1
|
Vaccines against Emerging and Neglected Infectious Diseases: An Overview. Vaccines (Basel) 2022; 10:vaccines10091385. [PMID: 36146463 PMCID: PMC9503027 DOI: 10.3390/vaccines10091385] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 12/25/2022] Open
Abstract
Neglected Tropical Diseases (NTDs) are a group of diseases that are highly prevalent in tropical and subtropical regions, and closely associated with poverty and marginalized populations. Infectious diseases affect over 1.6 billion people annually, and vaccines are the best prophylactic tool against them. Along with NTDs, emerging and reemerging infectious diseases also threaten global public health, as they can unpredictably result in pandemics. The recent advances in vaccinology allowed the development and licensing of new vaccine platforms that can target and prevent these diseases. In this work, we discuss the advances in vaccinology and some of the difficulties found in the vaccine development pipeline for selected NTDs and emerging and reemerging infectious diseases, including HIV, Dengue, Ebola, Chagas disease, malaria, leishmaniasis, zika, and chikungunya.
Collapse
|
2
|
Bai Y, Wang Q, Liu M, Bian L, Liu J, Gao F, Mao Q, Wang Z, Wu X, Xu M, Liang Z. The next major emergent infectious disease: reflections on vaccine emergency development strategies. Expert Rev Vaccines 2022; 21:471-481. [PMID: 35080441 DOI: 10.1080/14760584.2022.2027240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Major emergent infectious diseases (MEID) pose the most serious threat to human health. The research proposes targeted response strategies for the prevention and control of potential MEID. AREAS COVERED Based on the analysis of infectious diseases, this research analyzes pandemics that have a high probability of occurrence and aims to synthesize the past experience and lessons learned of controlling infectious diseases such as coronavirus, influenza, Ebola, etc. In addition, by integrating major infectious disease response guidelines developed by WHO, the European Union, the United States, and the United Kingdom, we intend to bring forward national vaccine R&D development strategies for emergency use. EXPERT OPINION We advise to establish and improve existing laws, regulations, and also prevention and control systems for the emergent R&D and application of vaccines in response to potential infectious diseases. The strategies would not only help increase the various abilities in response to the research, development, evaluation, production, and supervision of emergency vaccines, but also establish surrogate endpoint of immunogenicity protection in early clinical studies to enable a rapid evaluation of the efficacy of emergency vaccines.
Collapse
Affiliation(s)
- Yu Bai
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China.,NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, China.,NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| | - Qian Wang
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China.,NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, China.,NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| | - Mingchen Liu
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China.,NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, China.,NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| | - Lianlian Bian
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China.,NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, China.,NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| | - Jianyang Liu
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China.,NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, China.,NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| | - Fan Gao
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China.,NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, China.,NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| | - Qunying Mao
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China.,NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, China.,NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| | - Zhongfang Wang
- Guangzhou Laboratory. No. 9 XingDaoHuanBei Road, Guangzhou, China
| | - Xing Wu
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China.,NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, China.,NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| | - Miao Xu
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China.,NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, China.,NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| | - Zhenglun Liang
- Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, China.,NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, China.,NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| |
Collapse
|
3
|
Näslund J, Ahlm C, Islam K, Evander M, Bucht G, Lwande OW. Emerging Mosquito-Borne Viruses Linked to Aedes aegypti and Aedes albopictus: Global Status and Preventive Strategies. Vector Borne Zoonotic Dis 2021; 21:731-746. [PMID: 34424778 DOI: 10.1089/vbz.2020.2762] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Emerging mosquito-borne viruses continue to cause serious health problems and economic burden among billions of people living in and near the tropical belt of the world. The highly invasive mosquito species Aedes aegypti and Aedes albopictus have successively invaded and expanded their presence as key vectors of Chikungunya virus, dengue virus, yellow fever virus, and Zika virus, and that has consecutively led to frequent outbreaks of the corresponding viral diseases. Of note, these two mosquito species have gradually adapted to the changing weather and environmental conditions leading to a shift in the epidemiology of the viral diseases, and facilitated their establishment in new ecozones inhabited by immunologically naive human populations. Many abilities of Ae. aegypti and Ae. albopictus, as vectors of significant arbovirus pathogens, may affect the infection and transmission rates after a bloodmeal, and may influence the vector competence for either virus. We highlight that many collaborating risk factors, for example, the global transportation systems may result in sporadic and more local outbreaks caused by mosquito-borne viruses related to Ae. aegypti and/or Ae. albopictus. Those local outbreaks could in synergy grow and produce larger epidemics with pandemic characters. There is an urgent need for improved surveillance of vector populations, human cases, and reliable prediction models. In summary, we recommend new and innovative strategies for the prevention of these types of infections.
Collapse
Affiliation(s)
- Jonas Näslund
- Swedish Defence Research Agency, CBRN, Defence and Security, Umeå, Sweden
| | - Clas Ahlm
- Department of Clinical Microbiology, Umeå University, Umea, Sweden.,Arctic Research Centre at Umeå University, Umea, Sweden
| | - Koushikul Islam
- Department of Clinical Microbiology, Umeå University, Umea, Sweden
| | - Magnus Evander
- Department of Clinical Microbiology, Umeå University, Umea, Sweden.,Arctic Research Centre at Umeå University, Umea, Sweden
| | - Göran Bucht
- Department of Clinical Microbiology, Umeå University, Umea, Sweden
| | - Olivia Wesula Lwande
- Department of Clinical Microbiology, Umeå University, Umea, Sweden.,Arctic Research Centre at Umeå University, Umea, Sweden
| |
Collapse
|
5
|
Comas-Garcia M, Colunga-Saucedo M, Rosales-Mendoza S. The Role of Virus-Like Particles in Medical Biotechnology. Mol Pharm 2020; 17:4407-4420. [PMID: 33147978 DOI: 10.1021/acs.molpharmaceut.0c00828] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Virus-like particles (VLPs) are protein-based, nanoscale, self-assembling, cage architectures, which have relevant applications in biomedicine. They can be used for the development of vaccines, imaging approaches, drug and gene therapy delivery systems, and in vitro diagnostic methods. Today, three relevant viruses are targeted using VLP-based recombinant vaccines. VLP-based drug delivery, nanoreactors for therapy, and imaging systems are approaches under development with promising outcomes. Several VLP-based vaccines are under clinical evaluation. Herein, an updated view on the VLP-based biomedical applications is provided; advanced methods for the production, functionalization, and drug loading of VLPs are described, and perspectives for the field are identified.
Collapse
Affiliation(s)
- Mauricio Comas-Garcia
- Department of Sciences, Autonomous University of San Luis Potosi, San Luis Potosi 78295, México.,Genomic Medicine Section, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosi, San Luis Potosi 78210, México.,High-Resolution Microscopy Section, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosi, San Luis Potosi 78210, México
| | - Mayra Colunga-Saucedo
- Genomic Medicine Section, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosi, San Luis Potosi 78210, México
| | - Sergio Rosales-Mendoza
- Departament of Chemical Sciences, Autonomous University of San Luis Potosi, San Luis Potosi 78210, México.,Biotechnology Section, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosi, San Luis Potosi 78210, México
| |
Collapse
|