1
|
Lin TH, Lin HY. Genetic feature selection algorithm as an efficient glioma grade classifier. Sci Rep 2025; 15:15497. [PMID: 40319095 PMCID: PMC12049469 DOI: 10.1038/s41598-024-83879-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/18/2024] [Indexed: 05/07/2025] Open
Abstract
Gliomas are among the most lethal and debilitating cancers. Genetic testing is a rapidly evolving modality for cancer management. The advent of DNA microarrays enabled the utility of computational analyses in such management on a molecular basis. However, as current computational analyses remain insensitive to interactions between molecular features, they rarely postulate reasonable pathogenesis. The current study proposes a heuristic feature selection algorithm that identifies subsets of genes to almost perfectly classify glioma grades. The discretization technique in our method is a powerful tool against the tremendous data volume in DNA microarray. Instead of recognizing individual genetic features, the proposed algorithm helps identify specific gene subsets that play important roles in the pathogenesis of glioma.
Collapse
Affiliation(s)
- Ting-Han Lin
- China Medical University Hospital, No. 2, Yude Rd., North Dist., Taichung City, 404327, Taiwan.
| | - Hung-Yi Lin
- Department of Distribution Management, National Taichung University of Science and Technology, 129, Sanmin Rd., Sec. 3, Taichung, Taiwan (R.O.C.).
| |
Collapse
|
2
|
Nair NU, Schäffer AA, Gertz EM, Cheng K, Zerbib J, Sahu AD, Leor G, Shulman ED, Aldape KD, Ben-David U, Ruppin E. Chromosome 7 Gain Compensates for Chromosome 10 Loss in Glioma. Cancer Res 2024; 84:3464-3477. [PMID: 39078448 PMCID: PMC11479827 DOI: 10.1158/0008-5472.can-24-1366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 07/31/2024]
Abstract
The co-occurrence of chromosome 10 loss and chromosome 7 gain in gliomas is the most frequent loss-gain co-aneuploidy pair in human cancers. This phenomenon has been investigated since the late 1980s without resolution. Expanding beyond previous gene-centric studies, we investigated the co-occurrence in a genome-wide manner, taking an evolutionary perspective. Mining of large-scale tumor aneuploidy data confirmed the previous finding of a small-scale longitudinal study that the most likely order is chromosome 10 loss, followed by chromosome 7 gain. Extensive analysis of genomic and transcriptomic data from both patients and cell lines revealed that this co-occurrence can be explained by functional rescue interactions that are highly enriched on chromosome 7, which could potentially compensate for any detrimental consequences arising from the loss of chromosome 10. Transcriptomic data from various normal, noncancerous human brain tissues were analyzed to assess which tissues may be most predisposed to tolerate compensation of chromosome 10 loss by chromosome 7 gain. The analysis indicated that the preexisting transcriptomic states in the cortex and frontal cortex, where gliomas arise, are more favorable than other brain regions for compensation by rescuer genes that are active on chromosome 7. Collectively, these findings suggest that the phenomenon of chromosome 10 loss and chromosome 7 gain in gliomas is orchestrated by a complex interaction of many genes residing within these two chromosomes and provide a plausible reason why this co-occurrence happens preferentially in cancers originating in certain regions of the brain. Significance: Increased expression of multiple rescuer genes on the gained chromosome 7 could compensate for the downregulation of several vulnerable genes on the lost chromosome 10, resolving the long-standing mystery of this frequent co-occurrence in gliomas.
Collapse
Affiliation(s)
- Nishanth Ulhas Nair
- Computational Precision Oncology Section, Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alejandro A. Schäffer
- Computational Precision Oncology Section, Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - E. Michael Gertz
- Computational Precision Oncology Section, Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kuoyuan Cheng
- Computational Precision Oncology Section, Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- MSD, Beijing, China
| | - Johanna Zerbib
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Avinash Das Sahu
- The University of New Mexico, Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Gil Leor
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Eldad D. Shulman
- Computational Precision Oncology Section, Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth D. Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Uri Ben-David
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Eytan Ruppin
- Computational Precision Oncology Section, Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Lead contact
| |
Collapse
|
3
|
Li D, Li X, Lv J, Li S. Creation of signatures and identification of molecular subtypes based on disulfidptosis-related genes for glioblastoma patients' prognosis and immunological activity. Asian J Surg 2024:S1015-9584(24)00299-9. [PMID: 38462406 DOI: 10.1016/j.asjsur.2024.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/23/2023] [Accepted: 02/02/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND In recent times, disulfidptosis, an intricate form of cellular demise, has garnered attention due to its impact on prognosis, tumor progression and treatment response. Nevertheless, the exact significance of disulfidptosis-related genes (DisRGs) in glioblastoma (GBM) remains enigmatic. METHODS The GEO and TCGA databases provided transcriptional and clinically relevant data on tumor samples, while the GTEx database provided data on healthy tissues. Disulfidptosis-related genes (DisRGs) were procured from previous scholarly investigations. The expression profile of DisRGs was initially scrutinized among patients diagnosed with GBM, subsequent to which their prognostic value was explored. Through consensus clustering, we constructed DisRGs-related clusters and gene subtypes. Our results established that the DisRG-related clusters had differentially expressed genes, resulting in a DisulfidptosisScore model, which had a positive prognostic value. RESULTS The differential expression profile of 24 DisRGs between GBM samples and healthy samples was acquired. Through consensus cluster analysis, two distinct disulfidptosis subtypes, namely DisRGcluster A and DisRGcluster B, were identified. Then, the DisulfidptosisScore model including 4 characteristic genes was constructed.Notably, patients with GBM assigned with lower score demonstrated a considerably longer overall survival (OS) compared to those with higher score. CONCLUSION We have effectively devised a prognostic model associated with disulfidptosis, presenting autonomous prognostic predictions for patients with GBM. These findings serve as a valuable addition to the current comprehension of disulfidptosis and offer fresh theoretical substantiation for the development of enhanced treatment strategies.
Collapse
Affiliation(s)
- Dongjun Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, No.39 Huaxiang Road, Tiexi District, Shenyang, 110000, Liaoning, People's Republic of China
| | - Xiaodong Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, No.39 Huaxiang Road, Tiexi District, Shenyang, 110000, Liaoning, People's Republic of China
| | - Jianfeng Lv
- Department of Neurosurgery, Shengjing Hospital of China Medical University, No.39 Huaxiang Road, Tiexi District, Shenyang, 110000, Liaoning, People's Republic of China
| | - Shaoyi Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, No.39 Huaxiang Road, Tiexi District, Shenyang, 110000, Liaoning, People's Republic of China.
| |
Collapse
|
4
|
Nair NU, Schäffer AA, Gertz EM, Cheng K, Zerbib J, Sahu AD, Leor G, Shulman ED, Aldape KD, Ben-David U, Ruppin E. Chromosome 7 to the rescue: overcoming chromosome 10 loss in gliomas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576103. [PMID: 38313282 PMCID: PMC10836086 DOI: 10.1101/2024.01.17.576103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
The co-occurrence of chromosome 10 loss and chromosome 7 gain in gliomas is the most frequent loss-gain co-aneuploidy pair in human cancers, a phenomenon that has been investigated without resolution since the late 1980s. Expanding beyond previous gene-centric studies, we investigate the co-occurrence in a genome-wide manner taking an evolutionary perspective. First, by mining large tumor aneuploidy data, we predict that the more likely order is 10 loss followed by 7 gain. Second, by analyzing extensive genomic and transcriptomic data from both patients and cell lines, we find that this co-occurrence can be explained by functional rescue interactions that are highly enriched on 7, which can possibly compensate for any detrimental consequences arising from the loss of 10. Finally, by analyzing transcriptomic data from normal, non-cancerous, human brain tissues, we provide a plausible reason why this co-occurrence happens preferentially in cancers originating in certain regions of the brain.
Collapse
|
5
|
Yan Y, Liu Y, Liang Q, Xu Z. Drug metabolism-related gene ABCA1 augments temozolomide chemoresistance and immune infiltration abundance of M2 macrophages in glioma. Eur J Med Res 2023; 28:373. [PMID: 37749600 PMCID: PMC10518970 DOI: 10.1186/s40001-023-01370-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023] Open
Abstract
Gliomas are the most prevalent primary tumor in the central nervous system, with an abysmal 5-year survival rate and alarming mortality. The current standard management of glioma is maximum resection of tumors followed by postoperative chemotherapy with temozolomide (TMZ) or radiotherapy. Low chemosensitivity of TMZ in glioma treatment eventuates limited therapeutic efficacy or treatment failure. Hence, overcoming the resistance of glioma to TMZ is a pressing question. Our research centered on identifying the drug metabolism-related genes potentially involved in TMZ-treated resistance of glioma through several bioinformatics datasets and cell experiments. One efflux transporter, ATP-binding cassette transporter subfamily A1 (ABCA1), was discovered with an upregulated expression level and signaled poor clinical outcomes for glioma patients. The transcript level of ABCA1 significantly elevated across the TMZ-resistant glioma cells in contrast with non-resistant cells. Over-expressed ABCA1 restrained the drug activity of TMZ, and ABCA1 knockdown improved the treatment efficacy. Meanwhile, the results of molecular docking between ABCA1 protein and TMZ showed a high binding affinity. Additionally, co-expression and immunological analysis revealed that ABCA1 facilitates the immune infiltration of M2 macrophages in glioma, thereby stimulating tumor growth and aggravating the poor survival of patients. Altogether, we discovered that the ABCA1 transporter was involved in TMZ chemoresistance and the immune infiltration of M2 macrophages in glioma. Treatment with TMZ after ABCA1 knockdown enhances the chemosensitivity, suggesting that inhibition of ABCA1 may be a potential strategy for improving the therapeutic efficacy of gliomas.
Collapse
Affiliation(s)
- Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yuanhong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
6
|
Liao WT, Chu PY, Su CC, Wu CC, Li CJ. Mitochondrial AAA protease gene associated with immune infiltration is a prognostic biomarker in human ovarian cancer. Pathol Res Pract 2022; 240:154215. [DOI: 10.1016/j.prp.2022.154215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/19/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
|
7
|
van den Bosch T, Derks S, Miedema DM. Chromosomal Instability, Selection and Competition: Factors That Shape the Level of Karyotype Intra-Tumor Heterogeneity. Cancers (Basel) 2022; 14:4986. [PMID: 36291770 PMCID: PMC9600040 DOI: 10.3390/cancers14204986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 12/03/2022] Open
Abstract
Intra-tumor heterogeneity (ITH) is a pan-cancer predictor of survival, with high ITH being correlated to a dismal prognosis. The level of ITH is, hence, a clinically relevant characteristic of a malignancy. ITH of karyotypes is driven by chromosomal instability (CIN). However, not all new karyotypes generated by CIN are viable or competitive, which limits the amount of ITH. Here, we review the cellular processes and ecological properties that determine karyotype ITH. We propose a framework to understand karyotype ITH, in which cells with new karyotypes emerge through CIN, are selected by cell intrinsic and cell extrinsic selective pressures, and propagate through a cancer in competition with other malignant cells. We further discuss how CIN modulates the cell phenotype and immune microenvironment, and the implications this has for the subsequent selection of karyotypes. Together, we aim to provide a comprehensive overview of the biological processes that shape the level of karyotype heterogeneity.
Collapse
Affiliation(s)
- Tom van den Bosch
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers—Location AMC, 1105 AZ Amsterdam, The Netherlands
- Oncode Institute, 1105 AZ Amsterdam, The Netherlands
| | - Sarah Derks
- Oncode Institute, 1105 AZ Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam University Medical Centers—Location VUmc, 1081 HV Amsterdam, The Netherlands
| | - Daniël M. Miedema
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers—Location AMC, 1105 AZ Amsterdam, The Netherlands
- Oncode Institute, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
8
|
Bi SQ, Zhang QM, Zeng X, Liu C, Nong WX, Xie H, Li F, Lin LN, Luo B, Ge YY, Xie XX. Combined treatment with epigenetic agents enhances anti-tumor activity of MAGE-D4 peptide-specific T cells by upregulating the MAGE-D4 expression in glioma. Front Oncol 2022; 12:873639. [PMID: 35992806 PMCID: PMC9382192 DOI: 10.3389/fonc.2022.873639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The study evaluated the efficacy of combined epigenetic drugs of decitabine (DAC), valproic acid (VPA), and trichostatin A (TSA) on immunotherapy against glioma. METHODS The expression and prognosis of MAGE-D4 in glioma were analyzed online, and the expression of MAGE-D4 and HLA-A2 in glioma induced by epigenetic drugs was detected by qRT-PCR, Western blot, and flow cytometry. The methylation status of the MAGE-D4 promoter was determined by pyrosequencing. An HLA-A2 restricted MAGE-D4 peptide was predicted and synthesized. An affinity assay and a peptide/HLA complex stability assay were performed to determine the affinity between peptide and HLA. CCK8 assay, CFSE assay, ELISA and ELISPOT were performed to detect the function of MAGE-D4 peptide-specific T cells. Flow cytometry, ELISA, and cytotoxicity assays were used to detect the cytotoxicity effect of MAGE-D4 peptide-specific T cells combined with epigenetic drugs against glioma in vitro. Finally, the glioma-loaded mouse model was applied to test the inhibitory effect of specific T cells on gliomas in vivo. RESULTS MAGE-D4 was highly expressed in glioma and correlated with poor prognosis. Glioma cells could be induced to express MAGE-D4 and HLA-A2 by epigenetic drugs. MAGE-D4-associated peptides were found that induce DCs to stimulate the highest T-cell activities of proliferation, IL-2 excretion, and IFN-γ secretion. MAGE-D4 peptide-specific T cells treated with TSA only or combining TSA and DAC had the most cytotoxicity effect, and its cytotoxicity effect on glioma cells decreased significantly after HLA blocking. In vivo experiments also confirmed that MAGE-D4-specific T cells inhibit TSA-treated glioma. CONCLUSION MAGE-D4 is highly expressed in glioma and correlated with the prognosis of glioma. The novel MAGE-D4 peptide identified was capable of inducing MAGE-D4-specific T cells that can effectively inhibit glioma growth, and the epigenetic drug application can enhance this inhibition.
Collapse
Affiliation(s)
- Shui-Qing Bi
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Department of Neurosurgery, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, China
| | - Qing-Mei Zhang
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Key laboratory of Preclinical Medicine, Education Department of Guangxi Zhuang Autonomous region, Nanning, China
| | - Xia Zeng
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Chang Liu
- Department of Neurosurgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wei-Xia Nong
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Huan Xie
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Feng Li
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Li-Na Lin
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Bin Luo
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Key laboratory of Preclinical Medicine, Education Department of Guangxi Zhuang Autonomous region, Nanning, China
| | - Ying-Ying Ge
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiao-Xun Xie
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Key laboratory of Preclinical Medicine, Education Department of Guangxi Zhuang Autonomous region, Nanning, China
| |
Collapse
|
9
|
To Explore the Stem Cells Homing to GBM: The Rise to the Occasion. Biomedicines 2022; 10:biomedicines10050986. [PMID: 35625723 PMCID: PMC9138893 DOI: 10.3390/biomedicines10050986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 12/13/2022] Open
Abstract
Multiple efforts are currently underway to develop targeted therapeutic deliveries to the site of glioblastoma progression. The use of carriers represents advancement in the delivery of various therapeutic agents as a new approach in neuro-oncology. Mesenchymal stem cells (MSCs) and neural stem cells (NSCs) are used because of their capability in migrating and delivering therapeutic payloads to tumors. Two of the main properties that carrier cells should possess are their ability to specifically migrate from the bloodstream and low immunogenicity. In this article, we also compared the morphological and molecular features of each type of stem cell that underlie their migration capacity to glioblastoma. Thus, the major focus of the current review is on proteins and lipid molecules that are released by GBM to attract stem cells.
Collapse
|
10
|
Xu L, Zhu S, Lan Y, Yan M, Jiang Z, Zhu J, Liao G, Ping Y, Xu J, Pang B, Zhang Y, Xiao Y, Li X. Revealing the contribution of somatic gene mutations to shaping tumor immune microenvironment. Brief Bioinform 2022; 23:6539997. [PMID: 35229870 DOI: 10.1093/bib/bbac064] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/14/2022] [Accepted: 02/08/2022] [Indexed: 11/12/2022] Open
Abstract
Interaction between tumor cells and immune cells determined highly heterogeneous microenvironments across patients, leading to substantial variation in clinical benefits from immunotherapy. Somatic gene mutations were found not only to elicit adaptive immunity but also to influence the composition of tumor immune microenvironment and various processes of antitumor immunity. However, due to an incomplete view of associations between gene mutations and immunophenotypes, how tumor cells shape the immune microenvironment and further determine the clinical benefit of immunotherapy is still unclear. To address this, we proposed a computational approach, inference of mutation effect on immunophenotype by integrated gene set enrichment analysis (MEIGSEA), for tracing back the genomic factor responsible for differences in immunophenotypes. MEIGSEA was demonstrated to accurately identify the previous confirmed immune-associated gene mutations, and systematic evaluation in simulation data further supported its performance. We used MEIGSEA to investigate the influence of driver gene mutations on the infiltration of 22 immune cell types across 19 cancers from The Cancer Genome Atlas. The top associated gene mutations with infiltration of CD8 T cells, such as CASP8, KRAS and EGFR, also showed extensive impact on other immune components; meanwhile, immune effector cells shared critical gene mutations that collaboratively contribute to shaping distinct tumor immune microenvironment. Furthermore, we highlighted the predictive capacity of gene mutations that are positively associated with CD8 T cells for the clinical benefit of immunotherapy. Taken together, we present a computational framework to help illustrate the potential of somatic gene mutations in shaping the tumor immune microenvironment.
Collapse
Affiliation(s)
- Liwen Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Shiwei Zhu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yujia Lan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Min Yan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Zedong Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Jiali Zhu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Gaoming Liao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yanyan Ping
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Jinyuan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Bo Pang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China.,Key Laboratory of High Throughput Omics Big Data for Cold Region's Major Diseases in Heilongjiang Province, Harbin, Heilongjiang 150081, China
| | - Yun Xiao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China.,Key Laboratory of High Throughput Omics Big Data for Cold Region's Major Diseases in Heilongjiang Province, Harbin, Heilongjiang 150081, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China.,Key Laboratory of High Throughput Omics Big Data for Cold Region's Major Diseases in Heilongjiang Province, Harbin, Heilongjiang 150081, China
| |
Collapse
|
11
|
Abstract
Aneuploidy, a genomic alternation characterized by deviations in the copy number of chromosomes, affects organisms from early development through to aging. Although it is a main cause of human pregnancy loss and a hallmark of cancer, how aneuploidy affects cellular function has been elusive. The last two decades have seen rapid advances in the understanding of the causes and consequences of aneuploidy at the molecular and cellular levels. These studies have uncovered effects of aneuploidy that can be beneficial or detrimental to cells and organisms in an environmental context-dependent and karyotype-dependent manner. Aneuploidy also imposes general stress on cells that stems from an imbalanced genome and, consequently, also an imbalanced proteome. These insights provide the fundamental framework for understanding the impact of aneuploidy in genome evolution, human pathogenesis and drug resistance.
Collapse
|
12
|
Ling F, Zhang H, Sun Y, Meng J, Sanches JGP, Huang H, Zhang Q, Yu X, Wang B, Hou L, Zhang J. AnnexinA7 promotes epithelial-mesenchymal transition by interacting with Sorcin and contributes to aggressiveness in hepatocellular carcinoma. Cell Death Dis 2021; 12:1018. [PMID: 34716295 PMCID: PMC8556303 DOI: 10.1038/s41419-021-04287-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/29/2021] [Accepted: 10/07/2021] [Indexed: 11/23/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and metastasis is the major cause of the high mortality of HCC. In this study, we identified that AnnexinA7 (ANXA7) and Sorcin (SRI) are overexpressed and interacting proteins in HCC tissues and cells. In vitro functional investigations revealed that the interaction between ANXA7 and SRI regulated epithelial-mesenchymal transition (EMT), and then affected migration, invasion, and proliferation in HCC cells. Furthermore overexpression/knockdown of ANXA7 was remarkably effective in promoting/inhibiting tumorigenicity and EMT in vivo. Altogether, our study unveiled a mechanism that ANXA7 promotes EMT by interacting with SRI and further contributes to the aggressiveness in HCC, which provides a novel potential therapeutic target for preventing recurrence and metastasis in HCC.
Collapse
Affiliation(s)
- Fei Ling
- Department of Pathology and Forensics, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Huan Zhang
- Department of Pathology and Forensics, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Yunliang Sun
- Department of Pathology, Dalian Municipal Central Hospital affiliated with Dalian Medical University, Dalian, 116033, China
| | - Jinyi Meng
- Department of Pathology, Dalian Municipal Central Hospital affiliated with Dalian Medical University, Dalian, 116033, China
| | | | - He Huang
- Department of Pathology and Forensics, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Qingqing Zhang
- Department of Pathology and Forensics, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Xiao Yu
- Department of Pathology and Forensics, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Bo Wang
- Department of Pathology and Forensics, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Li Hou
- Department of Pathology and Forensics, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| | - Jun Zhang
- Department of Pathology and Forensics, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
13
|
Eslahi M, Maleki Dana P, Sadoughi F, Hallajzadeh J, Asemi Z, Sharifi M, Mansournia MA, Yousefi B. The Effects of Sterol-Related Signaling Pathways on Glioma. Nutr Cancer 2021; 74:1527-1537. [PMID: 34338098 DOI: 10.1080/01635581.2021.1957488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Gliomas are considered as one of the important brain tumors in adults due to their impact on life quality and cognitive functions. Current methods that are used for treating glioma are not satisfying enough. Understanding cellular and molecular events underlying its pathogenesis and progression may lead to the discovery of novel therapeutic approaches. Sterols are a subtype of steroids and are essential for the physiologic functions of eukaryotic cells. Sterols can be produced by protozoans and microheterotrophs. Moreover, they are found in some natural sources, such as plants, animals, fungi, microalgae, and yeasts. Besides the roles of sterols in physiologic processes, studies have shown that they are involved in pathologic processes, including tumorigenesis and tumor progression. As investigations have revealed, sterol-related signaling pathways are involved in glioma and targeting them may result in new therapeutic options for patients. Thus, we summarized some of the sterol-related signaling pathways in glioma and how they can be associated with other signaling pathways, including EGFR/PI3K/Akt/mTOR, P53, and retinoblastoma protein.
Collapse
Affiliation(s)
- Masoumeh Eslahi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Maksoud S. The Role of the Ubiquitin Proteasome System in Glioma: Analysis Emphasizing the Main Molecular Players and Therapeutic Strategies Identified in Glioblastoma Multiforme. Mol Neurobiol 2021; 58:3252-3269. [PMID: 33665742 PMCID: PMC8260465 DOI: 10.1007/s12035-021-02339-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022]
Abstract
Gliomas constitute the most frequent tumors of the brain. High-grade gliomas are characterized by a poor prognosis caused by a set of attributes making treatment difficult, such as heterogeneity and cell infiltration. Additionally, there is a subgroup of glioma cells with properties similar to those of stem cells responsible for tumor recurrence after treatment. Since proteasomal degradation regulates multiple cellular processes, any mutation causing disturbances in the function or expression of its elements can lead to various disorders such as cancer. Several studies have focused on protein degradation modulation as a mechanism of glioma control. The ubiquitin proteasome system is the main mechanism of cellular proteolysis that regulates different events, intervening in pathological processes with exacerbating or suppressive effects on diseases. This review analyzes the role of proteasomal degradation in gliomas, emphasizing the elements of this system that modulate different cellular mechanisms in tumors and discussing the potential of distinct compounds controlling brain tumorigenesis through the proteasomal pathway.
Collapse
Affiliation(s)
- Semer Maksoud
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
15
|
Schmitt BM, Boewe AS, Götz C, Philipp SE, Urbschat S, Oertel J, Menger MD, Laschke MW, Ampofo E. CK2 Activity Mediates the Aggressive Molecular Signature of Glioblastoma Multiforme by Inducing Nerve/Glial Antigen (NG)2 Expression. Cancers (Basel) 2021; 13:cancers13071678. [PMID: 33918235 PMCID: PMC8037969 DOI: 10.3390/cancers13071678] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
Nerve/glial antigen (NG)2 expression crucially determines the aggressiveness of glioblastoma multiforme (GBM). Recent evidence suggests that protein kinase CK2 regulates NG2 expression. Therefore, we investigated in the present study whether CK2 inhibition suppresses proliferation and migration of NG2-positive GBM cells. For this purpose, CK2 activity was suppressed in the NG2-positive cell lines A1207 and U87 by the pharmacological inhibitor CX-4945 and CRISPR/Cas9-mediated knockout of CK2α. As shown by quantitative real-time PCR, luciferase-reporter assays, flow cytometry and western blot, this significantly reduced NG2 gene and protein expression when compared to vehicle-treated and wild type controls. In addition, CK2 inhibition markedly reduced NG2-dependent A1207 and U87 cell proliferation and migration. The Cancer Genome Atlas (TCGA)-based data further revealed not only a high expression of both NG2 and CK2 in GBM but also a positive correlation between the mRNA expression of the two proteins. Finally, we verified a decreased NG2 expression after CX-4945 treatment in patient-derived GBM cells. These findings indicate that the inhibition of CK2 represents a promising approach to suppress the aggressive molecular signature of NG2-positive GBM cells. Therefore, CX-4945 may be a suitable drug for the future treatment of NG2-positive GBM.
Collapse
Affiliation(s)
- Beate M. Schmitt
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (B.M.S.); (A.S.B.); (M.D.M.); (M.W.L.)
| | - Anne S. Boewe
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (B.M.S.); (A.S.B.); (M.D.M.); (M.W.L.)
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany;
| | - Stephan E. Philipp
- Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, 66421 Homburg, Germany;
| | - Steffi Urbschat
- Department of Neurosurgery, Faculty of Medicine, Saarland University, 66421 Homburg, Germany; (S.U.); (J.O.)
| | - Joachim Oertel
- Department of Neurosurgery, Faculty of Medicine, Saarland University, 66421 Homburg, Germany; (S.U.); (J.O.)
| | - Michael D. Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (B.M.S.); (A.S.B.); (M.D.M.); (M.W.L.)
| | - Matthias W. Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (B.M.S.); (A.S.B.); (M.D.M.); (M.W.L.)
| | - Emmanuel Ampofo
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (B.M.S.); (A.S.B.); (M.D.M.); (M.W.L.)
- Correspondence:
| |
Collapse
|
16
|
Tu Z, Wu L, Luo H, Li J, Lv S, Ye M, Liu F, Tao C, Zhu X, Huang K. Systematic and Multi-Omics Prognostic Analysis of Lysine Acetylation Regulators in Glioma. Front Mol Biosci 2021; 8:587516. [PMID: 33718432 PMCID: PMC7954118 DOI: 10.3389/fmolb.2021.587516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/21/2021] [Indexed: 01/25/2023] Open
Abstract
Lysine acetylation modification, which has key roles in cellular homeostasis as well as cancer malignancy, is dynamically regulated by lysine acetylation regulators (LARs). In our study, we found that most of 33 evaluated LARs were differentially expressed among 1,125 gliomas grouped by different clinicopathological characteristics. Consensus clustering was applied to 33 LARs, resulting in three glioma subtypes (LA1, 2, and 3). The LA3 subgroup was associated with the poorest clinical outcome, higher WHO grade, fewer isocitrate dehydrogenase mutations, and lower frequency of 1p/19q codeletion. Furthermore, gene set enrichment analysis indicated that eight tumor hallmarks were highly enriched in the LA3 subgroup. These results suggested that LARs are significantly related to glioma malignancy. We then designed a LAR-signature based on 14 overall survival (overall survival)-related LARs, and showed that the LAR-signature possesses strong and independent prognostic value for glioma patients in both training and validation datasets. Moreover, by interrogating single nucleotide polymorphism and copy number variation (CNV) data in The Cancer Genome Atlas dataset, we found that higher score of our risk signature is correlated with the hypermutation status of gliomas and that HDAC1(1p) was one of the oncogenes lost in 1p/19q codeletion events, while SIRT2(19q) and EP300(22q) may act as tumor suppressors in gliomas with 19q or 22q deletions, respectively. In conclusion, LARs are critical for the malignant development of gliomas, and our results are useful for prognostic stratification and development of novel assessment strategies for the prognosis of glioma patients.
Collapse
Affiliation(s)
- Zewei Tu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lei Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Haitao Luo
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,East China Institute of Digital Medical Engineering, Shangrao, China.,Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Jingying Li
- Department of Comprehensive Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shigang Lv
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Minhua Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Feng Liu
- Department of Neurosurgery, Jiangxi Provincial Children's Hospital, The Affiliated Children's Hospital of Nanchang University, Nanchang, China
| | - Chuming Tao
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,East China Institute of Digital Medical Engineering, Shangrao, China.,Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kai Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
17
|
Shaikh MH, Barrett JW, Khan MI, Kim HAJ, Zeng PYF, Mymryk JS, Nichols AC. Chromosome 3p loss in the progression and prognosis of head and neck cancer. Oral Oncol 2020; 109:104944. [PMID: 32828022 DOI: 10.1016/j.oraloncology.2020.104944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/26/2020] [Accepted: 07/28/2020] [Indexed: 12/26/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is characterized by aggressive behavior with a tendency for recurrence and metastasis. Analyses of The Cancer Genome Atlas (TCGA) data and other cohort studies suggest that the loss of the chromosomal 3p arm is a frequent genetic event observed in both human papillomavirus positive and negative HNSCC. Early molecular analyses (i.e. RFLP, CGH) identified three common regions (3p14.2, 3p21.3 and 3p25) that frequently exhibited loss of genetic material on one arm of the 3p chromosome. More recently, next generation sequencing has revealed the loss of larger regions of this arm. Here we review the role of chromosomal 3p arm loss in early initiation and progression of HNSCC, and its relationship with poor patient prognosis.
Collapse
Affiliation(s)
- Mushfiq Hassan Shaikh
- Department of Otolaryngology-Head and Neck Surgery, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada; Department of Oncology, London Health Sciences Centre, London Regional Cancer Program, London, Ontario, Canada
| | - John W Barrett
- Department of Otolaryngology-Head and Neck Surgery, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada; Department of Oncology, London Health Sciences Centre, London Regional Cancer Program, London, Ontario, Canada
| | - Mohammed I Khan
- Department of Otolaryngology-Head and Neck Surgery, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada; Department of Oncology, London Health Sciences Centre, London Regional Cancer Program, London, Ontario, Canada
| | - Hugh A J Kim
- Department of Otolaryngology-Head and Neck Surgery, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Peter Y F Zeng
- Department of Otolaryngology-Head and Neck Surgery, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada; Department of Oncology, London Health Sciences Centre, London Regional Cancer Program, London, Ontario, Canada
| | - Joe S Mymryk
- Department of Otolaryngology-Head and Neck Surgery, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada; Department of Oncology, London Health Sciences Centre, London Regional Cancer Program, London, Ontario, Canada; Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Anthony C Nichols
- Department of Otolaryngology-Head and Neck Surgery, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada; Department of Oncology, London Health Sciences Centre, London Regional Cancer Program, London, Ontario, Canada.
| |
Collapse
|
18
|
Liu Y, He S, Chen Y, Liu Y, Feng F, Liu W, Guo Q, Zhao L, Sun H. Overview of AKR1C3: Inhibitor Achievements and Disease Insights. J Med Chem 2020; 63:11305-11329. [PMID: 32463235 DOI: 10.1021/acs.jmedchem.9b02138] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human aldo-keto reductase family 1 member C3 (AKR1C3) is known as a hormone activity regulator and prostaglandin F (PGF) synthase that regulates the occupancy of hormone receptors and cell proliferation. Because of the overexpression in metabolic diseases and various hormone-dependent and -independent carcinomas, as well as the emergence of clinical drug resistance, an increasing number of studies have investigated AKR1C3 inhibitors. Here, we briefly review the physiological and pathological function of AKR1C3 and then summarize the recent development of selective AKR1C3 inhibitors. We propose our viewpoints on the current problems associated with AKR1C3 inhibitors with the aim of providing a reference for future drug discovery and potential therapeutic perspectives on novel, potent, selective AKR1C3 inhibitors.
Collapse
Affiliation(s)
- Yang Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Siyu He
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Ying Chen
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Yijun Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Feng Feng
- Jiangsu Food and Pharmaceuticals Science College, Institute of Food and Pharmaceuticals Research, Huaian 223005, People's Republic of China.,Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Wenyuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Li Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| |
Collapse
|
19
|
Radiomics in gliomas: clinical implications of computational modeling and fractal-based analysis. Neuroradiology 2020; 62:771-790. [DOI: 10.1007/s00234-020-02403-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/10/2020] [Indexed: 12/14/2022]
|
20
|
Sasidharan Nair V, M Toor S, Z Taha R, Ahmed AA, Kurer MA, Murshed K, Soofi ME, Ouararhni K, M. Alajez N, Abu Nada M, Elkord E. Transcriptomic Profiling of Tumor-Infiltrating CD4 +TIM-3 + T Cells Reveals Their Suppressive, Exhausted, and Metastatic Characteristics in Colorectal Cancer Patients. Vaccines (Basel) 2020; 8:vaccines8010071. [PMID: 32041340 PMCID: PMC7157206 DOI: 10.3390/vaccines8010071] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/29/2022] Open
Abstract
T cell immunoglobulin mucin-3 (TIM-3) is an immune checkpoint identified as one of the key players in regulating T-cell responses. Studies have shown that TIM-3 is upregulated in the tumor microenvironment (TME). However, the precise role of TIM-3 in colorectal cancer (CRC) TME is yet to be elucidated. We performed phenotypic and molecular characterization of TIM-3+ T cells in the TME and circulation of CRC patients by analyzing tumor tissues (TT, TILs), normal tissues (NT, NILs), and peripheral blood mononuclear cells (PBMC). TIM-3 was upregulated on both CD4+ and CD3+CD4− (CD8+) TILs. CD4+TIM-3+ TILs expressed higher levels of T regulatory cell (Tregs)-signature genes, including FoxP3 and Helios, compared with their TIM-3− counterparts. Transcriptomic and ingenuity pathway analyses showed that TIM-3 potentially activates inflammatory and tumor metastatic pathways. Moreover, NF-κB-mediated transcription factors were upregulated in CD4+TIM-3+ TILs, which could favor proliferation/invasion and induce inflammatory and T-cell exhaustion pathways. In addition, we found that CD4+TIM-3+ TILs potentially support tumor invasion and metastasis, compared with conventional CD4+CD25+ Tregs in the CRC TME. However, functional studies are warranted to support these findings. In conclusion, this study discloses some of the functional pathways of TIM-3+ TILs, which could improve their targeting in more specific therapeutic approaches in CRC patients.
Collapse
Affiliation(s)
- Varun Sasidharan Nair
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110, Doha, Qatar; (V.S.N.); (S.M.T.); (R.Z.T.); (K.O.); (N.M.A.)
| | - Salman M Toor
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110, Doha, Qatar; (V.S.N.); (S.M.T.); (R.Z.T.); (K.O.); (N.M.A.)
| | - Rowaida Z Taha
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110, Doha, Qatar; (V.S.N.); (S.M.T.); (R.Z.T.); (K.O.); (N.M.A.)
| | - Ayman A Ahmed
- Department of Surgery, Hamad Medical Corporation, P.O. Box 34110, Doha, Qatar; (A.A.A.); (M.A.K.); (M.A.N.)
| | - Mohamed A Kurer
- Department of Surgery, Hamad Medical Corporation, P.O. Box 34110, Doha, Qatar; (A.A.A.); (M.A.K.); (M.A.N.)
| | - Khaled Murshed
- Department of Pathology, Hamad Medical Corporation, P.O. Box 34110, Doha, Qatar; (K.M.); (M.E.S.)
| | - Madiha E Soofi
- Department of Pathology, Hamad Medical Corporation, P.O. Box 34110, Doha, Qatar; (K.M.); (M.E.S.)
| | - Khalid Ouararhni
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110, Doha, Qatar; (V.S.N.); (S.M.T.); (R.Z.T.); (K.O.); (N.M.A.)
| | - Nehad M. Alajez
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110, Doha, Qatar; (V.S.N.); (S.M.T.); (R.Z.T.); (K.O.); (N.M.A.)
| | - Mohamed Abu Nada
- Department of Surgery, Hamad Medical Corporation, P.O. Box 34110, Doha, Qatar; (A.A.A.); (M.A.K.); (M.A.N.)
| | - Eyad Elkord
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110, Doha, Qatar; (V.S.N.); (S.M.T.); (R.Z.T.); (K.O.); (N.M.A.)
- Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester M5 4WT, UK
- Correspondence: or ; Tel.: +974-4454-2367; Fax: +974-4454-1770
| |
Collapse
|
21
|
Xu Q, Hu C, Zhu Y, Wang K, Lal B, Li L, Tang J, Wei S, Huang G, Xia S, Lv S, Laterra J, Jiang Y, Li Y. ShRNA-based POLD2 expression knockdown sensitizes glioblastoma to DNA-Damaging therapeutics. Cancer Lett 2020; 482:126-135. [PMID: 31954770 DOI: 10.1016/j.canlet.2020.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 10/25/2022]
Abstract
Glioblastoma (GBM) has limited therapeutic options. DNA repair mechanisms contribute GBM cells to escape therapies and re-establish tumor growth. Multiple studies have shown that POLD2 plays a critical role in DNA replication, DNA repair and genomic stability. We demonstrate for the first time that POLD2 is highly expressed in human glioma specimens and that expression correlates with poor patient survival. siRNA or shRNA POLD2 inhibited GBM cell proliferation, cell cycle progression, invasiveness, sensitized GBM cells to chemo/radiation-induced cell death and reversed the cytoprotective effects of EGFR signaling. Conversely, forced POLD2 expression was found to induce GBM cell proliferation, colony formation, invasiveness and chemo/radiation resistance. POLD2 expression associated with stem-like cell subsets (CD133+ and SSEA-1+ cells) and positively correlated with Sox2 expression in clinical specimens. Its expression was induced by Sox2 and inhibited by the forced differentiation of GBM neurospheres. shRNA-POLD2 modestly inhibited GBM neurosphere-derived orthotopic xenografts growth, when combined with radiation, dramatically inhibited xenograft growth in a cooperative fashion. These novel findings identify POLD2 as a new potential therapeutic target for enhancing GBM response to current standard of care therapeutics.
Collapse
Affiliation(s)
- Qingfu Xu
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 510623, PR China; Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China; Hugo W. Moser Research Institute at Kennedy Krieger, 707 N. Broadway, Baltimore, MD, 21205, USA; Department of Neurology, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD, 21287, USA
| | - Chengchen Hu
- Hugo W. Moser Research Institute at Kennedy Krieger, 707 N. Broadway, Baltimore, MD, 21205, USA; Department of Neurology, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD, 21287, USA
| | - Yan Zhu
- Department of Ultrasonography, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 510623, PR China; Department of Obstetrics and Gynecology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, PR China
| | - Kimberly Wang
- Hugo W. Moser Research Institute at Kennedy Krieger, 707 N. Broadway, Baltimore, MD, 21205, USA
| | - Bachuchu Lal
- Hugo W. Moser Research Institute at Kennedy Krieger, 707 N. Broadway, Baltimore, MD, 21205, USA
| | - Lichao Li
- Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Junhai Tang
- Department of Neurosurgery, Third Military Medical University, Chongqing, 400037, PR China
| | - Shuang Wei
- Hugo W. Moser Research Institute at Kennedy Krieger, 707 N. Broadway, Baltimore, MD, 21205, USA
| | - Guohao Huang
- Department of Neurosurgery, Third Military Medical University, Chongqing, 400037, PR China
| | - Shuli Xia
- Hugo W. Moser Research Institute at Kennedy Krieger, 707 N. Broadway, Baltimore, MD, 21205, USA; Department of Neurology, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD, 21287, USA
| | - Shengqing Lv
- Department of Neurosurgery, Third Military Medical University, Chongqing, 400037, PR China
| | - John Laterra
- Hugo W. Moser Research Institute at Kennedy Krieger, 707 N. Broadway, Baltimore, MD, 21205, USA; Department of Neurology, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD, 21287, USA; Department of Oncology, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD, 21287, USA; Department of Neuroscience, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD, 21287, USA
| | - Yugang Jiang
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China
| | - Yunqing Li
- Hugo W. Moser Research Institute at Kennedy Krieger, 707 N. Broadway, Baltimore, MD, 21205, USA; Department of Neurology, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD, 21287, USA.
| |
Collapse
|
22
|
Sasidharan Nair V, Toor SM, Taouk G, Pfister G, Ouararhni K, Alajez NM, Elkord E. Pembrolizumab Interferes with the Differentiation of Human FOXP3+–Induced T Regulatory Cells, but Not with FOXP3 Stability, through Activation of mTOR. THE JOURNAL OF IMMUNOLOGY 2019; 204:199-211. [DOI: 10.4049/jimmunol.1900575] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/27/2019] [Indexed: 12/16/2022]
|
23
|
Valdebenito J, Medina F. Machine learning approaches to study glioblastoma: A review of the last decade of applications. Cancer Rep (Hoboken) 2019; 2:e1226. [PMID: 32729254 PMCID: PMC7941469 DOI: 10.1002/cnr2.1226] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Glioblastoma (GB, formally glioblastoma multiforme) is a malignant type of brain cancer that currently has no cure and is characterized by being highly heterogeneous with high rates of re-incidence and therapy resistance. Thus, it is urgent to characterize the mechanisms of GB pathogenesis to help researchers identify novel therapeutic targets to cure this devastating disease. Recently, a promising approach to identifying novel therapeutic targets is the integration of tumor omics data with clinical information using machine learning (ML) techniques. RECENT FINDINGS ML has become a valuable addition to the researcher's toolbox, thanks to its flexibility, multidimensional approach, and a growing community of users. The goal of this review is to introduce basic concepts and applications of ML for studying GB to clinicians and practitioners who are new to data science. ML applications include exploring large data sets, finding new relevant patterns, predicting outcomes, or merely understanding associations of the complex molecular networks presented within the tumor. Here, we review ML applications published between 2008 and 2018 and discuss ML strategies intending to identify new potential therapeutic targets to improve the management and treatment of GB. CONCLUSIONS ML applications to study GB vary in purpose and complexity, with positive results. In GB studies, ML is often used to analyze high-dimensional datasets with prediction or classification as a primary goal. Despite the strengths of ML techniques, they are not fail-safe and methodological issues can occur in GB studies that use them. This is why researchers need to be aware of these issues when planning and appraising studies that apply ML to the study of GB.
Collapse
Affiliation(s)
- Jessica Valdebenito
- Programa de Bioestadística, Escuela de Salud PúblicaUniversidad de ChileSantiagoChile
| | - Felipe Medina
- Programa de Bioestadística, Escuela de Salud PúblicaUniversidad de ChileSantiagoChile
- Instituto de Estadística, Facultad de CienciasUniversidad de ValparaísoValparaísoChile
| |
Collapse
|
24
|
Vishnubalaji R, Sasidharan Nair V, Ouararhni K, Elkord E, Alajez NM. Integrated Transcriptome and Pathway Analyses Revealed Multiple Activated Pathways in Breast Cancer. Front Oncol 2019; 9:910. [PMID: 31620367 PMCID: PMC6759650 DOI: 10.3389/fonc.2019.00910] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/02/2019] [Indexed: 12/27/2022] Open
Abstract
Breast cancer (BC) is the leading cause of cancer-related death in women. Therefore, a better understanding of BC biology and signaling pathways might lead to the development of novel biomarkers and targeted therapies. Although a number of transcriptomic studies have been performed on breast cancer patients from various geographic regions, there are almost no such comprehensive studies performed on breast cancer from patients in the gulf region. This study aimed to provide a better understanding of the altered molecular networks in BC from the gulf region. Herein, we compared the transcriptome of BC to adjacent normal tissue from six BC patients and identified 1,108 upregulated and 518 downregulated transcripts. A selected number of genes from the RNA-Seq analysis were subsequently validated using qRT-PCR. Differentially expressed (2.0-fold change, adj. p < 0.05) transcripts were subjected to ingenuity pathway analysis, which revealed a myriad of affected signaling pathways and functional categories. Activation of ERBB2, FOXM1, ESR1, and IGFBP2 mechanistic networks was most prominent in BC tissue. Additionally, BC tissue exhibited marked enrichment in genes promoting cellular proliferation, migration, survival, and DNA replication and repair. The presence of genes indicative of immune cell infiltration and activation was also observed in BC tissue. We observed high concordance [43.5% (upregulated) and 62.1% (downregulated)] between differentially expressed genes in our study group and those reported for the TCGA BC cohort. Our data provide novel insight on BC biology and suggest common altered molecular networks in BC in this geographic region. Our data suggest future development of therapeutic interventions targeting those common signaling pathways.
Collapse
Affiliation(s)
- Radhakrishnan Vishnubalaji
- Cancer Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Varun Sasidharan Nair
- Cancer Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Khalid Ouararhni
- Cancer Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Eyad Elkord
- Cancer Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Nehad M Alajez
- Cancer Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| |
Collapse
|
25
|
Saleh R, Taha RZ, Sasidharan Nair V, Alajez NM, Elkord E. PD-L1 Blockade by Atezolizumab Downregulates Signaling Pathways Associated with Tumor Growth, Metastasis, and Hypoxia in Human Triple Negative Breast Cancer. Cancers (Basel) 2019; 11:E1050. [PMID: 31349612 PMCID: PMC6721435 DOI: 10.3390/cancers11081050] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/16/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022] Open
Abstract
Triple negative breast cancer (TNBC) is the most aggressive type of breast cancer, which shows resistance to common breast cancer therapies, as it lacks the expression of the most common breast cancer targets. Therefore, TNBC treatment remains a challenge. Targeting programmed cell death-ligand 1 (PD-L1) by monoclonal antibodies (mAbs), for example, atezolizumab, has revolutionized the treatment for various cancer types. However, the therapeutic efficacy of targeting PD-L1 in TNBC is currently under investigation. In this study, we investigated the molecular mechanisms by which the human TNBC cell line MDA-MB-231, expressing PD-L1, responds to atezolizumab, using RNA-Seq. Transcriptome analysis revealed 388 upregulated and 362 downregulated genes in response to atezolizumab treatment. The expression of selected genes, from RNA-Seq data, was subsequently validated using RT-qPCR in the MDA-MB-231 and MDA-MB-468 TNBC cells following atezolizumab treatment. Bioinformatics analysis revealed that atezolizumab downregulates genes promoting cell migration/invasion and metastasis, epithelial-mesenchymal transition (EMT), cell growth/proliferation/survival, and hypoxia. On the contrary, genes associated with apoptosis and DNA repair were upregulated in response to atezolizumab treatment. Gene set enrichment analyses revealed that a significant number of these genes are related to the NF-kB, PI3K/Akt/mTOR, MAPK, and CD40 signaling pathways. Using functional assays, we confirmed that atezolizumab increases MDA-MB-231 cell apoptosis/necrosis, and reduces their proliferation and viability. Collectively, our findings provide novel insights into the molecular mechanisms/signaling pathways by which atezolizumab exerts inhibitory effects on TNBC, thereby inhibiting EMT/metastasis, tumor growth/survival, and the induction of hypoxia.
Collapse
Affiliation(s)
- Reem Saleh
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Rowaida Z Taha
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Varun Sasidharan Nair
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Nehad M Alajez
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Eyad Elkord
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar.
| |
Collapse
|
26
|
Liu H, Sun Y, Qi X, Gordon RE, O'Brien JA, Yuan H, Zhang J, Wang Z, Zhang M, Song Y, Yu C, Gu C. EZH2 Phosphorylation Promotes Self-Renewal of Glioma Stem-Like Cells Through NF-κB Methylation. Front Oncol 2019; 9:641. [PMID: 31380279 PMCID: PMC6652807 DOI: 10.3389/fonc.2019.00641] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/01/2019] [Indexed: 12/20/2022] Open
Abstract
Cancer stem-like cells (CSCs) is a cell population in glioma with capacity of self-renewal and is critical in glioma tumorigenesis. Parallels between CSCs and normal stem cells suggest that CSCs give rise to tumors. Oncogenic roles of maternal embryonic leucine-zipper kinase (MELK) and enhancer of zeste homolog 2 (EZH2) have been reported to play a crucial role in glioma tumorigenesis. Herein, we focus on mechanistic contributions of downstream molecules to maintaining stemness of glioma stem-like cells (GSCs). Transcriptional factor, NF-κB, co-locates with MELK/EZH2 complex. Clinically, we observe that the proportion of MELK/EZH2/NF-κB complex is elevated in high-grade gliomas, which is associated with poor prognosis in patients and correlates negatively with survival. We describe the interaction between these three proteins. Specifically, MELK induces EZH2 phosphorylation, which subsequently binds to and methylates NF-κB, leading to tumor proliferation and persistence of stemness. Furthermore, the interaction between MELK/EZH2 complex and NF-κB preferentially occurs in GSCs compared with non-stem-like tumor cells. Conversely, loss of this signaling dramatically suppresses the self-renewal capability of GSCs. In conclusion, our findings suggest that the GSCs depend on EZH2 phosphorylation to maintain the immature status and promote self-proliferation through NF-κB methylation, and represent a novel therapeutic target in this difficult to treat malignancy.
Collapse
Affiliation(s)
- Hailong Liu
- Department of Neurosurgery, Sanbo Brain Hospital Capital Medical University, Beijing, China.,Department of Neurosurgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Youliang Sun
- School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Xueling Qi
- Department of Neuropathology, Sanbo Brain Hospital Capital Medical University, Beijing, China
| | - Renata E Gordon
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Jenny A O'Brien
- Department of Internal Medicine, Temple University Health System, Philadelphia, PA, United States
| | - Hongyu Yuan
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junping Zhang
- Department of Neurosurgery, Sanbo Brain Hospital Capital Medical University, Beijing, China
| | - Zeyuan Wang
- School of Pharmacy, Temple University, Philadelphia, PA, United States
| | - Mingshan Zhang
- Department of Neurosurgery, Sanbo Brain Hospital Capital Medical University, Beijing, China
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunjiang Yu
- Department of Neurosurgery, Sanbo Brain Hospital Capital Medical University, Beijing, China
| | - Chunyu Gu
- Department of Neurosurgery, Sanbo Brain Hospital Capital Medical University, Beijing, China
| |
Collapse
|
27
|
Vishnubalaji R, Shaath H, Elkord E, Alajez NM. Long non-coding RNA (lncRNA) transcriptional landscape in breast cancer identifies LINC01614 as non-favorable prognostic biomarker regulated by TGFβ and focal adhesion kinase (FAK) signaling. Cell Death Discov 2019; 5:109. [PMID: 31263577 PMCID: PMC6591245 DOI: 10.1038/s41420-019-0190-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 06/05/2019] [Indexed: 12/29/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) represent a class of epigenetic regulators implicated in a number of physiological and pathological conditions. Herein, we characterized the lncRNA expression portrait from 837 patients with invasive breast cancer and 105 normals from the cancer genome atlas (TCGA), which revealed eighteen upregulated and forty-six downregulated lncRNAs. Clustering analysis revealed distinct lncRNA profile for the triple negative breast cancer (TNBC) and normal breast tissue, while less separation was observed among the HER2+HR+, HER2+HR−, HER2−HR+ molecular subtypes. LINC01614, and LINC01235 correlated with worse disease-free survival (DFS), while the expression of lnc-LRR1–1, lnc-ODF3B-2, AC015712.5, lnc-LAMB3–1, lnc-SPP2–3, and lnc-MAP9–2 correlated with better DFS. The expression of LINC01235 correlated with worse overall survival (OS), while the expression of MIR205HG, lnc-MAP2K6–5, FGF14-AS2, lnc-SPP2–3 correlated with better OS. Highest expression of LINC01614 was observed in progesterone receptor (PR)+, Estrogen receptor (PR)+, and HER2+ tumors, while lowest expression was in TNBC. Concordantly, LINC01614 was highly expressed in the luminalB/HER2+ subtype from the SRP062132 dataset. Elevated expression of LINC01614 was subsequently validated in primary breast cancer tissue and breast cancer cell lines. Bioinformatics and pathway analyses on LINC01614high vs. LINC01614low BC tissue revealed TGFβ1 and ECM as the most activated networks in LINC01614high tumors. Concordantly, strong correlation between the expression of LINC01614 and COL10A1 (R2 = 0.6929), SPOCK1 (R2 = 0.5156), ZEB1 (R2 = 0.3372), TGFBI (R2 = 0.2978), TGFB1 (R2 = 0.1985), ACTA2 (R2 = 0.1833), and TAGLN (R2 = 0.1909) was observed. Mechanistically, exogenous TGFB1 induced LINC01614 expression in the BT474 triple positive BC model, while small-molecule inhibition of transforming growth factor β (TGFβ, SB-431542) or focal adhesion kinase (FAK, PF-573228) abrogated LINC01614 expression. Our data revealed the lncRNA transcription landscape in breast cancer and its molecular subtypes. Our data provide novel insight implicating LINC01614 as unfavorable prognostic marker in BC, its association with the HR+/HER2+ BC molecular subtype and its regulation by TGFβ and FAK signaling.
Collapse
Affiliation(s)
- Radhakrishnan Vishnubalaji
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110 Doha, Qatar
| | - Hibah Shaath
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110 Doha, Qatar
| | - Eyad Elkord
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110 Doha, Qatar
| | - Nehad M Alajez
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110 Doha, Qatar
| |
Collapse
|
28
|
Neoplastic Transformation of Human Mesenchymal Stromal Cells Mediated via LIN28B. Sci Rep 2019; 9:8101. [PMID: 31147574 PMCID: PMC6542832 DOI: 10.1038/s41598-019-44536-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 05/20/2019] [Indexed: 01/12/2023] Open
Abstract
Bone marrow stromal (Mesenchymal) stem cells (MSCs) are multipotent bone cells capable of differentiating into mesoderm-type cells, such as osteoblasts and adipocytes. Existing evidence suggests that transformation of MSCs gives rise to sarcoma. In order to identify the molecular mechanism leading to spontaneous transformation of human bone marrow MSCs (hBMSCs), we performed comprehensive microRNA (miRNA) and mRNA profiling in the transformed hBMSC-Tum line compared to the parental clone. As a result, we identified multiple dysregulated molecular networks associated with the hBMSC transformed phenotype. LIN28B was upregulated 177.0-fold in hBMSC-Tum, which was associated with marked reduction in LET-7 expression and upregulated expression of its target HMGA2. Targeted depletion of LIN28B or exogenous expression of LET-7b suppressed hBMSC-Tum proliferation, colony formation, and migration. On the other hand, forced expression of LIN28B promoted malignant transformation of parental hBMSC cells as shown by enhanced in vitro colony formation, doxorubicin resistance, and in vivo tumor formation in immunocompromised mice. Analysis of LIN28B and HMGA2 expression levels in cohorts from The Cancer Genome Atlas sarcoma dataset revealed a strong inverse-relationship between elevated expression and overall survival (OS) in 260 patients (p = 0.005) and disease-free survival (DFS) in 231 patients (p = 0.02), suggesting LIN28B and HMGA2 are important regulators of sarcoma biology. Our results highlight an important role for the LIN28B/LET-7 axis in human sarcoma pathogenesis and suggest that the therapeutic targeting of LIN28B may be relevant for patients with sarcoma.
Collapse
|
29
|
Relevance of a TCGA-derived Glioblastoma Subtype Gene-Classifier among Patient Populations. Sci Rep 2019; 9:7442. [PMID: 31092847 PMCID: PMC6520485 DOI: 10.1038/s41598-019-43173-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 04/17/2019] [Indexed: 12/28/2022] Open
Abstract
Glioblastoma multiforme (GBM), a deadly cancer, is the most lethal and common malignant brain tumor, and the leading cause of death in adult brain tumors. While genomic data continues to rocket, clinical application and translation to patient care are lagging behind. Big data now deposited in the TCGA network offers a window to generate novel clinical hypotheses. We hypothesized that a TCGA-derived gene-classifier can be applied across different gene profiling platforms and population groups. This gene-classifier validated three robust GBM-subtypes across six different platforms, among Caucasian, Korean and Chinese populations: Three Caucasian-predominant TCGA-cohorts (Affymetrix U133A = 548, Agilent Custom-Array = 588, RNA-seq = 168), and three Asian-cohorts (Affymetrix Human Gene 1.0ST-Array = 61, Illumina = 52, Agilent 4 × 44 K = 60). To understand subtype-relevance in patient therapy, we investigated retrospective TCGA patient clinical sets. Subtype-specific patient survival outcome was similarly poor and reflected the net result of a mixture of treatment regimens with/without surgical resection. As a proof-of-concept, in subtype-specific patient-derived orthotopic xenograft (PDOX) mice, Classical-subtype demonstrated no survival difference comparing radiation-therapy versus temozolomide monotherapies. Though preliminary, a PDOX model of Proneural/Neural-subtype demonstrated significantly improved survival with temozolomide compared to radiation-therapy. A larger scale study using this gene-classifier may be useful in clinical outcome prediction and patient selection for trials based on subtyping.
Collapse
|
30
|
Zhao Y, Yang Q, Wang X, Ma W, Tian H, Liang X, Li X. AnnexinA7 down-regulation might suppress the proliferation and metastasis of human hepatocellular carcinoma cells via MAPK/ ERK pathway. Cancer Biomark 2019; 23:527-537. [PMID: 30347600 DOI: 10.3233/cbm-181651] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Hepatocellular carcinoma is one of the most fatal malignancies worldwide with high lethality. However, the exact mechanism of liver tumorigenesis is still unclear. AnnexinA7 (ANXA7) is a Ca2+-binding protein which is involved in membrane organization and dynamics and indicated a role of ANXA7 in cancer. However, the action of ANXA7 in hepatocellular carcinoma and the relative mechanism is still indistinct. OBJECTIVE To gain more insight into the biological function of ANXA7 and assess its possible influence on proliferation and metastasis capacity of human hepatocellular carcinoma cells with the relative mechanism. METHODS ANXA7 was down-regulated by RNA interference in both HepG2 and smmc-7721 cells. The decreased cell proliferation was detected by MTT method and colony formation assay. To confirm the result of cell proliferation, Ki-67 and cyclinD1 expression was examined by Western Blot. The increased apoptosis capacity of the cells was detected with cell cytometry and PI staining respectively. Bcl-2 and Bax expression was further investigated by Western blot and the decreased ration of Bcl-2/Bax might explain the increased apoptosis. RESULTS Cell metastasis showed significantly limited ability which was tested by wound healing assay and Transwell assay. Meanwhile, the key biomarkers of cell metastasis E-cadherin expression increased while MMP-9 decreased. Furthermore, we found that ANXA7 played its role via MAPK/ERK pathway. CONCLUSIONS ANXA7 might involve in the development of hepatocellular carcinoma and act as an oncogene which might be a potential therapeutic target for treatment.
Collapse
Affiliation(s)
- Yina Zhao
- Histology and Embryology Department, Chengde Medical University, Chengde 067000, Hebei, China.,Histology and Embryology Department, Chengde Medical University, Chengde 067000, Hebei, China
| | - Qiang Yang
- Central Hospital of Chengde City, Department of Surgery, Chengde 067000, Hebei, China.,Histology and Embryology Department, Chengde Medical University, Chengde 067000, Hebei, China
| | - Xiaojie Wang
- Histology and Embryology Department, Chengde Medical University, Chengde 067000, Hebei, China
| | - Wenyi Ma
- Histology and Embryology Department, Chengde Medical University, Chengde 067000, Hebei, China
| | - Huanna Tian
- Histology and Embryology Department, Chengde Medical University, Chengde 067000, Hebei, China
| | - Xiujun Liang
- Histology and Embryology Department, Chengde Medical University, Chengde 067000, Hebei, China
| | - Xin Li
- Histology and Embryology Department, Chengde Medical University, Chengde 067000, Hebei, China
| |
Collapse
|
31
|
Sadeghi Y, Tabatabaei Irani P, Rafiee L, Tajadini M, Haghjooy Javanmard S. Evaluation of rs1957106 Polymorphism of NF-κBI in Glioblastoma Multiforme in Isfahan, Iran. Adv Biomed Res 2019; 8:9. [PMID: 30820430 PMCID: PMC6385670 DOI: 10.4103/abr.abr_227_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The kB family of nuclear factor (NF-κB) is a series of transcription factors that plays a key role in regulation of immunity, cell growth, and apoptosis and is considered as the main downstream component of epidermal growth factor receptor for which there are evidence of excessive activity in most cases of glioblastoma multiform (GBM). Thus, the current information has gained evidence on NF-κBIA tumor suppressor role in GMB. SNP rs1957106 was diagnosed as a new polymorphism which affected the expression of NF-κBI and causes activation of NF-κB in GBM patients. MATERIALS AND METHODS This study was conducted on 100 cases of GBM including 47 paraffin-embedded brain tissue samples and 53 blood samples from another 53 GBM patients and 150 controls. The NF-κBI rs1957106 SNP was identified by the NCBI, and genotyping was performed by high-resolution melt (HRM) assay. Melt curves from HRM which suspected to single-nucleotide polymorphism (SNP) were selected and subjected to direct sequencing. RESULTS The distribution of allele A of NF-κβ gene in patients with GBM with 31% was not significantly different from healthy participants (27.3%) (P = 0.375). Furthermore, the distribution of AG and GG genotypes in comparison with AA genotypes did not show a significant correlation with GBM incidence (P > 0.05). CONCLUSION Findings of the present study provide evidence that the rs1957106 SNP in NF-κBIA is found more in GBM patients, but it was not statistically significant. As there are conflicting studies showing significant higher rate of this SNP in GBM, further study is suggested.
Collapse
Affiliation(s)
- Yasaman Sadeghi
- From the Department of General Medicine, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pouya Tabatabaei Irani
- From the Department of General Medicine, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Laleh Rafiee
- Department of Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohamadhasan Tajadini
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Department of Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
32
|
Wong KS, Houry WA. Recent Advances in Targeting Human Mitochondrial AAA+ Proteases to Develop Novel Cancer Therapeutics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1158:119-142. [PMID: 31452139 DOI: 10.1007/978-981-13-8367-0_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The mitochondrion is a vital organelle that performs diverse cellular functions. In this regard, the cell has evolved various mechanisms dedicated to the maintenance of the mitochondrial proteome. Among them, AAA+ ATPase-associated proteases (AAA+ proteases) such as the Lon protease (LonP1), ClpXP complex, and the membrane-bound i-AAA, m-AAA and paraplegin facilitate the clearance of misfolded mitochondrial proteins to prevent the accumulation of cytotoxic protein aggregates. Furthermore, these proteases have additional regulatory functions in multiple biological processes that include amino acid metabolism, mitochondria DNA transcription, metabolite and cofactor biosynthesis, maturation and turnover of specific respiratory and metabolic proteins, and modulation of apoptosis, among others. In cancer cells, the increase in intracellular ROS levels promotes tumorigenic phenotypes and increases the frequency of protein oxidation and misfolding, which is compensated by the increased expression of specific AAA+ proteases as part of the adaptation mechanism. The targeting of AAA+ proteases has led to the discovery and development of novel anti-cancer compounds. Here, we provide an overview of the molecular characteristics and functions of the major mitochondrial AAA+ proteases and summarize recent research efforts in the development of compounds that target these proteases.
Collapse
Affiliation(s)
- Keith S Wong
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada. .,Department of Chemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
33
|
Guo P, Yu Y, Tian Z, Lin Y, Qiu Y, Yao W, Zhang L. Upregulation of miR-96 promotes radioresistance in glioblastoma cells via targeting PDCD4. Int J Oncol 2018; 53:1591-1600. [PMID: 30066909 DOI: 10.3892/ijo.2018.4498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 02/02/2018] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most deadly brain tumor, and it is characterized by extremely poor therapeutic response and overall survival. Adjuvant radiotherapy remains the standard of care following surgical resection. Thus, elucidating the mechanisms conferring radioresistance in GBM is extremely urgent. In the present study, miR-96 was demonstrated to be significantly upregulated in radioresistant GBM cells. Knockdown of miR-96 in the radioresistant GBM cells T98G elevated the % of apoptotic cells and reduced their clonogenic formation ability following radiotherapy. By contrast, overexpression of miR-96 in the radiosensitive GBM cells U87-MG reduced the % of apoptotic cells and increased their clonogenic formation ability following radiotherapy. Results from phosphorylated-H2A histone family member X (γH2AX) foci staining and comet assays revealed that miR-96 enhanced the DNA repair processes. Furthermore, miR-96 overexpression conferred radioresistance by downregulating programmed cell death protein 4 (PDCD4). Luciferase assay results revealed that miR-96 bound to the 3'UTR of PDCD4 mRNA. Finally, U87-MG cells regained radiosensitivity following PDCD4 overexpression. Taken together, the present is the first study to establish that upregulation of miR-96 in GBM cells confers radioresistance via targeting PDCD4, which might be a potential therapeutic target for GBM.
Collapse
Affiliation(s)
- Pin Guo
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yanan Yu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Zibin Tian
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yingying Lin
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Yongming Qiu
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Weicheng Yao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Lijuan Zhang
- Institute of Cerebrovascular Diseases, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
34
|
Givechian KB, Garner C, Garban H, Rabizadeh S, Soon-Shiong P. CAD/POLD2 gene expression is associated with poor overall survival and chemoresistance in bladder urothelial carcinoma. Oncotarget 2018; 9:29743-29752. [PMID: 30038717 PMCID: PMC6049856 DOI: 10.18632/oncotarget.25701] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022] Open
Abstract
Somatic mutations in DNA repair genes have been clinically associated with chemosensitivity, although few studies have interrogated the nucleotide synthesis pathways that supply DNA repair processes. Previous work suggests that bladder urothelial carcinoma is uniquely enriched for mutations in nucleotide excision repair genes, and that these mutations are associated with response to platinum-based therapy and favorable survival. Conversely, the de novo pyrimidine synthesis pathway has recently emerged as a putative clinical target. This anabolic process is thought to supply DNA repair processes such as nucleotide excision repair; that is, DNA repair enzymes may require a sufficient nucleotide supply available to reverse the intended genotoxic damage of systemic chemotherapy in rapidly proliferating cancer cells. Therefore, we explored the prognostic complementarity between de novo pyrimidine synthesis and nucleotide excision repair expression in a total of 570 bladder urothelial carcinoma patients. Ultimately, we show that the de novo pyrimidine synthesis gene CAD is associated with poor survival (P = 0.008) and is co-altered with the nucleotide excision repair gene POLD2. High expression of POLD2 was also associated with poor overall survival (P = 0.019) and was significantly correlated with CAD expression in pre-treatment patient tumor samples (P = 2.44e-4). Expression of each gene was associated with cisplatin-based therapy resistance, and accordingly, CADhighPOLD2high patients were associated with worse survival than CADhighPOLD2low and CADlowPOLD2high patients. Together, these biomarkers could help elucidate mechanisms of chemoresistance to further personalize therapeutic strategies in bladder urothelial carcinoma.
Collapse
Affiliation(s)
| | | | - Hermes Garban
- NantBioscience, Inc. | NantWorks, Culver City, CA 90232, USA
| | - Shahrooz Rabizadeh
- NantOmics LLC, Culver City, CA 90232, USA
- NantBioscience, Inc. | NantWorks, Culver City, CA 90232, USA
| | - Patrick Soon-Shiong
- NantOmics LLC, Culver City, CA 90232, USA
- NantBioscience, Inc. | NantWorks, Culver City, CA 90232, USA
| |
Collapse
|
35
|
The non-coding landscape of head and neck squamous cell carcinoma. Oncotarget 2018; 7:51211-51222. [PMID: 27323410 PMCID: PMC5239470 DOI: 10.18632/oncotarget.9979] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 05/05/2016] [Indexed: 01/05/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is an aggressive disease marked by frequent recurrence and metastasis and stagnant survival rates. To enhance molecular knowledge of HNSCC and define a non-coding RNA (ncRNA) landscape of the disease, we profiled the transcriptome-wide dysregulation of long non-coding RNA (lncRNA), microRNA (miRNA), and PIWI-interacting RNA (piRNA) using RNA-sequencing data from 422 HNSCC patients in The Cancer Genome Atlas (TCGA). 307 non-coding transcripts differentially expressed in HNSCC were significantly correlated with patient survival, and associated with mutations in TP53, CDKN2A, CASP8, PRDM9, and FBXW7 and copy number variations in chromosomes 3, 5, 7, and 18. We also observed widespread ncRNA correlation to concurrent TP53 and chromosome 3p loss, a compelling predictor of poor prognosis in HNSCCs. Three selected ncRNAs were additionally associated with tumor stage, HPV status, and other clinical characteristics, and modulation of their expression in vitro reveals differential regulation of genes involved in epithelial-mesenchymal transition and apoptotic response. This comprehensive characterization of the HNSCC non-coding transcriptome introduces new layers of understanding for the disease, and nominates a novel panel of transcripts with potential utility as prognostic markers or therapeutic targets.
Collapse
|
36
|
Yu X, Feng L, Liu D, Zhang L, Wu B, Jiang W, Han Z, Cheng S. Quantitative proteomics reveals the novel co-expression signatures in early brain development for prognosis of glioblastoma multiforme. Oncotarget 2017; 7:14161-71. [PMID: 26895104 PMCID: PMC4924705 DOI: 10.18632/oncotarget.7416] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/29/2016] [Indexed: 12/25/2022] Open
Abstract
Although several researches have explored the similarity across development and tumorigenesis in cellular behavior and underlying molecular mechanisms, not many have investigated the developmental characteristics at proteomic level and further extended to cancer clinical outcome. In this study, we used iTRAQ to quantify the protein expression changes during macaque rhesus brain development from fetuses at gestation 70 days to after born 5 years. Then, we performed weighted gene co-expression network analysis (WGCNA) on protein expression data of brain development to identify co-expressed modules that highly expressed on distinct development stages, including early stage, middle stage and late stage. Moreover, we used the univariate cox regression model to evaluate the prognostic potentials of these genes in two independent glioblastoma multiforme (GBM) datasets. The results showed that the modules highly expressed on early stage contained more reproducible prognostic genes, including ILF2, CCT7, CCT4, RPL10A, MSN, PRPS1, TFRC and APEX1. These genes were not only associated with clinical outcome, but also tended to influence chemoresponse. These signatures identified from embryonic brain development might contribute to precise prediction of GBM prognosis and identification of novel drug targets in GBM therapies. Thus, the development could become a viable reference model for researching cancers, including identifying novel prognostic markers and promoting new therapies.
Collapse
Affiliation(s)
- Xuexin Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Lin Feng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Dianming Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Lianfeng Zhang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Bo Wu
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Wei Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Zujing Han
- BGI Tech Solutions Co. Ltd., Yantian District, Shenzhen 518083, China
| | - Shujun Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China.,State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| |
Collapse
|
37
|
GFAPδ/GFAPα ratio directs astrocytoma gene expression towards a more malignant profile. Oncotarget 2017; 8:88104-88121. [PMID: 29152145 PMCID: PMC5675697 DOI: 10.18632/oncotarget.21540] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/25/2017] [Indexed: 12/25/2022] Open
Abstract
Astrocytomas are the most common malignant brain tumours and are to date incurable. It is unclear how astrocytomas progress into higher malignant grades. The intermediate filament cytoskeleton is emerging as an important regulator of malignancy in several tumours. The majority of the astrocytomas express the intermediate filament protein Glial Fibrillary Acidic Protein (GFAP). Several GFAP splice variants have been identified and the main variants expressed in human astrocytoma are the GFAPα and GFAPδ isoforms. Here we show a significant downregulation of GFAPα in grade IV astrocytoma compared to grade II and III, resulting in an increased GFAPδ/α ratio. Mimicking this increase in GFAPδ/α ratio in astrocytoma cell lines and comparing the subsequent transcriptomic changes with the changes in the patient tumours, we have identified a set of GFAPδ/α ratio-regulated high-malignant and low-malignant genes. These genes are involved in cell proliferation and protein phosphorylation, and their expression correlated with patient survival. We additionally show that changing the ratio of GFAPδ/α, by targeting GFAP expression, affected expression of high-malignant genes. Our data imply that regulating GFAP expression and splicing are novel therapeutic targets that need to be considered as a treatment for astrocytoma.
Collapse
|
38
|
Cai Z, Zou Y, Hu H, Lu C, Sun W, Jiang L, Hu G. RIZ1 negatively regulates ubiquitin-conjugating enzyme E2C/UbcH10 via targeting c-Myc in meningioma. Am J Transl Res 2017; 9:2645-2655. [PMID: 28560012 PMCID: PMC5446544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/09/2017] [Indexed: 06/07/2023]
Abstract
RIZ1 has been considered as an important tumor suppressor gene. Our previous studies have already demonstrated that the expression of RIZ1 is closely related to the occurrence and development of meningioma. In addition, we also found that the expression of UbcH10 was related to the pathologic grade of meningioma which also affected the prognosis of these patients. However, we are lack of the understanding of the effect of UbcH10 on cell proliferation, cell apoptosis, cell cycle and other functions in meningioma cells. Besides, the regulation mechanism between RIZ1 and UbcH10 still remains unclear. In this study, we attempted to demonstrated that UbcH10 was a downstream target of RIZ1 and reported that UbcH10 silencing might negatively regulate cell proliferation, migration, invasion and promote apoptosis, which is similar to the cell phenotype that of over expressed RIZ1. Mechanistically, we proved that UbcH10 was a c-Myc target gene and that RIZ1 regulated UbcH10 expression in a c-Myc-dependent manner. For the first time, our study demonstrated that UbcH10 played a key role in the proliferation, metastasis and apoptosis of primary human malignant meningioma cells. In addition, the mechanism of RIZ1 regulating UbcH10 is also clear. Our study can also provide a potential target and new idea for the follow-up molecular intervention in clinical malignant meningiomas.
Collapse
Affiliation(s)
- Zheng Cai
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical UniversityShanghai 200003, China
| | - Yongxiang Zou
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical UniversityShanghai 200003, China
| | - Hongkang Hu
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical UniversityShanghai 200003, China
| | - Chengyin Lu
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical UniversityShanghai 200003, China
| | - Wei Sun
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical UniversityShanghai 200003, China
| | - Lei Jiang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical UniversityShanghai 200003, China
| | - Guohan Hu
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical UniversityShanghai 200003, China
| |
Collapse
|
39
|
Pereira MSL, Klamt F, Thomé CC, Worm PV, de Oliveira DL. Metabotropic glutamate receptors as a new therapeutic target for malignant gliomas. Oncotarget 2017; 8:22279-22298. [PMID: 28212543 PMCID: PMC5400663 DOI: 10.18632/oncotarget.15299] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 01/03/2017] [Indexed: 12/21/2022] Open
Abstract
Metabotropic glutamate receptors (mGluR) are predominantly involved in maintenance of cellular homeostasis of central nervous system. However, evidences have suggested other roles of mGluR in human tumors. Aberrant mGluR signaling has been shown to participate in transformation and maintenance of various cancer types, including malignant brain tumors. This review intends to summarize recent findings regarding the involvement of mGluR-mediated intracellular signaling pathways in progression, aggressiveness, and recurrence of malignant gliomas, mainly glioblastomas (GBM), highlighting the potential therapeutic applications of mGluR ligands. In addition to the growing number of studies reporting mGluR gene or protein expression in glioma samples (resections, lineages, and primary cultures), pharmacological blockade in vitro of mGluR1 and mGluR3 by selective ligands has been shown to be anti-proliferative and anti-migratory, decreasing activation of MAPK and PI3K pathways. In addition, mGluR3 antagonists promoted astroglial differentiation of GBM cells and also enabled cytotoxic action of temozolomide (TMZ). mGluR3-dependent TMZ toxicity was supported by increasing levels of MGMT transcripts through an intracellular signaling pathway that sequentially involves PI3K and NF-κB. Further, continuous pharmacological blockade of mGluR1 and mGluR3 have been shown to reduced growth of GBM tumor in two independent in vivo xenograft models. In parallel, low levels of mGluR3 mRNA in GBM resections may be a predictor for long survival rate of patients. Since several Phase I, II and III clinical trials are being performed using group I and II mGluR modulators, there is a strong scientifically-based rationale for testing mGluR antagonists as an adjuvant therapy for malignant brain tumors.
Collapse
Affiliation(s)
- Mery Stefani Leivas Pereira
- Department of Biochemistry, Laboratory of Cellular Neurochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil
| | - Fábio Klamt
- Department of Biochemistry, Laboratory of Cellular Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil
| | - Chairini Cássia Thomé
- Department of Biochemistry, Laboratory of Cellular Neurochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil
| | - Paulo Valdeci Worm
- Department of Neurosurgery, Cristo Redentor Hospital – GHC – Porto Alegre RS, Brazil
- Department of Neurosurgery, São José Hospital, Complexo Hospitalar Santa Casa, Porto Alegre RS, Brazil
| | - Diogo Losch de Oliveira
- Department of Biochemistry, Laboratory of Cellular Neurochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil
| |
Collapse
|
40
|
Effect of annexin A7 suppression on the apoptosis of gastric cancer cells. Mol Cell Biochem 2017; 429:33-43. [PMID: 28176245 DOI: 10.1007/s11010-016-2934-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/23/2016] [Indexed: 02/07/2023]
Abstract
Understanding the molecular mechanism of gastric cancer cell apoptosis is pivotal for the development of precise therapies targeting this disease. In the present study, we examined the effects of annexin A7 inhibition on the apoptosis of gastric cancer cells and the growth of tumour xenografts in vivo. Expression of annexin A7 in BGC823 cells was suppressed by small interference RNA, and cells apoptosis was assessed by flow cytometry. The mechanism by which annexin A7 mediates apoptosis in BGC823 cells was explored by determining the expression of key apoptosis regulators. In addition, by suppressing annexin A7 in BGC823 cells with small hairpin RNA, we studied the effects of annexin A7 inhibition on in vivo tumour growth. Our results showed that inhibiting annexin A7 expression induced more than fivefold increase in BGC823 cell apoptosis in vitro. This was in concord with a significant decrease of Bcl-2 expression and increases of Bax, Caspase-3, and Caspase-9. The activities of caspase-3 and caspase-9 were increased by 2.95 ± 0.18 and 3.70 ± 0.33 times, respectively, upon the annexin A7 downregulation in BGC823 cells. Importantly, suppressing annexin A7 showed the same apoptotic mechanism in vivo and significantly inhibited the growth of BGC823 xenografts in mice. These data suggest that annexin A7 likely protects gastric cells from apoptosis and targeting it may represent a valuable strategy in future therapeutic development.
Collapse
|
41
|
Abstract
Chromosomal abnormalities, including homozygous deletions and loss of heterozygosity at 10q, are commonly observed in most human tumors, including prostate, breast, and kidney cancers. The ANXA7-GTPase is a tumor suppressor, which is frequently inactivated by genomic alterations at 10q21. In the last few years, considerable amounts of data have accumulated describing inactivation of ANXA7-GTPase in a variety of human malignancies and demonstrating the tumor suppressor potential of ANXA7-GTPase. ANXA7-GTPase contains a calcium binding domain that classifies it as a member of the annexin family. The cancer-specific expression of ANXA7-GTPase, coupled with its importance in regulating cell death, cell motility, and invasion, makes it a useful diagnostic marker of cancer and a potential target for cancer treatment. Recently, emerging evidence suggests that ANXA7-GTPase is a critical factor associated with the metastatic state of several cancers and can be used as a risk biomarker for HER2 negative breast cancer patients. Cross talk between ANXA7, PTEN, and EGFR leads to constitutive activation of PI3K-AKT signaling, a central pathway of tumor cell survival and proliferation. This review focuses on the recent progress in understanding the tumor suppressor functions of ANXA7-GTPase emphasizing the role of this gene in Ca2+ metabolism, and exploring opportunities for function as an example of a calcium binding GTPase acting as a tumor suppressor and opportunities for ANXA7-GTPase gene cancer therapy.
Collapse
|
42
|
Canisius S, Martens JWM, Wessels LFA. A novel independence test for somatic alterations in cancer shows that biology drives mutual exclusivity but chance explains most co-occurrence. Genome Biol 2016; 17:261. [PMID: 27986087 PMCID: PMC5162102 DOI: 10.1186/s13059-016-1114-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/21/2016] [Indexed: 01/08/2023] Open
Abstract
In cancer, mutually exclusive or co-occurring somatic alterations across genes can suggest functional interactions. Existing tests for such patterns make the unrealistic assumption of identical gene alteration probabilities across tumors. We present Discrete Independence Statistic Controlling for Observations with Varying Event Rates (DISCOVER), a novel test that is more sensitive than other methods and controls its false positive rate. A pan-cancer analysis using DISCOVER finds no evidence for widespread co-occurrence, and most co-occurrences previously detected do not exceed expectation by chance. Many mutual exclusivities are identified involving well-known genes related to cell cycle and growth factor signaling, as well as lesser known regulators of Hedgehog signaling.
Collapse
Affiliation(s)
- Sander Canisius
- Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Lodewyk F A Wessels
- Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands. .,Faculty of EEMCS, Delft University of Technology, Delft, The Netherlands. .,Cancer Genomics Netherlands, Amsterdam, The Netherlands.
| |
Collapse
|
43
|
Zhang H, Deng Y, Zhang Y, Ping Y, Zhao H, Pang L, Zhang X, Wang L, Xu C, Xiao Y, Li X. Cooperative genomic alteration network reveals molecular classification across 12 major cancer types. Nucleic Acids Res 2016; 45:567-582. [PMID: 27899621 PMCID: PMC5314758 DOI: 10.1093/nar/gkw1087] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 10/18/2016] [Accepted: 10/27/2016] [Indexed: 11/22/2022] Open
Abstract
The accumulation of somatic genomic alterations that enables cells to gradually acquire growth advantage contributes to tumor development. This has the important implication of the widespread existence of cooperative genomic alterations in the accumulation process. Here, we proposed a computational method HCOC that simultaneously consider genetic context and downstream functional effects on cancer hallmarks to uncover somatic cooperative events in human cancers. Applying our method to 12 TCGA cancer types, we totally identified 1199 cooperative events with high heterogeneity across human cancers, and then constructed a pan-cancer cooperative alteration network. These cooperative events are associated with genomic alterations of some high-confident cancer drivers, and can trigger the dysfunction of hallmark associated pathways in a co-defect way rather than single alterations. We found that these cooperative events can be used to produce a prognostic classification that can provide complementary information with tissue-of-origin. In a further case study of glioblastoma, using 23 cooperative events identified, we stratified patients into molecularly relevant subtypes with a prognostic significance independent of the Glioma-CpG Island Methylator Phenotype (GCIMP). In summary, our method can be effectively used to discover cancer-driving cooperative events that can be valuable clinical markers for patient stratification.
Collapse
Affiliation(s)
- Hongyi Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yulan Deng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yong Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yanyan Ping
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Hongying Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Lin Pang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Xinxin Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Li Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Chaohan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yun Xiao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| |
Collapse
|
44
|
Dimitrakopoulos CM, Beerenwinkel N. Computational approaches for the identification of cancer genes and pathways. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2016; 9. [PMID: 27863091 PMCID: PMC5215607 DOI: 10.1002/wsbm.1364] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 07/26/2016] [Accepted: 08/23/2016] [Indexed: 12/27/2022]
Abstract
High‐throughput DNA sequencing techniques enable large‐scale measurement of somatic mutations in tumors. Cancer genomics research aims at identifying all cancer‐related genes and solid interpretation of their contribution to cancer initiation and development. However, this venture is characterized by various challenges, such as the high number of neutral passenger mutations and the complexity of the biological networks affected by driver mutations. Based on biological pathway and network information, sophisticated computational methods have been developed to facilitate the detection of cancer driver mutations and pathways. They can be categorized into (1) methods using known pathways from public databases, (2) network‐based methods, and (3) methods learning cancer pathways de novo. Methods in the first two categories use and integrate different types of data, such as biological pathways, protein interaction networks, and gene expression measurements. The third category consists of de novo methods that detect combinatorial patterns of somatic mutations across tumor samples, such as mutual exclusivity and co‐occurrence. In this review, we discuss recent advances, current limitations, and future challenges of these approaches for detecting cancer genes and pathways. We also discuss the most important current resources of cancer‐related genes. WIREs Syst Biol Med 2017, 9:e1364. doi: 10.1002/wsbm.1364 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Christos M Dimitrakopoulos
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| |
Collapse
|
45
|
Izreig S, Samborska B, Johnson R, Sergushichev A, Ma E, Lussier C, Loginicheva E, Donayo A, Poffenberger M, Sagan S, Vincent E, Artyomov M, Duchaine T, Jones R. The miR-17 ∼ 92 microRNA Cluster Is a Global Regulator of Tumor Metabolism. Cell Rep 2016; 16:1915-28. [DOI: 10.1016/j.celrep.2016.07.036] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/02/2016] [Accepted: 07/14/2016] [Indexed: 02/07/2023] Open
|
46
|
Itakura H, Achrol AS, Mitchell LA, Loya JJ, Liu T, Westbroek EM, Feroze AH, Rodriguez S, Echegaray S, Azad TD, Yeom KW, Napel S, Rubin DL, Chang SD, Harsh GR, Gevaert O. Magnetic resonance image features identify glioblastoma phenotypic subtypes with distinct molecular pathway activities. Sci Transl Med 2016; 7:303ra138. [PMID: 26333934 DOI: 10.1126/scitranslmed.aaa7582] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glioblastoma (GBM) is the most common and highly lethal primary malignant brain tumor in adults. There is a dire need for easily accessible, noninvasive biomarkers that can delineate underlying molecular activities and predict response to therapy. To this end, we sought to identify subtypes of GBM, differentiated solely by quantitative magnetic resonance (MR) imaging features, that could be used for better management of GBM patients. Quantitative image features capturing the shape, texture, and edge sharpness of each lesion were extracted from MR images of 121 single-institution patients with de novo, solitary, unilateral GBM. Three distinct phenotypic "clusters" emerged in the development cohort using consensus clustering with 10,000 iterations on these image features. These three clusters--pre-multifocal, spherical, and rim-enhancing, names reflecting their image features--were validated in an independent cohort consisting of 144 multi-institution patients with similar tumor characteristics from The Cancer Genome Atlas (TCGA). Each cluster mapped to a unique set of molecular signaling pathways using pathway activity estimates derived from the analysis of TCGA tumor copy number and gene expression data with the PARADIGM (Pathway Recognition Algorithm Using Data Integration on Genomic Models) algorithm. Distinct pathways, such as c-Kit and FOXA, were enriched in each cluster, indicating differential molecular activities as determined by the image features. Each cluster also demonstrated differential probabilities of survival, indicating prognostic importance. Our imaging method offers a noninvasive approach to stratify GBM patients and also provides unique sets of molecular signatures to inform targeted therapy and personalized treatment of GBM.
Collapse
Affiliation(s)
- Haruka Itakura
- Division of Biomedical Informatics, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Achal S Achrol
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Lex A Mitchell
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Joshua J Loya
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Tiffany Liu
- Division of Biomedical Informatics, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Erick M Westbroek
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Abdullah H Feroze
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Scott Rodriguez
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Sebastian Echegaray
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Tej D Azad
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Kristen W Yeom
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Sandy Napel
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Daniel L Rubin
- Division of Biomedical Informatics, Department of Medicine, Stanford University, Stanford, CA 94305, USA. Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Steven D Chang
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Griffith R Harsh
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Olivier Gevaert
- Division of Biomedical Informatics, Department of Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
47
|
Liu S, Wang Z, Miao J. Potential roles of annexin A7 GTPase in autophagy, senescence and apoptosis. RSC Adv 2016. [DOI: 10.1039/c6ra21736b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This review covers the roles of ANXA7 GTPase in orchestrating autophagy, senescence and apoptosis interactive networks in various cell types.
Collapse
Affiliation(s)
- ShuYan Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100
- China
| | - ZhaoYang Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100
- China
| | - JunYing Miao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100
- China
| |
Collapse
|
48
|
Loss of Heterozygosity of 9p Is Associated with Poorer Survival in Patients with Gliomas. Mol Neurobiol 2015; 53:6407-6412. [PMID: 26582467 DOI: 10.1007/s12035-015-9523-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 11/03/2015] [Indexed: 01/11/2023]
Abstract
The prognostic factors associated with the survival of glioma patients have not been well established. Loss of heterozygosity (LOH) of 9p was known to be a typical molecular signature of gliomas, but it was still unclear whether LOH of 9p was associated with poorer survival in patients with gliomas. We searched PubMed and Embase databases from the earliest records to May 2015 to identify studies that met the inclusion criteria. Either a fixed- or a random-effects model was used to calculate the pooled hazard ratio (HR) according to the between-study heterogeneity. Thirteen eligible studies involving 1465 cases of gliomas were included in the meta-analysis. There was little between-study heterogeneity (I 2 = 15 %), and the fixed-effects model was used to calculate the pooled HR. Meta-analysis of total 13 studies showed that LOH of 9p was significantly associated with poorer prognosis of glioma patients (HR = 1.39, 95%CI 1.17-1.64, P = 0.0002). Meta-analysis of eight studies reporting adjusted estimates showed that LOH of 9p was independently associated with poorer prognosis of glioma patients (HR = 1.40, 95%CI 1.14-1.72, P = 0.001). Subgroup analysis by types of gliomas showed that LOH of 9p was significantly associated with poorer prognosis in patients with glioblastoma (HR = 1.34, 95%CI 1.01-1.78, P = 0.04). There was no obvious risk of publication bias shown in the funnel plot. LOH of 9p is significantly associated with poorer prognosis of glioma patients, which is a useful biomarker in predicting patients' survival.
Collapse
|
49
|
Lee EJ, Rath P, Liu J, Ryu D, Pei L, Noonepalle SK, Shull AY, Feng Q, Litofsky NS, Miller DC, Anthony DC, Kirk MD, Laterra J, Deng L, Xin HB, Wang X, Choi JH, Shi H. Identification of Global DNA Methylation Signatures in Glioblastoma-Derived Cancer Stem Cells. J Genet Genomics 2015; 42:355-71. [PMID: 26233891 PMCID: PMC4648292 DOI: 10.1016/j.jgg.2015.06.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 06/17/2015] [Accepted: 06/17/2015] [Indexed: 12/15/2022]
Abstract
Glioblastoma (GBM) is the most common and most aggressive primary brain tumor in adults. The existence of a small population of stem-like tumor cells that efficiently propagate tumors and resist cytotoxic therapy is one proposed mechanism leading to the resilient behavior of tumor cells and poor prognosis. In this study, we performed an in-depth analysis of the DNA methylation landscape in GBM-derived cancer stem cells (GSCs). Parallel comparisons of primary tumors and GSC lines derived from these tumors with normal controls (a neural stem cell (NSC) line and normal brain tissue) identified groups of hyper- and hypomethylated genes that display a trend of either increasing or decreasing methylation levels in the order of controls, primary GBMs, and their counterpart GSC lines, respectively. Interestingly, concurrent promoter hypermethylation and gene body hypomethylation were observed in a subset of genes including MGMT, AJAP1 and PTPRN2. These unique DNA methylation signatures were also found in primary GBM-derived xenograft tumors indicating that they are not tissue culture-related epigenetic changes. Integration of GSC-specific epigenetic signatures with gene expression analysis further identified candidate tumor suppressor genes that are frequently down-regulated in GBMs such as SPINT2, NEFM and PENK. Forced re-expression of SPINT2 reduced glioma cell proliferative capacity, anchorage independent growth, cell motility, and tumor sphere formation in vitro. The results from this study demonstrate that GSCs possess unique epigenetic signatures that may play important roles in the pathogenesis of GBM.
Collapse
Affiliation(s)
- Eun-Joon Lee
- GRU Cancer Center, Georgia Regents University, Augusta, GA 30912, USA
| | - Prakash Rath
- Department of Biology, College of Art and Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Jimei Liu
- GRU Cancer Center, Georgia Regents University, Augusta, GA 30912, USA
| | - Dungsung Ryu
- GRU Cancer Center, Georgia Regents University, Augusta, GA 30912, USA
| | - Lirong Pei
- GRU Cancer Center, Georgia Regents University, Augusta, GA 30912, USA
| | - Satish K Noonepalle
- GRU Cancer Center, Georgia Regents University, Augusta, GA 30912, USA; Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA 30912, USA
| | - Austin Y Shull
- GRU Cancer Center, Georgia Regents University, Augusta, GA 30912, USA; Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA 30912, USA
| | - Qi Feng
- Division of Neurological Surgery, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | - N Scott Litofsky
- Division of Neurological Surgery, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | - Douglas C Miller
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | - Douglas C Anthony
- Department of Pathology and Laboratory Medicine, Brown University and Lifespan Academic Medical Center, Providence, RI 02903, USA
| | - Mark D Kirk
- Department of Biology, College of Art and Sciences, University of Missouri, Columbia, MO 65211, USA
| | - John Laterra
- Department of Neurology, The Hugo W. Moser Research Institute at Kennedy Krieger Inc. and The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Libin Deng
- Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Hong-Bo Xin
- Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Xinguo Wang
- David H. Murdock Research Institute, Kannapolis, NC 28081, USA
| | - Jeong-Hyeon Choi
- GRU Cancer Center, Georgia Regents University, Augusta, GA 30912, USA; Department of Biostatistics and Epidemiology, Georgia Regents University, Augusta, GA 30912, USA.
| | - Huidong Shi
- GRU Cancer Center, Georgia Regents University, Augusta, GA 30912, USA; Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA 30912, USA.
| |
Collapse
|
50
|
Aum DJ, Kim DH, Beaumont TL, Leuthardt EC, Dunn GP, Kim AH. Molecular and cellular heterogeneity: the hallmark of glioblastoma. Neurosurg Focus 2015; 37:E11. [PMID: 25434380 DOI: 10.3171/2014.9.focus14521] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
There has been increasing awareness that glioblastoma, which may seem histopathologically similar across many tumors, actually represents a group of molecularly distinct tumors. Emerging evidence suggests that cells even within the same tumor exhibit wide-ranging molecular diversity. Parallel to the discoveries of molecular heterogeneity among tumors and their individual cells, intense investigation of the cellular biology of glioblastoma has revealed that not all cancer cells within a given tumor behave the same. The identification of a subpopulation of brain tumor cells termed "glioblastoma cancer stem cells" or "tumor-initiating cells" has implications for the management of glioblastoma. This focused review will therefore summarize emerging concepts on the molecular and cellular heterogeneity of glioblastoma and emphasize that we should begin to consider each individual glioblastoma to be an ensemble of molecularly distinct subclones that reflect a spectrum of dynamic cell states.
Collapse
|