was used to quantify the extent to which groups of brain regions tended to segregate into task-positive and DMN sub-networks. Relative to controls, mTBI patients showed reduced segregation between the DMN and task-positive networks, but increased functional connectivity within the DMN regions during the more cognitively demanding 2-back task. Together, our findings reveal that patients exhibit alterations in the communication between and within neural networks during a cognitively demanding task. These findings reveal altered processes that persist through the chronic stage of injury, highlighting the need for longitudinal research to map the neural recovery of mTBI patients.
Collapse
Affiliation(s)
- Chandler Sours
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 22 South Greene Street, Baltimore, MD, 21201, USA.
| | - Joshua Kinnison
- Department of Psychology, University of Maryland, College Park, MD, 20742, USA
| | - Srikanth Padmala
- Department of Psychology, University of Maryland, College Park, MD, 20742, USA
| | - Rao P Gullapalli
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 22 South Greene Street, Baltimore, MD, 21201, USA
| | - Luiz Pessoa
- Department of Psychology, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
20
|
Neuroanatomical and functional alterations of insula in mild traumatic brain injury patients at the acute stage. Brain Imaging Behav 2019; 14:907-916. [PMID: 30734204 DOI: 10.1007/s11682-019-00053-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cognitive impairment is a major cause of disability and decline in quality of life in mild traumatic brain injury (mTBI) survivors, but the underlying pathophysiology is still poorly understood. The insula has extensive connections to other cortex and is believed to responsible for integrating external and internal processes and controlling cognitive functions. To explore this hypothesis, we investigated early alterations in the gray matter volume (GMV) and brain functional connectivity (FC) of insula in mTBI patients within 7 days after injury and any possible correlations with cognitive function. A total of 58 mTBI patients at the acute stage and 32 matched healthy controls were recruited and underwentT1-weighted magnetic resonance imaging (MRI)andresting-state functional MRI scans within 7 days of injury. FC was characterized using seed-based region of interest analysis method. The patients' cognitive function was evaluated with Montreal Cognitive Assessment (MoCA) score. The resulting of GMV and FC of insula were correlated with cognitive alterations. We found that the GMV was significantly reduced only in the right insula in mTBI patients and no significant GMV increase was observed in either hemisphere. mTBI patients demonstrated decreased FC in the right parahippocampal gyrus and increased FC in the right supramargianl gyrus. In addition, compared to the healthy controls, the mTBI patients in the acute stage presented a decline in the visuospatial/executive (p = 0.013) and attention (p = 0.038) subcategories. In the mTBI group, the changes in GMV in the right insula were positively correlated with poor attention performance (r = 0.316, p = 0.016). Our data demonstrated alterations of the GMV and resting-stateFC of the right insula in mTBI patients at the acute stage. These early changes in GMV and resting-state FC perhaps serve as a potential biomarker for improving the understanding of cognitive decline for mTBI in the acute setting.
Collapse
|
21
|
Konstantinou N, Pettemeridou E, Stamatakis EA, Seimenis I, Constantinidou F. Altered Resting Functional Connectivity Is Related to Cognitive Outcome in Males With Moderate-Severe Traumatic Brain Injury. Front Neurol 2019; 9:1163. [PMID: 30687219 PMCID: PMC6335280 DOI: 10.3389/fneur.2018.01163] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/17/2018] [Indexed: 12/30/2022] Open
Abstract
TBI results in significant cognitive impairments and in altered brain functional connectivity. However, no studies explored so far, the relationship between global functional connectivity and cognitive outcome in chronic moderate-severe TBI. This proof of principle study employed the intrinsic connectivity contrast, an objective voxel-based metric of global functional connectivity, in a small sample of chronic moderate-severe TBI participants and a group of healthy controls matched on gender (males), age, and education. Cognitive tests assessing executive functions, verbal memory, visual memory, attention/organization, and cognitive reserve were administered. Group differences in terms of global functional connectivity maps were assessed and the association between performance on the cognitive measures and global functional connectivity was examined. Next, we investigated the spatial extent of functional connectivity in the brain regions found to be associated with cognitive performance, using traditional seed-based analyses. Global functional connectivity of the TBI group was altered, compared to the controls. Moreover, the strength of global functional connectivity in affected brain areas was associated with cognitive outcome. These findings indicate that impaired global functional connectivity is a significant consequence of TBI suggesting that cognitive impairments following TBI may be partly attributed to altered functional connectivity between brain areas involved in the specific cognitive functions.
Collapse
Affiliation(s)
- Nikos Konstantinou
- Department of Rehabilitation Sciences, Cyprus University of Technology, Limassol, Cyprus
| | - Eva Pettemeridou
- Center for Applied Neuroscience, University of Cyprus, Nicosia, Cyprus.,Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | | | - Ioannis Seimenis
- Medical Physics Laboratory, Medical School, Democritus University of Thrace, Alexandroupoli, Greece
| | - Fofi Constantinidou
- Center for Applied Neuroscience, University of Cyprus, Nicosia, Cyprus.,Department of Psychology, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
22
|
Li L, Dai H, Ke J, Shi C, Jiang N, Yang CM. Resting-State Functional MRI Study: Connection Strength of Brain Networks in DR Patients. Neuropsychiatr Dis Treat 2019; 15:3359-3366. [PMID: 31824159 PMCID: PMC6901117 DOI: 10.2147/ndt.s227468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/18/2019] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To explore the functional connection strength (FCS) changes of brain networks in diabetic retinopathy (DR) patients and uncover the underlying mechanism. METHODS AND MATERIALS Twenty-one patients with DR and 21 age- and sex-matched healthy controls were enrolled from August 2012 to September 2014. Subjects were scanned using 3T MR with blood-oxygen-level dependent (BOLD) and 3-dimension fast spoiled gradient echo (3D-FSPGR) sequences. MR data was analyzed via preprocessing and functional network construction. After a group comparison, components of brain networks with significant group differences were extracted and the FCS of the brain network was evaluated. The brain areas were compared between patients and controls. P-values less than 0.05 were considered statistically significant. Connection strength was evaluated with alphasim, P<0.01. RESULTS The component maps of altered brain networks with quantified FCS were obtained in DR patients, demonstrating more disconnections mainly in the bilateral Heschl's gyrus, left cuneus, left occipital lobe, bilateral amygdala, left parahippocampal, bilateral fusiform, and left superior parietal in the patients group compared to the healthy controls (P<0.01), while compensations may occur in the frontal-cingulum region, as well as among the right caudate, left thalamus, left inferior temporal lobe, and middle orbital frontal lobe. CONCLUSION Brain network connections, decreased in the brain areas of which in charging with cognition and visual function, suggests that DR patients might have cognitive decline and visual function loss. However, there might be a frontal compensatory circle in patients with DR.
Collapse
Affiliation(s)
- Lan Li
- Department of Endocrinology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 215006, People's Republic of China
| | - Hui Dai
- Department of Radiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, People's Republic of China
| | - Jun Ke
- Department of Radiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, People's Republic of China
| | - Cen Shi
- Department of Radiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, People's Republic of China
| | - Nan Jiang
- Department of Radiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, People's Republic of China
| | - Chun-Mei Yang
- Department of Endocrinology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, People's Republic of China
| |
Collapse
|
23
|
Nolan A, Hennessy E, Krukowski K, Guglielmetti C, Chaumeil MM, Sohal VS, Rosi S. Repeated Mild Head Injury Leads to Wide-Ranging Deficits in Higher-Order Cognitive Functions Associated with the Prefrontal Cortex. J Neurotrauma 2018; 35:2425-2434. [PMID: 29732949 DOI: 10.1089/neu.2018.5731] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) has long been identified as a precipitating risk factor for higher-order cognitive deficits associated with the frontal and prefrontal cortices (PFC). In addition, mild repetitive TBI (rTBI), in particular, is being steadily recognized to increase the risk of neurodegenerative disease. Thus, further understanding of how mild rTBI changes the pathophysiology of the brain to lead to cognitive impairment is warranted. The current models of rTBI lack knowledge regarding chronic higher-order cognitive functions and the underlying neuronal physiology, especially functions involving the PFC. Here, we establish that five repeated mild hits, allowing rotational acceleration of the head, lead to chronic deficits in PFC-dependent functions such as social behavior, spatial working memory, and environmental response with concomitant microgliosis and a small decrease in the adaptation rate of layer V pyramidal neurons in the medial PFC (mPFC). However, structural damage is not seen on in vivo T2-weighted magnetic resonance imaging (MRI), and extensive intrinsic excitability changes in layer V pyramidal neurons of the mPFC are not observed. Thus, this rTBI animal model can recapitulate chronic higher-order cognitive impairments without structural damage on MR imaging as observed in humans.
Collapse
Affiliation(s)
- Amber Nolan
- 1 Brain and Spinal Injury Center, University of California , San Francisco, San Francisco, California.,2 Department of Physical Therapy and Rehabilitation Science, University of California , San Francisco, San Francisco, California.,3 Department of Anatomic Pathology, University of California , San Francisco, San Francisco, California
| | - Edel Hennessy
- 1 Brain and Spinal Injury Center, University of California , San Francisco, San Francisco, California.,2 Department of Physical Therapy and Rehabilitation Science, University of California , San Francisco, San Francisco, California
| | - Karen Krukowski
- 1 Brain and Spinal Injury Center, University of California , San Francisco, San Francisco, California.,2 Department of Physical Therapy and Rehabilitation Science, University of California , San Francisco, San Francisco, California
| | - Caroline Guglielmetti
- 2 Department of Physical Therapy and Rehabilitation Science, University of California , San Francisco, San Francisco, California.,4 Surbeck Laboratory of Advanced Imaging, Department of Radiology and Biomedical Imaging, University of California , San Francisco, San Francisco, California
| | - Myriam M Chaumeil
- 2 Department of Physical Therapy and Rehabilitation Science, University of California , San Francisco, San Francisco, California.,4 Surbeck Laboratory of Advanced Imaging, Department of Radiology and Biomedical Imaging, University of California , San Francisco, San Francisco, California
| | - Vikaas S Sohal
- 5 Department of Psychiatry, University of California , San Francisco, San Francisco, California
| | - Susanna Rosi
- 1 Brain and Spinal Injury Center, University of California , San Francisco, San Francisco, California.,2 Department of Physical Therapy and Rehabilitation Science, University of California , San Francisco, San Francisco, California.,6 Department of Neurological Surgery, University of California , San Francisco, San Francisco, California.,7 Weill Institute for Neuroscience, University of California , San Francisco, San Francisco, California.,8 Kavli Institute of Fundamental Neuroscience, University of California , San Francisco, San Francisco, California
| |
Collapse
|
24
|
Vascak M, Jin X, Jacobs KM, Povlishock JT. Mild Traumatic Brain Injury Induces Structural and Functional Disconnection of Local Neocortical Inhibitory Networks via Parvalbumin Interneuron Diffuse Axonal Injury. Cereb Cortex 2018; 28:1625-1644. [PMID: 28334184 PMCID: PMC5907353 DOI: 10.1093/cercor/bhx058] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/20/2017] [Indexed: 12/18/2022] Open
Abstract
Diffuse axonal injury (DAI) plays a major role in cortical network dysfunction posited to cause excitatory/inhibitory imbalance after mild traumatic brain injury (mTBI). Current thought holds that white matter (WM) is uniquely vulnerable to DAI. However, clinically diagnosed mTBI is not always associated with WM DAI. This suggests an undetected neocortical pathophysiology, implicating GABAergic interneurons. To evaluate this possibility, we used mild central fluid percussion injury to generate DAI in mice with Cre-driven tdTomato labeling of parvalbumin (PV) interneurons. We followed tdTomato+ profiles using confocal and electron microscopy, together with patch-clamp analysis to probe for DAI-mediated neocortical GABAergic interneuron disruption. Within 3 h post-mTBI tdTomato+ perisomatic axonal injury (PSAI) was found across somatosensory layers 2-6. The DAI marker amyloid precursor protein colocalized with GAD67 immunoreactivity within tdTomato+ PSAI, representing the majority of GABAergic interneuron DAI. At 24 h post-mTBI, we used phospho-c-Jun, a surrogate DAI marker, for retrograde assessments of sustaining somas. Via this approach, we estimated DAI occurs in ~9% of total tdTomato+ interneurons, representing ~14% of pan-neuronal DAI. Patch-clamp recordings of tdTomato+ interneurons revealed decreased inhibitory transmission. Overall, these data show that PV interneuron DAI is a consistent and significant feature of experimental mTBI with important implications for cortical network dysfunction.
Collapse
Affiliation(s)
- Michal Vascak
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, PO Box 980709, Richmond, VA 23298-0709, USA
| | - Xiaotao Jin
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, PO Box 980709, Richmond, VA 23298-0709, USA
| | - Kimberle M Jacobs
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, PO Box 980709, Richmond, VA 23298-0709, USA
| | - John T Povlishock
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, PO Box 980709, Richmond, VA 23298-0709, USA
| |
Collapse
|
25
|
Structural imaging of mild traumatic brain injury may not be enough: overview of functional and metabolic imaging of mild traumatic brain injury. Brain Imaging Behav 2018; 11:591-610. [PMID: 28194558 DOI: 10.1007/s11682-017-9684-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A majority of patients with traumatic brain injury (TBI) present as mild injury with no findings on conventional clinical imaging methods. Due to this difficulty of imaging assessment on mild TBI patients, there has been much emphasis on the development of diffusion imaging modalities such as diffusion tensor imaging (DTI). However, basic science research in TBI shows that many of the functional and metabolic abnormalities in TBI may be present even in the absence of structural damage. Moreover, structural damage may be present at a microscopic and molecular level that is not detectable by structural imaging modality. The use of functional and metabolic imaging modalities can provide information on pathological changes in mild TBI patients that may not be detected by structural imaging. Although there are various differences in protocols of positron emission tomography (PET), single photon emission computed tomography (SPECT), functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and magnetoencephalography (MEG) methods, these may be important modalities to be used in conjunction with structural imaging in the future in order to detect and understand the pathophysiology of mild TBI. In this review, studies of mild TBI patients using these modalities that detect functional and metabolic state of the brain are discussed. Each modality's advantages and disadvantages are compared, and potential future applications of using combined modalities are explored.
Collapse
|
26
|
Brain Photobiomodulation Therapy: a Narrative Review. Mol Neurobiol 2018; 55:6601-6636. [PMID: 29327206 DOI: 10.1007/s12035-017-0852-4] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/19/2017] [Indexed: 12/20/2022]
Abstract
Brain photobiomodulation (PBM) therapy using red to near-infrared (NIR) light is an innovative treatment for a wide range of neurological and psychological conditions. Red/NIR light is able to stimulate complex IV of the mitochondrial respiratory chain (cytochrome c oxidase) and increase ATP synthesis. Moreover, light absorption by ion channels results in release of Ca2+ and leads to activation of transcription factors and gene expression. Brain PBM therapy enhances the metabolic capacity of neurons and stimulates anti-inflammatory, anti-apoptotic, and antioxidant responses, as well as neurogenesis and synaptogenesis. Its therapeutic role in disorders such as dementia and Parkinson's disease, as well as to treat stroke, brain trauma, and depression has gained increasing interest. In the transcranial PBM approach, delivering a sufficient dose to achieve optimal stimulation is challenging due to exponential attenuation of light penetration in tissue. Alternative approaches such as intracranial and intranasal light delivery methods have been suggested to overcome this limitation. This article reviews the state-of-the-art preclinical and clinical evidence regarding the efficacy of brain PBM therapy.
Collapse
|
27
|
Lin JJ, Rugg MD, Das S, Stein J, Rizzuto DS, Kahana MJ, Lega BC. Theta band power increases in the posterior hippocampus predict successful episodic memory encoding in humans. Hippocampus 2017; 27:1040-1053. [PMID: 28608960 DOI: 10.1002/hipo.22751] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/07/2017] [Accepted: 06/08/2017] [Indexed: 12/23/2022]
Abstract
Functional differences in the anterior and posterior hippocampus during episodic memory processing have not been examined in human electrophysiological data. This is in spite of strong evidence for such differences in rodent data, including greater place cell specificity in the dorsal hippocampus, greater sensitivity to the aversive or motivational content of memories in ventral regions, connectivity analyses identifying preferential ventral hippocampal connections with the amygdala, and gene expression analyses identifying a dorsal-ventral gradient. We asked if memory-related oscillatory patterns observed in human hippocampal recordings, including the gamma band and slow-theta (2.5-5 Hz) subsequent memory effects, would exhibit differences along the longitudinal axis and between hemispheres. We took advantage of a new dataset of stereo electroencephalography patients with simultaneous, robotically targeted anterior, and posterior hippocampal electrodes to directly compare oscillatory subsequent memory effects during item encoding. This same data set allowed us to examine left-right connectivity and hemispheric differences in hippocampal oscillatory patterns. Our data suggest that a power increase during successful item encoding in the 2.5-5 Hz slow-theta frequency range preferentially occurs in the posterior hippocampus during the first 1,000 ms after item presentation, while a gamma band power increase is stronger in the dominant hemisphere. This dominant-nondominant pattern in the gamma range appears to reverse during item retrieval, however. Intrahippocampal phase coherence was found to be stronger during successful item encoding. Our phase coherence data are also consistent with existing reports of a traveling wave for theta oscillations propagating along the septotemporal (longitudinal) axis of the human hippocampus. We examine how our findings fit with theories of functional specialization along the hippocampal axis.
Collapse
Affiliation(s)
- Jui-Jui Lin
- Department of Neurological Surgery, University of Texas, Southwestern Medical Center, Dallas, Texas, 75390
| | - Michael D Rugg
- Center for Vital Longevity, University of Texas at Dallas, Dallas, Texas, 75390
| | - Sandhitsu Das
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Joel Stein
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Daniel S Rizzuto
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Bradley C Lega
- Department of Neurological Surgery, University of Texas, Southwestern Medical Center, Dallas, Texas, 75390
| |
Collapse
|
28
|
Roy A, Bernier RA, Wang J, Benson M, French JJ, Good DC, Hillary FG. The evolution of cost-efficiency in neural networks during recovery from traumatic brain injury. PLoS One 2017; 12:e0170541. [PMID: 28422992 PMCID: PMC5396850 DOI: 10.1371/journal.pone.0170541] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/06/2017] [Indexed: 02/08/2023] Open
Abstract
A somewhat perplexing finding in the systems neuroscience has been the observation that physical injury to neural systems may result in enhanced functional connectivity (i.e., hyperconnectivity) relative to the typical network response. The consequences of local or global enhancement of functional connectivity remain uncertain and this is particularly true for the overall metabolic cost of the network. We examine the hyperconnectivity hypothesis in a sample of 14 individuals with TBI with data collected at approximately 3, 6, and 12 months following moderate and severe TBI. As anticipated, individuals with TBI showed increased network strength and cost early after injury, but by one-year post injury hyperconnectivity was more circumscribed to frontal DMN and temporal-parietal attentional control regions. Cost in these subregions was a significant predictor of cognitive performance. Cost-efficiency analysis in the Power 264 data parcellation suggested that at 6 months post injury the network requires higher cost connections to achieve high efficiency as compared to the network 12 months post injury. These results demonstrate that networks self-organize to re-establish connectivity while balancing cost-efficiency trade-offs.
Collapse
Affiliation(s)
- Arnab Roy
- Department of Psychology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Rachel A. Bernier
- Department of Psychology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jianli Wang
- Department of Radiology, Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Monica Benson
- Department of Psychology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jerry J. French
- Department of Psychology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - David C. Good
- Department of Neurology, Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Frank G. Hillary
- Department of Psychology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Neurology, Hershey Medical Center, Hershey, Pennsylvania, United States of America
- Social, Life and Engineering Sciences Imaging Center, University Park, Pennsylvania, United States of America
| |
Collapse
|
29
|
Krishna G, Agrawal R, Zhuang Y, Ying Z, Paydar A, Harris NG, Royes LFF, Gomez-Pinilla F. 7,8-Dihydroxyflavone facilitates the action exercise to restore plasticity and functionality: Implications for early brain trauma recovery. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1204-1213. [PMID: 28315455 DOI: 10.1016/j.bbadis.2017.03.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/08/2017] [Accepted: 03/13/2017] [Indexed: 12/12/2022]
Abstract
Metabolic dysfunction accompanying traumatic brain injury (TBI) severely impairs the ability of injured neurons to comply with functional demands. This limits the success of rehabilitative strategies by compromising brain plasticity and function, and highlights the need for early interventions to promote energy homeostasis. We sought to examine whether the TrkB agonist, 7,8-dihydroxyflavone (7,8-DHF) normalizes brain energy deficits and reestablishes more normal patterns of functional connectivity, while enhancing the effects of exercise during post-TBI period. Moderate fluid percussion injury (FPI) was performed and 7,8-DHF (5mg/kg, i.p.) was administered in animals subjected to FPI that either had access to voluntary wheel running for 7days after injury or were sedentary. Compared to sham-injured controls, TBI resulted in reduced hippocampal activation of the BDNF receptor TrkB and associated CREB, reduced levels of plasticity markers GAP-43 and Syn I, as well as impaired memory as indicated by the Barnes maze task. While 7,8-DHF treatment and exercise individually mitigated TBI-induced effects, administration of 7,8-DHF concurrently with exercise facilitated memory performance and augmented levels of markers of cell energy metabolism viz., PGC-1α, COII and AMPK. In parallel to these findings, resting-state functional MRI (fMRI) acquired at 2weeks after injury showed that 7,8-DHF with exercise enhanced hippocampal functional connectivity, and suggests 7,8-DHF and exercise to promote increases in functional connectivity. Together, these findings indicate that post-injury 7,8-DHF treatment promotes enhanced levels of cell metabolism, synaptic plasticity in combination with exercise increases in brain circuit function that facilitates greater physical rehabilitation after TBI.
Collapse
Affiliation(s)
- Gokul Krishna
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA
| | - Rahul Agrawal
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA
| | - Yumei Zhuang
- Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, CA, USA
| | - Zhe Ying
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA
| | - Afshin Paydar
- Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, CA, USA
| | - Neil G Harris
- Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, CA, USA
| | - Luiz Fernando F Royes
- Exercise and Biochemistry Laboratory, Center of Physical Education and Sports (CEFD), Federal University of Santa Maria, Santa Maria, Brazil
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA; Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, CA, USA.
| |
Collapse
|
30
|
Shin SS, Pelled G. Novel Neuromodulation Techniques to Assess Interhemispheric Communication in Neural Injury and Neurodegenerative Diseases. Front Neural Circuits 2017; 11:15. [PMID: 28337129 PMCID: PMC5343068 DOI: 10.3389/fncir.2017.00015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 02/20/2017] [Indexed: 12/23/2022] Open
Abstract
Interhemispheric interaction has a major role in various neurobehavioral functions. Its disruption is a major contributor to the pathological changes in the setting of brain injury such as traumatic brain injury, peripheral nerve injury, and stroke, as well as neurodegenerative diseases. Because interhemispheric interaction has a crucial role in functional consequence in these neuropathological states, a review of noninvasive and state-of-the-art molecular based neuromodulation methods that focus on or have the potential to elucidate interhemispheric interaction have been performed. This yielded approximately 170 relevant articles on human subjects or animal models. There has been a recent surge of reports on noninvasive methods such as transcranial magnetic stimulation and transcranial direct current stimulation. Since these are noninvasive techniques with little to no side effects, their widespread use in clinical studies can be easily justified. The overview of novel neuromodulation methods and how they can be applied to study the role of interhemispheric communication in neural injury and neurodegenerative disease is provided. Additionally, the potential of each method in therapeutic use as well as investigating the pathophysiology of interhemispheric interaction in neurodegenerative diseases and brain injury is discussed. New technologies such as transcranial magnetic stimulation or transcranial direct current stimulation could have a great impact in understanding interhemispheric pathophysiology associated with acquired injury and neurodegenerative diseases, as well as designing improved rehabilitation therapies. Also, advances in molecular based neuromodulation techniques such as optogenetics and other chemical, thermal, and magnetic based methods provide new capabilities to stimulate or inhibit a specific brain location and a specific neuronal population.
Collapse
Affiliation(s)
- Samuel S Shin
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger InstituteBaltimore, MD, USA; Department of Radiology, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Galit Pelled
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger InstituteBaltimore, MD, USA; Department of Radiology, Johns Hopkins University School of MedicineBaltimore, MD, USA
| |
Collapse
|
31
|
Relationship between individual differences in functional connectivity and facial-emotion recognition abilities in adults with traumatic brain injury. NEUROIMAGE-CLINICAL 2016; 13:370-377. [PMID: 28123948 PMCID: PMC5222957 DOI: 10.1016/j.nicl.2016.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/14/2016] [Accepted: 12/10/2016] [Indexed: 12/15/2022]
Abstract
Although several studies have demonstrated that facial-affect recognition impairment is common following moderate-severe traumatic brain injury (TBI), and that there are diffuse alterations in large-scale functional brain networks in TBI populations, little is known about the relationship between the two. Here, in a sample of 26 participants with TBI and 20 healthy comparison participants (HC) we measured facial-affect recognition abilities and resting-state functional connectivity (rs-FC) using fMRI. We then used network-based statistics to examine (A) the presence of rs-FC differences between individuals with TBI and HC within the facial-affect processing network, and (B) the association between inter-individual differences in emotion recognition skills and rs-FC within the facial-affect processing network. We found that participants with TBI showed significantly lower rs-FC in a component comprising homotopic and within-hemisphere, anterior-posterior connections within the facial-affect processing network. In addition, within the TBI group, participants with higher emotion-labeling skills showed stronger rs-FC within a network comprised of intra- and inter-hemispheric bilateral connections. Findings indicate that the ability to successfully recognize facial-affect after TBI is related to rs-FC within components of facial-affective networks, and provide new evidence that further our understanding of the mechanisms underlying emotion recognition impairment in TBI. Emotion recognition deficits are common following severe TBI. TBI patients show reduced rs-FC within affect processing network. Affect processing network rs-FC correlates with emotion recognition skills. Rs-FC disruption as possible mechanism of emotion recognition deficit
Collapse
|
32
|
Naeser MA, Martin PI, Ho MD, Krengel MH, Bogdanova Y, Knight JA, Yee MK, Zafonte R, Frazier J, Hamblin MR, Koo BB. Transcranial, Red/Near-Infrared Light-Emitting Diode Therapy to Improve Cognition in Chronic Traumatic Brain Injury. Photomed Laser Surg 2016; 34:610-626. [DOI: 10.1089/pho.2015.4037] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Margaret A. Naeser
- VA Boston Healthcare System (12-A), Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Paula I. Martin
- VA Boston Healthcare System (12-A), Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Michael D. Ho
- VA Boston Healthcare System (12-A), Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Maxine H. Krengel
- VA Boston Healthcare System (12-A), Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Yelena Bogdanova
- VA Boston Healthcare System (12-A), Boston, Massachusetts
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts
| | - Jeffrey A. Knight
- VA Boston Healthcare System (12-A), Boston, Massachusetts
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts
- Behavioral Sciences Division, National Center for PTSD, VA Boston Healthcare System, Boston, Massachusetts
| | - Megan K. Yee
- VA Boston Healthcare System (12-A), Boston, Massachusetts
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Ross Zafonte
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts
- Spaulding Rehabilitation Hospital, Charlestown, Massachusetts
- Massachusetts General Hospital, Boston, Massachusetts
- Brigham and Women's Hospital, Boston, Massachusetts
| | - Judith Frazier
- TBI Research Program, Spaulding Rehabilitation Hospital, Charlestown, Massachusetts
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston Massachusetts
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts
| | - Bang-Bon Koo
- Boston University Center for Biomedical Imaging, Boston, Massachusetts
| |
Collapse
|
33
|
Haller CS, Bosma CM, Kapur K, Zafonte R, Langer EJ. Mindful creativity matters: trajectories of reported functioning after severe traumatic brain injury as a function of mindful creativity in patients’ relatives: a multilevel analysis. Qual Life Res 2016; 26:893-902. [DOI: 10.1007/s11136-016-1416-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2016] [Indexed: 10/21/2022]
|
34
|
Barch D, Pagliaccio D, Belden A, Harms MP, Gaffrey M, Sylvester C, Tillman R, Luby J. Effect of Hippocampal and Amygdala Connectivity on the Relationship Between Preschool Poverty and School-Age Depression. Am J Psychiatry 2016; 173:625-34. [PMID: 26771739 PMCID: PMC4932860 DOI: 10.1176/appi.ajp.2015.15081014] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE In this study, the authors tested the hypothesis that poverty experienced in early childhood, as measured by income-to-needs ratio, has an impact on functional brain connectivity at school age, which in turn mediates influences on child negative mood/depression. METHOD Participants were from a prospective longitudinal study of emotion development. Preschoolers 3-5 years of age were originally ascertained from primary care and day care sites in the St. Louis area and then underwent annual behavioral assessments for up to 12 years. Healthy preschoolers and those with a history of depression symptoms underwent neuroimaging at school age. Using functional MRI, the authors examined whole brain resting-state functional connectivity with the left and right hippocampus and amygdala. RESULTS Lower income-to-needs ratio at preschool age was associated with reduced connectivity between hippocampus and amygdala and a number of regions at school age, including the superior frontal cortex, lingual gyrus, posterior cingulate, and putamen. Lower income-to-needs ratio predicted greater negative mood/depression severity at school age, as did connectivity between the left hippocampus and the right superior frontal cortex and between the right amygdala and the right lingual gyrus. Connectivity mediated the relationship between income-to-needs ratio and negative mood/depression at the time of scanning. CONCLUSIONS These findings suggest that poverty in early childhood, as assessed by at least one measure, may influence the development of hippocampal and amygdala connectivity in a manner leading to negative mood symptoms during later childhood.
Collapse
Affiliation(s)
- Deanna Barch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110,Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110,Department of Psychology, Washington University in St. Louis, St. Louis, MO 63130,The Program in Neuroscience, Washington University in St. Louis, St. Louis, MO 63130,Deanna M. Barch, Ph.D., Washington University, Department of Psychology, Box 1125, One Brookings Drive, St. Louis, Mo. 63130, Phone: 314-935-8729, Fax: 314-935-8790,
| | - David Pagliaccio
- The Program in Neuroscience, Washington University in St. Louis, St. Louis, MO 63130
| | - Andy Belden
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael P. Harms
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael Gaffrey
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Chad Sylvester
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Rebecca Tillman
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Joan Luby
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110,Deanna M. Barch, Ph.D., Washington University, Department of Psychology, Box 1125, One Brookings Drive, St. Louis, Mo. 63130, Phone: 314-935-8729, Fax: 314-935-8790,
| |
Collapse
|
35
|
Rigon A, Duff MC, McAuley E, Kramer AF, Voss MW. Is Traumatic Brain Injury Associated with Reduced Inter-Hemispheric Functional Connectivity? A Study of Large-Scale Resting State Networks following Traumatic Brain Injury. J Neurotrauma 2016; 33:977-89. [PMID: 25719433 DOI: 10.1089/neu.2014.3847] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Traumatic brain injury (TBI) often has long-term debilitating sequelae in cognitive and behavioral domains. Understanding how TBI impacts functional integrity of brain networks that underlie these domains is key to guiding future approaches to TBI rehabilitation. In the current study, we investigated the differences in inter-hemispheric functional connectivity (FC) of resting state networks (RSNs) between chronic mild-to-severe TBI patients and normal comparisons (NC), focusing on two externally oriented networks (i.e., the fronto-parietal network [FPN] and the executive control network [ECN]), one internally oriented network (i.e., the default mode network [DMN]), and one somato-motor network (SMN). Seed voxel correlation analysis revealed that TBI patients displayed significantly less FC between lateralized seeds and both homologous and non-homologous regions in the opposite hemisphere for externally oriented networks but not for DMN or SMN; conversely, TBI patients showed increased FC within regions of the DMN, especially precuneus and parahippocampal gyrus. Region of interest correlation analyses confirmed the presence of significantly higher inter-hemispheric FC in NC for the FPN (p < 0.01), and ECN (p < 0.05), but not for the DMN (p > 0.05) or SMN (p > 0.05). Further analysis revealed that performance on a neuropsychological test measuring organizational skills and visuo-spatial abilities administered to the TBI group, the Rey-Osterrieth Complex Figure Test, positively correlated with FC between the right FPN and homologous regions. Our findings suggest that distinct RSNs display specific patterns of aberrant FC following TBI; this represents a step forward in the search for biomarkers useful for early diagnosis and treatment of TBI-related cognitive impairment.
Collapse
Affiliation(s)
- Arianna Rigon
- 1 Neuroscience Graduate Program, University of Iowa , Iowa City, Iowa
| | - Melissa C Duff
- 1 Neuroscience Graduate Program, University of Iowa , Iowa City, Iowa.,2 Department of Communication Sciences and Disorders, University of Iowa , Iowa City, Iowa.,3 Department of Neurology, University of Iowa , Iowa City, Iowa
| | - Edward McAuley
- 5 The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Illinois.,6 Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign , Illinois
| | - Arthur F Kramer
- 5 The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Illinois
| | - Michelle W Voss
- 1 Neuroscience Graduate Program, University of Iowa , Iowa City, Iowa.,4 Department of Psychological and Brain Sciences, University of Iowa , Iowa City, Iowa
| |
Collapse
|
36
|
Li J, Gao L, Xie K, Zhan J, Luo X, Wang H, Zhang H, Zhao J, Zhou F, Zeng X, He L, He Y, Gong H. Detection of Functional Homotopy in Traumatic Axonal Injury. Eur Radiol 2016; 27:325-335. [PMID: 27048533 DOI: 10.1007/s00330-016-4302-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 02/01/2016] [Accepted: 02/23/2016] [Indexed: 12/01/2022]
Abstract
OBJECTIVE This study aimed to explore the interhemispheric intrinsic connectivity in traumatic axonal injury (TAI) patients. METHODS Twenty-one patients with TAI (14 males, seven females; mean age, 38.71 ± 15.25 years) and 22 well-matched healthy controls (16 males, six females; mean age, 38.50 ± 13.82 years) were recruited, and from them we obtained resting-state fMRI data. Interhemispheric coordination was examined using voxel-mirrored homotopic connectivity (VMHC) and seed-based functional connectivity analysis was performed. RESULTS We observed significantly decreased VMHC in a number of regions in TAI patients, including the prefrontal, temporal, occipital, parietal, and posterior cingulate cortices, thalami and cerebellar posterior lobes. Subsequent seed-based functional connectivity analysis revealed widely disrupted functional connectivity between the regions of local homotopic connectivity deficits and other areas of the brain, particularly the areas subserving the default, salience, integrative, and executive systems. The lower VMHC of the inferior frontal gyrus and basal ganglia, thalamus, and caudate were significant correlated with the Beck Depression Inventory score, Clinical Dementia Rating score, and Mini-Mental State Examination score, respectively. CONCLUSION TAI is associated with regionally decreased interhemispheric interactions and extensively disrupted seed-based functional connectivity, generating further evidence of diffuse disconnection being associated with clinical symptoms in TAI patients. KEY POINTS • Traumatic axonal injury is associated with decreased interhemispheric connectivity • Traumatic axonal injury couples with widely disrupted functional connectivity • These alterations support the default, salience, integrative, and executive functions.
Collapse
Affiliation(s)
- Jian Li
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwai Zheng Street, Donghu District, Nanchang City, Jiangxi, 330006, China
| | - Lei Gao
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwai Zheng Street, Donghu District, Nanchang City, Jiangxi, 330006, China.
| | - Kai Xie
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwai Zheng Street, Donghu District, Nanchang City, Jiangxi, 330006, China
| | - Jie Zhan
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwai Zheng Street, Donghu District, Nanchang City, Jiangxi, 330006, China
| | - Xiaoping Luo
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwai Zheng Street, Donghu District, Nanchang City, Jiangxi, 330006, China
| | - Huifang Wang
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwai Zheng Street, Donghu District, Nanchang City, Jiangxi, 330006, China
| | - Huifang Zhang
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwai Zheng Street, Donghu District, Nanchang City, Jiangxi, 330006, China
| | - Jing Zhao
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwai Zheng Street, Donghu District, Nanchang City, Jiangxi, 330006, China
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwai Zheng Street, Donghu District, Nanchang City, Jiangxi, 330006, China
| | - Xianjun Zeng
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwai Zheng Street, Donghu District, Nanchang City, Jiangxi, 330006, China
| | - Laichang He
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwai Zheng Street, Donghu District, Nanchang City, Jiangxi, 330006, China
| | - Yulin He
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwai Zheng Street, Donghu District, Nanchang City, Jiangxi, 330006, China
| | - Honghan Gong
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwai Zheng Street, Donghu District, Nanchang City, Jiangxi, 330006, China
| |
Collapse
|
37
|
Abstract
Traumatic brain injury survivors often experience cognitive deficits and neuropsychiatric symptoms. However, the neurobiological mechanisms underlying specific impairments are not fully understood. Advances in neuroimaging techniques (such as diffusion tensor imaging and functional MRI) have given us new insights on structural and functional connectivity patterns of the human brain in both health and disease. The connectome derived from connectivity maps reflects the entire constellation of distributed brain networks. Using these powerful neuroimaging approaches, changes at the microstructural level can be detected through regional and global properties of neuronal networks. Here we will review recent developments in the study of brain network abnormalities in traumatic brain injury, mainly focusing on structural and functional connectivity. Some connectomic studies have provided interesting insights into the neurological dysfunction that occurs following traumatic brain injury. These techniques could eventually be helpful in developing imaging biomarkers of cognitive and neurobehavioral sequelae, as well as predicting outcome and prognosis.
Collapse
Affiliation(s)
- Hui Xiao
- Center of Medical Imaging, Fuzhou General Hospital of Nanjing Military Command, Fuzhou, Fujian Province, China; Department of Medical Imaging, Dongfang Hospital, Xiamen University, Fuzhou, Fujian Province, China
| | - Yang Yang
- Department of Emergency, Fuzhou General Hospital of Nanjing Military Command, Fuzhou, Fujian Province, China
| | - Ji-Hui Xi
- Department of Medical Imaging, Dongfang Hospital, Xiamen University, Fuzhou, Fujian Province, China
| | - Zi-Qian Chen
- Center of Medical Imaging, Fuzhou General Hospital of Nanjing Military Command, Fuzhou, Fujian Province, China
| |
Collapse
|
38
|
Czerniak SM, Sikoglu EM, Liso Navarro AA, McCafferty J, Eisenstock J, Stevenson JH, King JA, Moore CM. A resting state functional magnetic resonance imaging study of concussion in collegiate athletes. Brain Imaging Behav 2016; 9:323-32. [PMID: 25112544 DOI: 10.1007/s11682-014-9312-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Sports-related concussions are currently diagnosed through multi-domain assessment by a medical professional and may utilize neurocognitive testing as an aid. However, these tests have only been able to detect differences in the days to week post-concussion. Here, we investigate a measure of brain function, namely resting state functional connectivity, which may detect residual brain differences in the weeks to months after concussion. Twenty-one student athletes (9 concussed within 6 months of enrollment; 12 non-concussed; between ages 18 and 22 years) were recruited for this study. All participants completed the Wisconsin Card Sorting Task and the Color-Word Interference Test. Neuroimaging data, specifically resting state functional Magnetic Resonance Imaging data, were acquired to examine resting state functional connectivity. Two sample t-tests were used to compare the neurocognitive scores and resting state functional connectivity patterns among concussed and non-concussed participants. Correlations between neurocognitive scores and resting state functional connectivity measures were also determined across all subjects. There were no significant differences in neurocognitive performance between concussed and non-concussed groups. Concussed subjects had significantly increased connections between areas of the brain that underlie executive function. Across all subjects, better neurocognitive performance corresponded to stronger brain connectivity. Even at rest, brains of concussed athletes may have to 'work harder' than their healthy peers to achieve similar neurocognitive results. Resting state brain connectivity may be able to detect prolonged brain differences in concussed athletes in a more quantitative manner than neurocognitive test scores.
Collapse
Affiliation(s)
- Suzanne M Czerniak
- Department of Psychiatry, Center for Comparative NeuroImaging, University of Massachusetts Medical School, 303 Belmont Street, Worcester, MA, 01604, USA,
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Sours C, Rosenberg J, Kane R, Roys S, Zhuo J, Shanmuganathan K, Gullapalli RP. Associations between interhemispheric functional connectivity and the Automated Neuropsychological Assessment Metrics (ANAM) in civilian mild TBI. Brain Imaging Behav 2016; 9:190-203. [PMID: 24557591 DOI: 10.1007/s11682-014-9295-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study investigates cognitive deficits and alterations in resting state functional connectivity in civilian mild traumatic brain injury (mTBI) participants with high and low symptoms. Forty-one mTBI participants completed a resting state fMRI scan and the Automated Neuropsychological Assessment Metrics (ANAM) during initial testing (<10 days of injury) and a 1 month follow up. Data were compared to 30 healthy control subjects. Results from the ANAM demonstrate that mTBI participants performed significantly worse than controls on the code substitution delayed subtest (p = 0.032). [corrected]. Among the mTBI patients, high symptom mTBI participants performed worse than those with low symptoms on the code substitution delayed (p = 0.017), code substitution (p = 0.012), repeated simple reaction time (p = 0.031), and weighted throughput score (p = 0.019). [corrected]. Imaging results reveal that during the initial visit, low symptom mTBI participants had reduced interhemispheric functional connectivity (IH-FC) within the lateral parietal lobe (p = 0.020); however, during follow up, high symptom mTBI participants showed reduced IH-FC compared to the control group within the dorsolateral prefrontal cortex (DLPFC) (p = 0.013). Reduced IH-FC within the DLPFC during the follow-up was associated with reduced cognitive performance. Together, these findings suggest that reduced rs-FC may contribute to the subtle cognitive deficits noted in high symptom mTBI participants compared to control subjects and low symptom mTBI participants.
Collapse
Affiliation(s)
- Chandler Sours
- Magnetic Resonance Research Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA,
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
OBJECTIVES Recent advances in neuroimaging methodologies sensitive to axonal injury have made it possible to assess in vivo the extent of traumatic brain injury (TBI) -related disruption in neural structures and their connections. The objective of this paper is to review studies examining connectivity in TBI with an emphasis on structural and functional MRI methods that have proven to be valuable in uncovering neural abnormalities associated with this condition. METHODS We review studies that have examined white matter integrity in TBI of varying etiology and levels of severity, and consider how findings at different times post-injury may inform underlying mechanisms of post-injury progression and recovery. Moreover, in light of recent advances in neuroimaging methods to study the functional connectivity among brain regions that form integrated networks, we review TBI studies that use resting-state functional connectivity MRI methodology to examine neural networks disrupted by putative axonal injury. RESULTS The findings suggest that TBI is associated with altered structural and functional connectivity, characterized by decreased integrity of white matter pathways and imbalance and inefficiency of functional networks. These structural and functional alterations are often associated with neurocognitive dysfunction and poor functional outcomes. CONCLUSIONS TBI has a negative impact on distributed brain networks that lead to behavioral disturbance.
Collapse
|
41
|
Disrupted Intrinsic Connectivity among Default, Dorsal Attention, and Frontoparietal Control Networks in Individuals with Chronic Traumatic Brain Injury. J Int Neuropsychol Soc 2016; 22:263-79. [PMID: 26888622 PMCID: PMC4763346 DOI: 10.1017/s1355617715001393] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Individuals with chronic traumatic brain injury (TBI) often show detrimental deficits in higher order cognitive functions requiring coordination of multiple brain networks. Although assessing TBI-related deficits in higher order cognition in the context of network dysfunction is promising, few studies have systematically investigated altered interactions among multiple networks in chronic TBI. METHOD We characterized disrupted resting-state functional connectivity of the default mode network (DMN), dorsal attention network (DAN), and frontoparietal control network (FPCN) whose interactions are required for internally and externally focused goal-directed cognition in chronic TBI. Specifically, we compared the network interactions of 40 chronic TBI individuals (8 years post-injury on average) with those of 17 healthy individuals matched for gender, age, and years of education. RESULTS The network-based statistic (NBS) on DMN-DAN-FPCN connectivity of these groups revealed statistically significant (p NBS2.58) reductions in within-DMN, within-FPCN, DMN-DAN, and DMN-FPCN connectivity of the TBI group over healthy controls. Importantly, such disruptions occurred prominently in between-network connectivity. Subsequent analyses further exhibited the disrupted connectivity patterns of the chronic TBI group occurring preferentially in long-range and inter-hemispheric connectivity of DMN-DAN-FPCN. Most importantly, graph-theoretic analysis demonstrated relative reductions in global, local and cost efficiency (p<.05) as a consequence of the network disruption patterns in the TBI group. CONCLUSION Our findings suggest that assessing multiple networks-of-interest simultaneously will allow us to better understand deficits in goal-directed cognition and other higher order cognitive phenomena in chronic TBI. Future research will be needed to better understand the behavioral consequences related to these network disruptions.
Collapse
|
42
|
Rolet A, Binetruy M, Chopard G, Tio G, Moulin T, Vandel P, Galmiche J, Magnin E. Mnesic Profiles According to the Size of Pericerebral Hematoma in Patients with Traumatic Brain Injury. Eur Neurol 2015; 74:303-9. [PMID: 26674786 DOI: 10.1159/000442879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/27/2015] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The study aims to assess mnesic performances of patients, following a head injury with pericerebral hematoma, according to the size of the hematoma. METHODS Cognitive performances of a group of 25 patients with large (≥10 mm) pericerebral hematomas were compared with those of a matched group of 25 patients with small (<10 mm) ones and a matched group of patient with moderate-severe traumatic brain injury with no pericerebral hematoma. RESULTS Executive function and information processing speed were not significantly different. Mnesic performances of the large hematomas group were more impaired: cuing effect (63.5 vs. 80% and 83%; p = 0.002; x03B7;2 = 0.183) and total recall (37.5/48 vs. 43.2 and 44.2; p = 0.022; x03B7;2 = 0.65) of the Free and Cued Recall Test. CONCLUSION Memory of those in the large hematomas group was impaired with probable storage/consolidation disorders. To identify specific cognitive disorders resulting from large hematomas, it is justified to systematically screen these disorders and to adapt their management.
Collapse
Affiliation(s)
- Alice Rolet
- Department of Neurology, CHU Besanx00E7;on, Besanx00E7;on, France
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Smith CJ, Xiong G, Elkind JA, Putnam B, Cohen AS. Brain Injury Impairs Working Memory and Prefrontal Circuit Function. Front Neurol 2015; 6:240. [PMID: 26617569 PMCID: PMC4643141 DOI: 10.3389/fneur.2015.00240] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 10/30/2015] [Indexed: 12/13/2022] Open
Abstract
More than 2.5 million Americans suffer a traumatic brain injury (TBI) each year. Even mild to moderate TBI causes long-lasting neurological effects. Despite its prevalence, no therapy currently exists to treat the underlying cause of cognitive impairment suffered by TBI patients. Following lateral fluid percussion injury (LFPI), the most widely used experimental model of TBI, we investigated alterations in working memory and excitatory/inhibitory synaptic balance in the prefrontal cortex. LFPI impaired working memory as assessed with a T-maze behavioral task. Field excitatory postsynaptic potentials recorded in the prefrontal cortex were reduced in slices derived from brain-injured mice. Spontaneous and miniature excitatory postsynaptic currents onto layer 2/3 neurons were more frequent in slices derived from LFPI mice, while inhibitory currents onto layer 2/3 neurons were smaller after LFPI. Additionally, an increase in action potential threshold and concomitant decrease in firing rate was observed in layer 2/3 neurons in slices from injured animals. Conversely, no differences in excitatory or inhibitory synaptic transmission onto layer 5 neurons were observed; however, layer 5 neurons demonstrated a decrease in input resistance and action potential duration after LFPI. These results demonstrate synaptic and intrinsic alterations in prefrontal circuitry that may underlie working memory impairment caused by TBI.
Collapse
Affiliation(s)
- Colin J. Smith
- Research Institute of Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Neuroscience Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Guoxiang Xiong
- Research Institute of Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jaclynn A. Elkind
- Research Institute of Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Brendan Putnam
- Research Institute of Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Akiva S. Cohen
- Research Institute of Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
44
|
Bharath RD, Munivenkatappa A, Gohel S, Panda R, Saini J, Rajeswaran J, Shukla D, Bhagavatula ID, Biswal BB. Recovery of resting brain connectivity ensuing mild traumatic brain injury. Front Hum Neurosci 2015; 9:513. [PMID: 26441610 PMCID: PMC4585122 DOI: 10.3389/fnhum.2015.00513] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/03/2015] [Indexed: 12/22/2022] Open
Abstract
Brains reveal amplified plasticity as they recover from an injury. We aimed to define time dependent plasticity changes in patients recovering from mild traumatic brain injury (mTBI). Twenty-five subjects with mild head injury were longitudinally evaluated within 36 h, 3 and 6 months using resting state functional connectivity (RSFC). Region of interest (ROI) based connectivity differences over time within the patient group and in comparison with a healthy control group were analyzed at p < 0.005. We found 33 distinct ROI pairs that revealed significant changes in their connectivity strength with time. Within 3 months, the majority of the ROI pairs had decreased connectivity in mTBI population, which increased and became comparable to healthy controls at 6 months. Within this diffuse decreased connectivity in the first 3 months, there were also few regions with increased connections. This hyper connectivity involved the salience network and default mode network within 36 h, and lingual, inferior frontal and fronto-parietal networks at 3 months. Our findings in a fairly homogenous group of patients with mTBI evaluated during the 6 month window of recovery defines time varying brain connectivity changes as the brain recovers from an injury. A majority of these changes were seen in the frontal and parietal lobes between 3 and 6 months after injury. Hyper connectivity of several networks supported normal recovery in the first 6 months and it remains to be seen in future studies whether this can predict an early and efficient recovery of brain function.
Collapse
Affiliation(s)
- Rose D. Bharath
- Advanced Brain Imaging Facility, Cognitive Neuroscience Centre, National Institute of Mental Health and NeurosciencesBangalore, India
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and NeurosciencesBangalore, India
| | - Ashok Munivenkatappa
- Department of Clinical Neurosciences, National Institute of Mental Health and NeurosciencesBangalore, India
| | - Suril Gohel
- Department of Biomedical Engineering, New Jersey Institute of Technology, University HeightsNewark, NJ, USA
| | - Rajanikant Panda
- Advanced Brain Imaging Facility, Cognitive Neuroscience Centre, National Institute of Mental Health and NeurosciencesBangalore, India
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and NeurosciencesBangalore, India
| | - Jitender Saini
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and NeurosciencesBangalore, India
| | - Jamuna Rajeswaran
- Neuropsychology Unit, Department of Clinical Psychology, National Institute of Mental Health and NeurosciencesBangalore, India
| | - Dhaval Shukla
- Department of Neurosurgery, National Institute of Mental Health and NeurosciencesBangalore, India
| | - Indira D. Bhagavatula
- Department of Neurosurgery, National Institute of Mental Health and NeurosciencesBangalore, India
| | - Bharat B. Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, University HeightsNewark, NJ, USA
| |
Collapse
|
45
|
Bodanapally UK, Sours C, Zhuo J, Shanmuganathan K. Imaging of Traumatic Brain Injury. Radiol Clin North Am 2015; 53:695-715, viii. [PMID: 26046506 DOI: 10.1016/j.rcl.2015.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Imaging plays an important role in the management of patients with traumatic brain injury (TBI). Computed tomography (CT) is the first-line imaging technique allowing rapid detection of primary structural brain lesions that require surgical intervention. CT also detects various deleterious secondary insults allowing early medical and surgical management. Serial imaging is critical to identifying secondary injuries. MR imaging is indicated in patients with acute TBI when CT fails to explain neurologic findings. However, MR imaging is superior in patients with subacute and chronic TBI and also predicts neurocognitive outcome.
Collapse
Affiliation(s)
- Uttam K Bodanapally
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland Medical Center, 22 South Greene Street, Baltimore, MD 21201, USA
| | - Chandler Sours
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland Medical Center, 22 South Greene Street, Baltimore, MD 21201, USA
| | - Jiachen Zhuo
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland Medical Center, 22 South Greene Street, Baltimore, MD 21201, USA
| | - Kathirkamanathan Shanmuganathan
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland Medical Center, 22 South Greene Street, Baltimore, MD 21201, USA.
| |
Collapse
|
46
|
Sours C, Zhuo J, Roys S, Shanmuganathan K, Gullapalli RP. Disruptions in Resting State Functional Connectivity and Cerebral Blood Flow in Mild Traumatic Brain Injury Patients. PLoS One 2015; 10:e0134019. [PMID: 26241476 PMCID: PMC4524606 DOI: 10.1371/journal.pone.0134019] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 07/03/2015] [Indexed: 12/27/2022] Open
Abstract
Mild traumatic brain injury (mTBI) is often occult to conventional imaging techniques. However, there is growing evidence that mTBI patients who lack evidence of structural intracranial injury may develop post-concussive syndrome (PCS). We investigated longitudinal alterations in resting state functional connectivity (rs-FC) in brain networks in a population of 28 patients compared to 28 matched control participants. Rs-FC and cerebral blood flow (CBF) within the nodes of the Default Mode Network (DMN) and Task Positive Network (TPN) were assessed at three time points including acute, sub-acute, and chronic stages following mTBI. Participants received the Automated Neuropsychological Assessment Metrics (ANAM) to assess cognitive performance. Main findings indicate that despite normalized cognitive performance, chronic mTBI patients demonstrate increased rs-FC between the DMN and regions associated with the salience network (SN) and TPN compared to the control populations, as well as reduced strength of rs-FC within the DMN at the acute stage of injury. In addition, chronic mTBI patients demonstrate an imbalance in the ratio of CBF between nodes of the DMN and TPN. Furthermore, preliminary exploratory analysis suggests that compared to those without chronic PCS, patients with chronic PCS reveal an imbalance in the ratio of CBF between the DMN nodes and TPN nodes across multiple stages of recovery. Findings suggest that the altered network perfusion with the associated changes in rs-FC may be a possible predictor of which mTBI patients will develop chronic PCS.
Collapse
Affiliation(s)
- Chandler Sours
- Magnetic Resonance Research Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jiachen Zhuo
- Magnetic Resonance Research Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Steven Roys
- Magnetic Resonance Research Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Kathirkamanthan Shanmuganathan
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Rao P. Gullapalli
- Magnetic Resonance Research Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
47
|
Gilbert KS, Kark SM, Gehrman P, Bogdanova Y. Sleep disturbances, TBI and PTSD: Implications for treatment and recovery. Clin Psychol Rev 2015; 40:195-212. [PMID: 26164549 DOI: 10.1016/j.cpr.2015.05.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 04/27/2015] [Accepted: 05/13/2015] [Indexed: 12/26/2022]
Abstract
Post-Traumatic Stress Disorder (PTSD), traumatic brain injury (TBI), and sleep problems significantly affect recovery and functional status in military personnel and Veterans returning from combat. Despite recent attention, sleep is understudied in the Veteran population. Few treatments and rehabilitation protocols target sleep, although poor sleep remains at clinical levels and continues to adversely impact functioning even after the resolution of PTSD or mild TBI symptoms. Recent developments in non-pharmacologic sleep treatments have proven efficacious as stand-alone interventions and have potential to improve treatment outcomes by augmenting traditional behavioral and cognitive therapies. This review discusses the extensive scope of work in the area of sleep as it relates to TBI and PTSD, including pathophysiology and neurobiology of sleep; existing and emerging treatment options; as well as methodological issues in sleep measurements for TBI and PTSD. Understanding sleep problems and their role in the development and maintenance of PTSD and TBI symptoms may lead to improvement in overall treatment outcomes while offering a non-stigmatizing entry in mental health services and make current treatments more comprehensive by helping to address a broader spectrum of difficulties.
Collapse
Affiliation(s)
- Karina Stavitsky Gilbert
- Psychology Research, VA Boston Healthcare System, Boston, MA, United States; Department of Psychiatry, Boston University School of Medicine, Boston, MA, United States
| | - Sarah M Kark
- Psychology Research, VA Boston Healthcare System, Boston, MA, United States
| | - Philip Gehrman
- Department of Psychiatry, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, United States; Philadelphia VA Medical Center, Philadelphia, PA, United States
| | - Yelena Bogdanova
- Psychology Research, VA Boston Healthcare System, Boston, MA, United States; Department of Psychiatry, Boston University School of Medicine, Boston, MA, United States.
| |
Collapse
|
48
|
Arenivas A, Diaz-Arrastia R, Spence J, Cullum CM, Krishnan K, Bosworth C, Culver C, Kennard B, Marquez de la Plata C. Three approaches to investigating functional compromise to the default mode network after traumatic axonal injury. Brain Imaging Behav 2015; 8:407-19. [PMID: 22847713 DOI: 10.1007/s11682-012-9191-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The default mode network (DMN) is a reliably elicited functional neural network with potential clinical implications. Its discriminant and prognostic utility following traumatic axonal injury (TAI) have not been previously investigated. The present study used three approaches to analyze DMN functional connectedness, including a whole-brain analysis [A1], network-specific analysis [A2], and between-node (edge) analysis [A3]. The purpose was to identify the utility of each method in distinguishing between healthy and brain-injured individuals, and determine whether observed differences have clinical significance. Resting-state fMRI was acquired from 25 patients with TAI and 17 healthy controls. Patients were scanned 6-11 months post-injury, and functional and neurocognitive outcomes were assessed the same day. Using all three approaches, TAI subjects revealed significantly weaker functional connectivity (FC) than controls, and binary logistic regressions demonstrated all three approaches have discriminant value. Clinical outcomes were not correlated with FC using any approach. Results suggest that compromise to the functional connectedness of the DMN after TAI can be identified using resting-state FC; however, the degree of functional compromise to this network, as measured in this study, may not have clinical implications in chronic TAI.
Collapse
Affiliation(s)
- Ana Arenivas
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Venkatesan UM, Dennis NA, Hillary FG. Chronology and chronicity of altered resting-state functional connectivity after traumatic brain injury. J Neurotrauma 2015; 32:252-64. [PMID: 24955788 PMCID: PMC4347859 DOI: 10.1089/neu.2013.3318] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Whereas traumatic brain injury (TBI) results in widespread disruption of neural networks, changes in regional resting-state functional connectivity patterns after insult remain unclear. Specifically, little is known about the chronology of emergent connectivity alterations and whether they persist after a critical recovery window. We used resting-state functional magnetic resonance imaging and seed-voxel correlational analyses in both cross-sectional and longitudinal designs to probe intrinsic connectivity patterns involving the posterior cingulate cortex (PCC) and hippocampi, regions shown to be important in the default mode network (DMN) and vulnerable to neuropathology. A total of 22 participants in the chronic stage of moderate-to-severe TBI and 18 healthy controls were included for cross-sectional study. Longitudinal analyses included 13 individuals in the TBI group for whom data approximately 3 months after injury (subacute) were available. Overall, results indicated dissociable connectivity trajectories of the PCC and hippocampi during recovery from TBI, with PCC alterations characterized by early hypersynchrony with the anterior DMN that is gradually reduced, and hippocampal changes marked by increasing synchrony with proximal cortex and subcortex. The PCC also showed increasing antiphase synchrony with posterior attentional regions, and the hippocampi showed decreasing antiphase synchrony with frontal attentional regions. Antiphase synchrony of the hippocampus and dorsolateral prefrontal cortex at the subacute stage of TBI was positively associated with attentional performance on neuropsychological tests at both the subacute and chronic stages. Our findings highlight the heterogeneity of regional whole-brain connectivity changes after TBI, and suggest that residual connectivity alterations exist in the clinically stable phase of TBI. Parallels between the chronicity of the observed effects and findings in neurodegenerative disease are discussed in the context of potential long-term outcomes of TBI.
Collapse
Affiliation(s)
- Umesh M. Venkatesan
- Department of Psychology, The Pennsylvania State University, University Park, Pennsylvania
| | - Nancy A. Dennis
- Department of Psychology, The Pennsylvania State University, University Park, Pennsylvania
| | - Frank G. Hillary
- Department of Psychology, The Pennsylvania State University, University Park, Pennsylvania
- Department of Neurology, Penn State Hershey Medical Center, Hershey, Pennsylvania
| |
Collapse
|