1
|
Connelly KA, Ge Y. Quantitative Myocardial Perfusion Imaging: A Case of "More Than Meets the Eye?". JACC Cardiovasc Imaging 2024; 17:1442-1444. [PMID: 39632043 DOI: 10.1016/j.jcmg.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 12/07/2024]
Affiliation(s)
- Kim A Connelly
- Division of Cardiology, Terrence Donnelly Heart Centre, St Michael's Hospital, 30 Bond Street, Toronto, Canada; University of Toronto, Toronto, Canada; Keenan Research Centre, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Canada.
| | - Yin Ge
- Division of Cardiology, Terrence Donnelly Heart Centre, St Michael's Hospital, 30 Bond Street, Toronto, Canada; University of Toronto, Toronto, Canada
| |
Collapse
|
2
|
Leungratanamart N, Wanitchung K, Prechawuttidech S, Karaketklang K, Kaolawanich Y. Prognostic value of stress perfusion cardiac magnetic resonance in patients with prediabetes and suspected coronary artery disease. PLoS One 2024; 19:e0311875. [PMID: 39388498 PMCID: PMC11466432 DOI: 10.1371/journal.pone.0311875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Stress perfusion cardiac magnetic resonance (CMR) is an accurate and comprehensive modality for evaluating patients with suspected coronary artery disease (CAD), but its prognostic value in prediabetic patients is uncertain. METHODS This retrospective study included 452 consecutive prediabetic patients without prior diagnoses of CAD who underwent adenosine stress perfusion CMR. The primary endpoint was major adverse cardiovascular events (MACE), defined as cardiovascular death, nonfatal myocardial infarction (MI), hospitalization for heart failure, ischemic stroke, and late coronary revascularization (>90 days post-CMR). The secondary endpoint was a composite of cardiovascular death, nonfatal MI, and hospitalization for heart failure. RESULTS The mean age was 68±11 years (49% male). Over a median follow-up time of 8.1 (IQR 5.7, 10.4) years, 55 patients experienced MACE, and 24 met the secondary endpoint. Patients with inducible ischemia had significantly greater annualized event rates for MACE (5.7% vs. 0.7%, p<0.001) and for the secondary endpoint (2.0% vs. 0.3%, p<0.001) than those without ischemia. Multivariable analysis revealed inducible ischemia as a consistent predictor for MACE (HR 3.36, 95%CI 1.90-5.94, p<0.001) and for the secondary endpoint (HR 2.89, 95%CI 1.22-6.80, p = 0.01). Late gadolinium enhancement (LGE) was an independent predictor of the secondary endpoint (HR 3.56, 95%CI 1.25-10.13; p = 0.02). Incorporating inducible ischemia and LGE data significantly improved the model's ability to discriminate MACE risk (C-statistic increase from 0.77 to 0.83; net reclassification improvement 0.42; integrated discrimination improvement 0.05). CONCLUSION Stress perfusion CMR offers substantial independent prognostic value and effectively aids in reclassifying cardiovascular risk among prediabetic patients with suspected CAD.
Collapse
Affiliation(s)
- Norapat Leungratanamart
- Division of Cardiology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kasinee Wanitchung
- Division of Cardiology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sumet Prechawuttidech
- Division of Cardiology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Khemajira Karaketklang
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Yodying Kaolawanich
- Division of Cardiology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
3
|
Guglielmo M, Penso M, Carerj ML, Giacari CM, Volpe A, Fusini L, Baggiano A, Mushtaq S, Annoni A, Cannata F, Cilia F, Del Torto A, Fazzari F, Formenti A, Frappampina A, Gripari P, Junod D, Mancini ME, Mantegazza V, Maragna R, Marchetti F, Mastroiacovo G, Pirola S, Tassetti L, Baessato F, Corino V, Guaricci AI, Rabbat MG, Rossi A, Rovera C, Costantini P, van der Bilt I, van der Harst P, Fontana M, Caiani EG, Pepi M, Pontone G. DEep LearnIng-based QuaNtification of epicardial adipose tissue predicts MACE in patients undergoing stress CMR. Atherosclerosis 2024; 397:117549. [PMID: 38679562 DOI: 10.1016/j.atherosclerosis.2024.117549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/18/2024] [Accepted: 04/10/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND AND AIMS This study investigated the additional prognostic value of epicardial adipose tissue (EAT) volume for major adverse cardiovascular events (MACE) in patients undergoing stress cardiac magnetic resonance (CMR) imaging. METHODS 730 consecutive patients [mean age: 63 ± 10 years; 616 men] who underwent stress CMR for known or suspected coronary artery disease were randomly divided into derivation (n = 365) and validation (n = 365) cohorts. MACE was defined as non-fatal myocardial infarction and cardiac deaths. A deep learning algorithm was developed and trained to quantify EAT volume from CMR. EAT volume was adjusted for height (EAT volume index). A composite CMR-based risk score by Cox analysis of the risk of MACE was created. RESULTS In the derivation cohort, 32 patients (8.7 %) developed MACE during a follow-up of 2103 days. Left ventricular ejection fraction (LVEF) < 35 % (HR 4.407 [95 % CI 1.903-10.202]; p<0.001), stress perfusion defect (HR 3.550 [95 % CI 1.765-7.138]; p<0.001), late gadolinium enhancement (LGE) (HR 4.428 [95%CI 1.822-10.759]; p = 0.001) and EAT volume index (HR 1.082 [95 % CI 1.045-1.120]; p<0.001) were independent predictors of MACE. In a multivariate Cox regression analysis, adding EAT volume index to a composite risk score including LVEF, stress perfusion defect and LGE provided additional value in MACE prediction, with a net reclassification improvement of 0.683 (95%CI, 0.336-1.03; p<0.001). The combined evaluation of risk score and EAT volume index showed a higher Harrel C statistic as compared to risk score (0.85 vs. 0.76; p<0.001) and EAT volume index alone (0.85 vs.0.74; p<0.001). These findings were confirmed in the validation cohort. CONCLUSIONS In patients with clinically indicated stress CMR, fully automated EAT volume measured by deep learning can provide additional prognostic information on top of standard clinical and imaging parameters.
Collapse
Affiliation(s)
- Marco Guglielmo
- Department of Cardiology, Division of Heart and Lungs, Utrecht University, Utrecht University Medical Center, Utrecht, the Netherlands; Department of Cardiology, Haga Teaching Hospital, The Hague, the Netherlands
| | - Marco Penso
- Istituto Auxologico Italiano IRCCS, San Luca Hospital, Milano, Italy
| | - Maria Ludovica Carerj
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy; Department of Biomedical Sciences and Morphological and Functional Imaging, "G. Martino" University Hospital Messina, Messina, Italy
| | - Carlo Maria Giacari
- Department of Valvular and Structural Interventional Cardiology, Centro Cardiologico, Monzino IRCCS, Milan, Italy
| | - Alessandra Volpe
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Laura Fusini
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy; Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano, Milan, Italy
| | - Andrea Baggiano
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy; Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan, Italy
| | - Saima Mushtaq
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Andrea Annoni
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Francesco Cannata
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Francesco Cilia
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Alberico Del Torto
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Fabio Fazzari
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Alberto Formenti
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Antonio Frappampina
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Paola Gripari
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Daniele Junod
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Maria Elisabetta Mancini
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Valentina Mantegazza
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy; Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan, Italy
| | - Riccardo Maragna
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Francesca Marchetti
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Giorgio Mastroiacovo
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Sergio Pirola
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Luigi Tassetti
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Francesca Baessato
- Department of Cardiology, San Maurizio Regional Hospital, Bolzano, Italy
| | - Valentina Corino
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy; Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano, Milan, Italy
| | - Andrea Igoren Guaricci
- Department of Interdisciplinary Medicine Cardiology University Unit, University Hospital Polyclinic of Bari, Bari, Italy
| | - Mark G Rabbat
- Loyola University of Chicago, Chicago, IL, USA; Edward Hines Jr. VA Hospital, Hines, IL, USA
| | - Alexia Rossi
- Department of Nuclear Medicine, University Hospital, Zurich, Switzerland; Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | | | - Pietro Costantini
- Radiology Department, Ospedale Maggiore Della Carita' University Hospital, Novara, Italy
| | - Ivo van der Bilt
- Department of Cardiology, Division of Heart and Lungs, Utrecht University, Utrecht University Medical Center, Utrecht, the Netherlands; Department of Cardiology, Haga Teaching Hospital, The Hague, the Netherlands
| | - Pim van der Harst
- Department of Cardiology, Division of Heart and Lungs, Utrecht University, Utrecht University Medical Center, Utrecht, the Netherlands
| | - Marianna Fontana
- National Amyloidosis Centre, University College London, Royal Free Hospital, London, UK
| | - Enrico G Caiani
- Istituto Auxologico Italiano IRCCS, San Luca Hospital, Milano, Italy; Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano, Milan, Italy
| | - Mauro Pepi
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Gianluca Pontone
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
4
|
Guglielmo M, Pavon AG. Artificial intelligence-derived stress ejection fraction in stress cardiac magnetic resonance with dipyridamole: bridging past insights with future innovations. Eur Heart J Cardiovasc Imaging 2024; 25:1349-1350. [PMID: 39023216 DOI: 10.1093/ehjci/jeae185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/20/2024] Open
Affiliation(s)
- Marco Guglielmo
- Department of Cardiology, Division of Heart and Lungs, Utrecht University, Utrecht University Medical Center, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- Department of Cardiology, Haga Teaching Hospital, Els Borst-Eilersplein 275, 2545 AA The Hague, The Netherlands
| | - Anna Giulia Pavon
- Department of Cardiology, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Via Tesserete 48, 6900 Lugano, Switzerland
| |
Collapse
|
5
|
Vrints C, Andreotti F, Koskinas KC, Rossello X, Adamo M, Ainslie J, Banning AP, Budaj A, Buechel RR, Chiariello GA, Chieffo A, Christodorescu RM, Deaton C, Doenst T, Jones HW, Kunadian V, Mehilli J, Milojevic M, Piek JJ, Pugliese F, Rubboli A, Semb AG, Senior R, Ten Berg JM, Van Belle E, Van Craenenbroeck EM, Vidal-Perez R, Winther S. 2024 ESC Guidelines for the management of chronic coronary syndromes. Eur Heart J 2024; 45:3415-3537. [PMID: 39210710 DOI: 10.1093/eurheartj/ehae177] [Citation(s) in RCA: 120] [Impact Index Per Article: 120.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
|
6
|
Prediction of the severity of patients with chronic coronary syndrome. ASIAN BIOMED 2024; 18:146-147. [PMID: 39309473 PMCID: PMC11414773 DOI: 10.2478/abm-2024-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
|
7
|
Woods E, Bennett J, Chandrasekhar S, Newman N, Rizwan A, Siddiqui R, Khan R, Khawaja M, Krittanawong C. Efficacy of Diagnostic Testing of Suspected Coronary Artery Disease: A Contemporary Review. Cardiology 2024:1-22. [PMID: 39013364 DOI: 10.1159/000539916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/10/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Coronary artery disease (CAD) is a highly prevalent condition which can lead to myocardial ischemia as well as acute coronary syndrome. Early diagnosis of CAD can improve patient outcomes through guiding risk factor modification and treatment modalities. SUMMARY Testing for CAD comes with increased cost and risk; therefore, physicians must determine which patients require testing, and what testing modality will offer the most useful data to diagnose patients with CAD. Patients should have an initial risk stratification for pretest probability of CAD based on symptoms and available clinical data. Patients with a pretest probability less than 5% should receive no further testing, while patients with a high pretest probability should be considered for direct invasive coronary angiography. In patients with a pretest probability between 5 and 15%, coronary artery calcium score and or exercise electrocardiogram can be obtained to further risk stratify patients to low-risk versus intermediate-high-risk. Intermediate-high-risk patients should be tested with coronary computed tomography angiography (preferred) versus positron emission tomography or single photon emission computed tomography based on their individual patient characteristics and institutional availability. KEY MESSAGES This comprehensive review aimed to describe the available CAD testing modalities, detail their risks and benefits, and propose when each should be considered in the evaluation of a patient with suspected CAD.
Collapse
Affiliation(s)
- Edward Woods
- Department of Internal Medicine, Emory University, Atlanta, Georgia, USA
| | - Josiah Bennett
- Department of Internal Medicine, Emory University, Atlanta, Georgia, USA
| | | | - Noah Newman
- Department of Internal Medicine, Emory University, Atlanta, Georgia, USA
| | - Affan Rizwan
- Department of Internal Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Rehma Siddiqui
- Department of Internal Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Rabisa Khan
- Department of Anesthesiology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Muzamil Khawaja
- Division of Cardiology, Emory University, Atlanta, Georgia, USA
| | - Chayakrit Krittanawong
- Cardiology Division, NYU Langone Health and NYU School of Medicine, New York, New York, USA
| |
Collapse
|
8
|
Fu Q, Alabed S, Hoole SP, Abraham G, Weir-McCall JR. Prognostic Value of Stress Perfusion Cardiac MRI in Cardiovascular Disease: A Systematic Review and Meta-Analysis of the Effects of the Scanner, Stress Agent, and Analysis Technique. Radiol Cardiothorac Imaging 2024; 6:e230382. [PMID: 38814186 PMCID: PMC11211944 DOI: 10.1148/ryct.230382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 05/31/2024]
Abstract
Purpose To perform a systematic review and meta-analysis to assess the prognostic value of stress perfusion cardiac MRI in predicting cardiovascular outcomes. Materials and Methods A systematic literature search from the inception of PubMed, Embase, Web of Science, and China National Knowledge Infrastructure until January 2023 was performed for articles that reported the prognosis of stress perfusion cardiac MRI in predicting cardiovascular outcomes. The quality of included studies was assessed using the Quality in Prognosis Studies tool. Reported hazard ratios (HRs) of univariable regression analyses with 95% CIs were pooled. Comparisons were performed across different analysis techniques (qualitative, semiquantitative, and fully quantitative), magnetic field strengths (1.5 T vs 3 T), and stress agents (dobutamine, adenosine, and dipyridamole). Results Thirty-eight studies with 58 774 patients with a mean follow-up time of 53 months were included. There were 1.9 all-cause deaths and 3.5 major adverse cardiovascular events (MACE) per 100 patient-years. Stress-inducible ischemia was associated with a higher risk of all-cause mortality (HR: 2.55 [95% CI: 1.89, 3.43]) and MACE (HR: 3.90 [95% CI: 2.69, 5.66]). For MACE, pooled HRs of qualitative, semiquantitative, and fully quantitative methods were 4.56 (95% CI: 2.88, 7.22), 3.22 (95% CI: 1.60, 6.48), and 1.78 (95% CI: 1.39, 2.28), respectively. For all-cause mortality, there was no evidence of a difference between qualitative and fully quantitative methods (P = .79). Abnormal stress perfusion cardiac MRI findings remained prognostic when subgrouped based on underlying disease, stress agent, and field strength, with HRs of 3.54, 2.20, and 3.38, respectively, for all-cause mortality and 3.98, 3.56, and 4.21, respectively, for MACE. There was no evidence of subgroup differences in prognosis between field strengths or stress agents. There was significant heterogeneity in effect size for MACE outcomes in the subgroups assessing qualitative versus quantitative stress perfusion analysis, underlying disease, and field strength. Conclusion Stress perfusion cardiac MRI is valuable for predicting cardiovascular outcomes, regardless of the analysis method, stress agent, or magnetic field strength used. Keywords: MR-Perfusion, MRI, Cardiac, Meta-Analysis, Stress Perfusion, Cardiac MR, Cardiovascular Disease, Prognosis, Quantitative © RSNA, 2024 Supplemental material is available for this article.
Collapse
Affiliation(s)
- Qing Fu
- From the Department of Radiology, Union Hospital, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan, China (Q.F.);
Department of Radiology, Cambridge Biomedical Campus, University of Cambridge,
Box 219, Level 5, Cambridge CB2 0QQ, England (Q.F., J.R.W.M.);
Departments of Radiology (Q.F., J.R.W.M., S.A.) and Cardiology (S.P.H., G.A.),
Royal Papworth Hospital, Cambridge, England; and School of Medicine &
Population Health and INSIGNEO, Institute for In Silico Medicine, University of
Sheffield, Sheffield, England (S.A.)
| | - Samer Alabed
- From the Department of Radiology, Union Hospital, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan, China (Q.F.);
Department of Radiology, Cambridge Biomedical Campus, University of Cambridge,
Box 219, Level 5, Cambridge CB2 0QQ, England (Q.F., J.R.W.M.);
Departments of Radiology (Q.F., J.R.W.M., S.A.) and Cardiology (S.P.H., G.A.),
Royal Papworth Hospital, Cambridge, England; and School of Medicine &
Population Health and INSIGNEO, Institute for In Silico Medicine, University of
Sheffield, Sheffield, England (S.A.)
| | - Stephen P. Hoole
- From the Department of Radiology, Union Hospital, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan, China (Q.F.);
Department of Radiology, Cambridge Biomedical Campus, University of Cambridge,
Box 219, Level 5, Cambridge CB2 0QQ, England (Q.F., J.R.W.M.);
Departments of Radiology (Q.F., J.R.W.M., S.A.) and Cardiology (S.P.H., G.A.),
Royal Papworth Hospital, Cambridge, England; and School of Medicine &
Population Health and INSIGNEO, Institute for In Silico Medicine, University of
Sheffield, Sheffield, England (S.A.)
| | - George Abraham
- From the Department of Radiology, Union Hospital, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan, China (Q.F.);
Department of Radiology, Cambridge Biomedical Campus, University of Cambridge,
Box 219, Level 5, Cambridge CB2 0QQ, England (Q.F., J.R.W.M.);
Departments of Radiology (Q.F., J.R.W.M., S.A.) and Cardiology (S.P.H., G.A.),
Royal Papworth Hospital, Cambridge, England; and School of Medicine &
Population Health and INSIGNEO, Institute for In Silico Medicine, University of
Sheffield, Sheffield, England (S.A.)
| | - Jonathan R. Weir-McCall
- From the Department of Radiology, Union Hospital, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan, China (Q.F.);
Department of Radiology, Cambridge Biomedical Campus, University of Cambridge,
Box 219, Level 5, Cambridge CB2 0QQ, England (Q.F., J.R.W.M.);
Departments of Radiology (Q.F., J.R.W.M., S.A.) and Cardiology (S.P.H., G.A.),
Royal Papworth Hospital, Cambridge, England; and School of Medicine &
Population Health and INSIGNEO, Institute for In Silico Medicine, University of
Sheffield, Sheffield, England (S.A.)
| |
Collapse
|
9
|
Caprio MV, De Donno F, Bisaccia G, Mantini C, Di Baldassarre A, Gallina S, Khanji MY, Ricci F. Moderate aortic stenosis: Navigating the uncharted. Echocardiography 2024; 41:e15859. [PMID: 38853624 DOI: 10.1111/echo.15859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/18/2024] [Accepted: 05/25/2024] [Indexed: 06/11/2024] Open
Abstract
Aortic stenosis (AS) stands as the most common valvular heart disease in developed countries and is characterized by progressive narrowing of the aortic valve orifice resulting in elevated transvalvular flow resistance, left ventricular hypertrophy, and progressive increased risk of heart failure and sudden death. This narrative review explores clinical challenges and evolving perspectives in moderate AS, where discrepancies between aortic valve area and pressure gradient measurements may pose diagnostic and therapeutic quandaries. Transthoracic echocardiography is the first-line imaging modality for AS evaluation, yet cases of discordance may require the application of ancillary noninvasive diagnostic modalities. This review underscores the importance of accurate grading of AS severity, especially in low-gradient phenotypes, emphasizing the need for vigilant follow-up. Current clinical guidelines primarily recommend aortic valve replacement for severe AS, potentially overlooking latent risks in moderate disease stages. The noninvasive multimodality imaging approach-including echocardiography, cardiac magnetic resonance, computed tomography, and nuclear techniques-provides unique insights into adaptive and maladaptive cardiac remodeling in AS and offers a promising avenue to deliver precise indications and exact timing for intervention in moderate AS phenotypes and asymptomatic patients, potentially improving long-term outcomes. Nevertheless, what we may have gleaned from a large amount of observational data is still insufficient to build a robust framework for clinical decision-making in moderate AS. Future research will prioritize randomized clinical trials designed to weigh the benefits and risks of preemptive aortic valve replacement in the management of moderate AS, as directed by specific imaging and nonimaging biomarkers.
Collapse
Affiliation(s)
- Maria Vittoria Caprio
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- SS Annunziata Polyclinic University Hospital, University Cardiology Division, Chieti, Italy
| | - Federica De Donno
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- SS Annunziata Polyclinic University Hospital, University Cardiology Division, Chieti, Italy
| | - Giandomenico Bisaccia
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Cesare Mantini
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Angela Di Baldassarre
- Department of Medicine and Aging Sciences, and Reprogramming and Cell Differentiation Lab, Center for Advanced Studies and Technology (CAST), G. D'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Sabina Gallina
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- SS Annunziata Polyclinic University Hospital, University Cardiology Division, Chieti, Italy
| | - Mohammed Y Khanji
- Newham University Hospital, Barts Health NHS Trust, Plaistow, London, UK
- Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, UK
- NIHR Barts Biomedical Research Centre, William Harvey Research Institute, Queen Mary University, London, UK
| | - Fabrizio Ricci
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- SS Annunziata Polyclinic University Hospital, University Cardiology Division, Chieti, Italy
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| |
Collapse
|
10
|
Wang D, Li X, Feng W, Zhou H, Peng W, Wang X. Diagnostic and prognostic value of angiography-derived index of microvascular resistance: a systematic review and meta-analysis. Front Cardiovasc Med 2024; 11:1360648. [PMID: 38685980 PMCID: PMC11057370 DOI: 10.3389/fcvm.2024.1360648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Background The angiography-derived index of microvascular resistance (A-IMR) is a novel tool for diagnosing coronary microvascular dysfunction (CMD) addressing limitation of unavailability. However, the clinical value of A-IMR remains controversial. Methods A systematic review and meta-analysis was conducted. PubMed, EMBASE, Cochrane Library and Web of Science were searched for relevant studies. Studies that reported estimates of A-IMR's diagnostic accuracy (with thermodilution-based IMR as the reference test) and/or predictions of adverse cardiovascular events were selected. Pooled sensitivity, specificity, area under the summary receiver operating characteristic curve (sROC) were calculated to measure diagnostic performance; pooled hazard/risk ratio (HR/RR) and 95% confidence interval (95% CI) of major adverse cardiovascular events (MACE) or other independent adverse events were calculated to measure prognostic effect. This study was registered with PROSPERO (CRD42023451884). Results A total of 12 diagnostic studies pooling 1,642 vessels and 12 prognostic studies pooling 2,790 individuals were included. A-IMR yielded an area under sROC of 0.93 (95% CI: 0.91, 0.95), a pooled sensitivity of 0.85 (95% CI: 0.79, 0.89) and a pooled specificity of 0.89 (95% CI: 0.83, 0.93) for the diagnosis of CMD. CMD diagnosed using A-IMR was associated with higher risks of MACE (HR, 2.73, 95% CI: 2.16, 3.45), CV death (RR, 2.39, 95% CI: 1.49, 3.82) and heart failure hospitalization (HR, 2.30, 95% CI: 1.53, 3.45). Conclusion A-IMR demonstrated high diagnostic accuracy for CMD and showed a strong prognostic capability in predicting the risk of adverse CV outcomes. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023451884, PROSPERO (CRD42023451884).
Collapse
Affiliation(s)
- Dayang Wang
- Cardiovascular Institute, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Second Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoming Li
- Center of Intervention, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Feng
- Cardiovascular Institute, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hufang Zhou
- Cardiovascular Institute, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Second Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wenhua Peng
- Second Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xian Wang
- Second Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
11
|
Ståhlberg M, Mahdi A, Johansson M, Fedorowski A, Olshansky B. Cardiovascular dysautonomia in postacute sequelae of SARS-CoV-2 infection. J Cardiovasc Electrophysiol 2024; 35:608-617. [PMID: 37877234 DOI: 10.1111/jce.16117] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has led to a worldwide pandemic that continues to transform but will not go away. Cardiovascular dysautonomia in postacute sequelae of severe acute respiratory syndrome coronavirus 2 infection has led to persistent symptoms in a large number of patients. Here, we define the condition and its associated symptoms as well as potential mechanisms responsible. We provide a careful and complete overview of the topic addressing novel studies and a generalized approach to the management of individuals with this complex and potentially debilitating problem. We also discuss future research directions and the important knowledge gaps to be addressed in ongoing and planned studies.
Collapse
Affiliation(s)
- Marcus Ståhlberg
- Cardiology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Ali Mahdi
- Cardiology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Madeleine Johansson
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden
| | - Artur Fedorowski
- Cardiology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | | |
Collapse
|
12
|
Patel AR, Kramer CM. Perfusion Imaging for the Heart. Magn Reson Imaging Clin N Am 2024; 32:125-134. [PMID: 38007275 DOI: 10.1016/j.mric.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
The use of myocardial perfusion imaging during a stress cardiac magnetic resonance (CMR) examination for the evaluation of coronary artery disease is now recommended by both US and European guidelines. Several studies have demonstrated high diagnostic accuracy for the detection of hemodynamically significant coronary artery disease. Stress perfusion CMR has been shown to be a noninvasive and cost-effective alternative to guide coronary revascularization.
Collapse
Affiliation(s)
- Amit R Patel
- Department of Medicine, From the Cardiovascular Division, University of Virginia Health, 1215 Lee Street, Box 800158, Charlottesville, VA 22908, USA; Department of Radiology and Medical Imaging, From the Cardiovascular Division, University of Virginia Health, 1215 Lee Street, Box 800158, Charlottesville, VA 22908, USA.
| | - Christopher M Kramer
- Department of Medicine, From the Cardiovascular Division, University of Virginia Health, 1215 Lee Street, Box 800158, Charlottesville, VA 22908, USA; Department of Radiology and Medical Imaging, From the Cardiovascular Division, University of Virginia Health, 1215 Lee Street, Box 800158, Charlottesville, VA 22908, USA
| |
Collapse
|
13
|
Kadoglou NPE, Papadopoulos CΗ, Khattab E, Velidakis N, Lambropoulos S. The diagnostic value of stress echocardiography with limited myocardial ischemia in high-risk patients. Hellenic J Cardiol 2024:S1109-9666(23)00233-6. [PMID: 38182003 DOI: 10.1016/j.hjc.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/06/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND The diagnostic value of limited myocardial ischemia in DSE is not well known. OBJECTIVES We investigated whether myocardial ischemia during dobutamine stress echocardiography (DSE) in 1 apical segment of any of the ventricular walls of the left ventricle relates to the anatomical and functional stenosis of the suppling coronary artery. METHODS Our observational, prospective study enrolled 212 patients, symptomatic or asymptomatic, with newly diagnosed limited myocardial ischemia on DSE. Almost 25% of them had already known CAD, while the rest were divided into low-risk and high-risk groups, integrating 1-2 and ≥3 classical cardiovascular risk factors, respectively. After DSE, all patients underwent invasive coronary angiography (ICA) and were followed up for one year. In coronary arteries distributing ischemic area, the calculated stenosis ≥50% and FFR<0.8 were considered anatomically and functionally significant, respectively. In the latter cases, the patients underwent coronary revascularization. RESULTS Significant anatomical and functional stenosis of the supplying coronary artery was common among patients with already known CAD (62.5% and 44.5%, respectively) or those without CAD but a high-risk profile (60.2% and 25.6%, respectively). In logistic regression analysis, CAD revascularization was independently determined by an already known CAD, diabetes mellitus, and high-risk profile. During follow-up, 24 patients experienced ACS or new angina episodes, which were associated with diabetes and smoking in univariate analysis. CONCLUSION Limited myocardial ischemia may implicate significant anatomical and functional coronary stenosis among individuals with a history of CAD or those without known CAD but a high-risk profile. The prognostic value of our findings requires further investigation.
Collapse
Affiliation(s)
| | | | - Elina Khattab
- Medical School, University of Cyprus, Nicosia, Cyprus
| | | | | |
Collapse
|
14
|
Coelho-Filho OR, Jerosch-Herold M. Stress-Only CMR Perfusion: Ready for Clinical Application? Circ Cardiovasc Imaging 2023; 16:e016147. [PMID: 38113323 DOI: 10.1161/circimaging.123.016147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Affiliation(s)
- Otávio R Coelho-Filho
- Discipline of Cardiology, School of Medical Science-University of Campinas-UNICAMP, Campinas, São Paulo, Brazil (O.R.C.-F.)
| | - Michael Jerosch-Herold
- Non-Invasive Cardiovascular Imaging Program, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (M.J.-H.)
| |
Collapse
|
15
|
Sachdeva P, Kaur K, Fatima S, Mahak F, Noman M, Siddenthi SM, Surksha MA, Munir M, Fatima F, Sultana SS, Varrassi G, Khatri M, Kumar S, Elder M, Mohamad T. Advancements in Myocardial Infarction Management: Exploring Novel Approaches and Strategies. Cureus 2023; 15:e45578. [PMID: 37868550 PMCID: PMC10587445 DOI: 10.7759/cureus.45578] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
In the landscape of healthcare, the management of myocardial infarction (MI) stands as a pivotal challenge and a critical juncture where advancements are reshaping the trajectory of patient care. Myocardial infarction, commonly known as a heart attack, remains a foremost contributor to global morbidity and mortality. Conventional management strategies have historically focused on rapid restoration of blood flow through revascularization techniques. However, the last decade has witnessed a profound transformation, with a burgeoning emphasis on precision medicine and innovative interventions. This contextual backdrop sets the stage for a deep dive into the realm of novel diagnostic modalities, spanning high-sensitivity biomarkers, advanced imaging techniques, and data-driven algorithms. These innovations facilitate not only early detection but also the stratification of patients, paving the way for individualized treatment plans. By targeting the underlying mechanisms of myocardial damage, these interventions hold the promise of attenuating the impact of MI and promoting cardiac regeneration. It examines the integration of telemedicine, wearable devices, and remote monitoring platforms, bridging the gap between patients and caregivers while enabling timely interventions. Additionally, the psychosocial aspects of MI recovery are explored, highlighting the integration of psychological support and lifestyle interventions to enhance long-term well-being. By exploring novel diagnostics, innovative therapies, and holistic patient-centered strategies, it underscores the collaborative efforts of medical practitioners, researchers, and technological pioneers in reshaping the trajectory of MI care. As we stand at the intersection of medical advancement and compassionate patient management, embracing these novel approaches promises a future where the impact of myocardial infarction can be mitigated, and lives can be extended and enriched.
Collapse
Affiliation(s)
- Pranav Sachdeva
- General Medicine, Government Medical College & Hospital, Chandigarh, Chandigarh, IND
| | - Kawanpreet Kaur
- General Medicine, Government Medical College & Hospital, Chandigarh, Chandigarh, IND
| | - Saba Fatima
- Medicine, Jinnah Sindh Medical University, Karachi, PAK
| | - Fnu Mahak
- Medicine, Jinnah Postgraduate Medical Centre, Karachi, PAK
| | | | | | | | - Mishaal Munir
- Medicine, Ghurki Trust and Teaching Hospital, Lahore, PAK
- Internal Medicine, Lahore Medical & Dental College, Lahore, PAK
| | - Fnu Fatima
- Medicine, Jinnah Sindh Medical University, Karachi, PAK
| | | | | | - Mahima Khatri
- Medicine and Surgery, Dow University of Health Sciences, Karachi, Karachi, PAK
| | - Satesh Kumar
- Medicine and Surgery, Shaheed Mohtarma Benazir Bhutto Medical College, Karachi, PAK
| | - Mahir Elder
- Interventional Cardiology, Heart and Vascular Institute, Detroit, USA
| | - Tamam Mohamad
- Cardiovascular Surgery, Wayne State University, Detroit, USA
| |
Collapse
|