1
|
Carneiro T, Goswami S, Smith CN, Giraldez MB, Maciel CB. Prolonged Monitoring of Brain Electrical Activity in the Intensive Care Unit. Neurol Clin 2025; 43:31-50. [PMID: 39547740 DOI: 10.1016/j.ncl.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Electroencephalography (EEG) has been used to assess brain electrical activity for over a century. More recently, technological advancements allowed EEG to be a widely available and powerful tool in the intensive care unit (ICU), where patients at risk for cerebral dysfunction and brain injury can be monitored in a continuous, real-time manner. In the last 2 decades, several organizations established guidelines for continuous EEG monitoring in the ICU, defining critical care EEG terminology and technical standards for technicians, machines, and electroencephalographers. This article provides an overview of the current role of continuous EEG monitoring in the ICU.
Collapse
Affiliation(s)
- Thiago Carneiro
- Department of Neurology, McKnight Brain Institute, University of Florida, 1149 Newell Drive, L3-189, Gainesville, FL 32611, USA; Department of Neurosurgery, McKnight Brain Institute, University of Florida, 1149 Newell Drive, L3-189, Gainesville, FL 32611, USA
| | - Shweta Goswami
- Cerebrovascular Center, Epilepsy Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue/Desk S80-806, Cleveland, OH 44195, USA
| | - Christine Nicole Smith
- Department of Neurology, University of Florida, 1149 Newell Drive, L3-100, Gainesville, FL 32611, USA; Department of Neurology, Malcom Randall Veterans Affairs Medical Center, 1601 Southwest Archer Road, Gainesville, FL 32608, USA
| | - Maria Bruzzone Giraldez
- Department of Neurology, University of Florida, 1149 Newell Drive, L3-100, Gainesville, FL 32611, USA
| | - Carolina B Maciel
- Departments of Neurology, McKnight Brain Institute, University of Florida, 1149 Newell Drive, L3-120, Gainesville, FL 32611, USA; Departments of Neurosurgery, McKnight Brain Institute, University of Florida, 1149 Newell Drive, L3-120, Gainesville, FL 32611, USA.
| |
Collapse
|
2
|
Amerineni R, Sun H, Fernandes MB, Brandon Westover M, Moura L, Patorno E, Hsu J, Zafar SF. Real-World Continuous EEG Utilization and Outcomes in Hospitalized Patients With Acute Cerebrovascular Diseases. J Clin Neurophysiol 2025; 42:20-27. [PMID: 37938032 PMCID: PMC11058112 DOI: 10.1097/wnp.0000000000001043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023] Open
Abstract
PURPOSE Continuous electroencephalography (cEEG) is recommended for hospitalized patients with cerebrovascular diseases and suspected seizures or unexplained neurologic decline. We sought to (1) identify areas of practice variation in cEEG utilization, (2) determine predictors of cEEG utilization, (3) evaluate whether cEEG utilization is associated with outcomes in patients with cerebrovascular diseases. METHODS This cohort study of the Premier Healthcare Database (2014-2020), included hospitalized patients age > 18 years with cerebrovascular diseases (identified by ICD codes). Continuous electroencephalography was identified by International Classification of Diseases (ICD)/Current Procedural Terminology (CPT) codes. Multivariable lasso logistic regression was used to identify predictors of cEEG utilization and in-hospital mortality. Propensity score-matched analysis was performed to determine the relation between cEEG use and mortality. RESULTS 1,179,471 admissions were included; 16,777 (1.4%) underwent cEEG. Total number of cEEGs increased by 364% over 5 years (average 32%/year). On multivariable analysis, top five predictors of cEEG use included seizure diagnosis, hospitals with >500 beds, regions Northeast and South, and anesthetic use. Top predictors of mortality included use of mechanical ventilation, vasopressors, anesthetics, antiseizure medications, and age. Propensity analysis showed that cEEG was associated with lower in-hospital mortality (Average Treatment Effect -0.015 [95% confidence interval -0.028 to -0.003], Odds ratio 0.746 [95% confidence interval, 0.618-0.900]). CONCLUSIONS There has been a national increase in cEEG utilization for hospitalized patients with cerebrovascular diseases, with practice variation. cEEG utilization was associated with lower in-hospital mortality. Larger comparative studies of cEEG-guided treatments are indicated to inform best practices, guide policy changes for increased access, and create guidelines on triaging and transferring patients to centers with cEEG capability.
Collapse
Affiliation(s)
- Rajesh Amerineni
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Haoqi Sun
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - M. Brandon Westover
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Lidia Moura
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Elisabetta Patorno
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - John Hsu
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Health Care Policy, Harvard Medical School, Boston, MA, USA
| | - Sahar F. Zafar
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
3
|
Ng MC, Zafar S, Foreman B, Kim J, Struck AF, Westover MB. Commentary on stimulus-induced arousal with transient electroencephalographic improvement distinguishes nonictal from ictal generalized periodic discharges. Epilepsia 2024; 65:3484-3487. [PMID: 39422357 DOI: 10.1111/epi.18159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Here we critique recent arguments proposing to distinguish ictal from non-ictal generalized periodic discharges (GPDs) based on etiology and stimulation response, arguing that these are unreliable. We advocate for an empirical approach to GPDs: describe objectively, interpret through medication trials, and base further treatment on response. We call for evidence-based approaches considering meaningful clinical outcomes.
Collapse
Affiliation(s)
- Marcus C Ng
- Section of Neurology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sahar Zafar
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Brandon Foreman
- Neurology Department, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jennifer Kim
- School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Aaron F Struck
- University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - M Brandon Westover
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Fernández-Torre JL, Hernández-Hernández MA, Cherchi MS, Mato-Mañas D, de Lucas EM, Gómez-Ruiz E, Vázquez-Higuera JL, Fanjul-Vélez F, Arce-Diego JL, Martín-Láez R. Comparison of Continuous Intracortical and Scalp Electroencephalography in Comatose Patients with Acute Brain Injury. Neurocrit Care 2024; 41:903-915. [PMID: 38918336 DOI: 10.1007/s12028-024-02016-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/16/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Depth electroencephalography (dEEG) is a recent invasive monitoring technique used in patients with acute brain injury. This study aimed to describe in detail the clinical manifestations of nonconvulsive seizures (NCSzs) with and without a surface EEG correlate, analyze their long-standing effects, and provide data that contribute to understanding the significance of certain scalp EEG patterns observed in critically ill patients. METHODS We prospectively enrolled a cohort of 33 adults with severe acute brain injury admitted to the neurological intensive care unit. All of them underwent multimodal invasive monitoring, including dEEG. All patients were scanned on a 3T magnetic resonance imaging scanner at 6 months after hospital discharge, and mesial temporal atrophy (MTA) was calculated using a visual scale. RESULTS In 21 (65.6%) of 32 study participants, highly epileptiform intracortical patterns were observed. A total of 11 (34.3%) patients had electrographic or electroclinical seizures in the dEEG, of whom 8 had both spontaneous and stimulus-induced (SI) seizures, and 3 patients had only spontaneous intracortical seizures. An unequivocal ictal scalp correlate was observed in only 3 (27.2%) of the 11 study participants. SI-NCSzs occurred during nursing care, medical procedures, and family visits. Subtle clinical manifestations, such as restlessness, purposeless stereotyped movements of the upper limbs, ventilation disturbances, jerks, head movements, hyperextension posturing, chewing, and oroalimentary automatisms, occurred during intracortical electroclinical seizures. MTA was detected in 18 (81.8%) of the 22 patients. There were no statistically significant differences between patients with MTA with and without seizures or status epilepticus. CONCLUSIONS Most NCSzs in critically ill comatose patients remain undetectable on scalp EEG. SI-NCSzs frequently occur during nursing care, medical procedures, and family visits. Semiology of NCSzs included ictal minor signs and subtle symptoms, such as breathing pattern changes manifested as patient-ventilator dyssynchrony.
Collapse
Affiliation(s)
- José L Fernández-Torre
- Department of Clinical Neurophysiology, Marqués de Valdecilla University Hospital, 39008, Santander, Cantabria, Spain.
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, 39008, Santander, Cantabria, Spain.
- Biomedical Research Institute (IDIVAL), 39011, Santander, Cantabria, Spain.
| | - Miguel A Hernández-Hernández
- Biomedical Research Institute (IDIVAL), 39011, Santander, Cantabria, Spain
- Department of Intensive Medicine, Marqués de Valdecilla University Hospital, 39008, Santander, Cantabria, Spain
| | - Marina S Cherchi
- Biomedical Research Institute (IDIVAL), 39011, Santander, Cantabria, Spain
- Department of Intensive Medicine, Marqués de Valdecilla University Hospital, 39008, Santander, Cantabria, Spain
| | - David Mato-Mañas
- Biomedical Research Institute (IDIVAL), 39011, Santander, Cantabria, Spain
- Department of Neurosurgery, Marqués de Valdecilla University Hospital, 39008, Santander, Cantabria, Spain
| | - Enrique Marco de Lucas
- Biomedical Research Institute (IDIVAL), 39011, Santander, Cantabria, Spain
- Department of Radiology, Marqués de Valdecilla University Hospital, 39008, Santander, Cantabria, Spain
- Department of Medical-Surgical Sciences, School of Medicine, University of Cantabria, 39008, Santander, Cantabria, Spain
| | - Elsa Gómez-Ruiz
- Department of Psychiatry, Marqués de Valdecilla University Hospital Santander, 39008, Cantabria, Spain
| | - José L Vázquez-Higuera
- Biomedical Research Institute (IDIVAL), 39011, Santander, Cantabria, Spain
- Department of Neurology, Marqués de Valdecilla University Hospital, 39008, Santander, Cantabria, Spain
| | - Félix Fanjul-Vélez
- Biomedical Engineering Group, Tecnología Electrónica, Ingeniería de Sistemas y Automática (TEISA) Department, University of Cantabria, 39005, Santander, Cantabria, Spain
| | - José L Arce-Diego
- Biomedical Engineering Group, Tecnología Electrónica, Ingeniería de Sistemas y Automática (TEISA) Department, University of Cantabria, 39005, Santander, Cantabria, Spain
| | - Rubén Martín-Láez
- Biomedical Research Institute (IDIVAL), 39011, Santander, Cantabria, Spain
- Department of Neurosurgery, Marqués de Valdecilla University Hospital, 39008, Santander, Cantabria, Spain
| |
Collapse
|
5
|
Yoshimura H. [Utility of EEG in neurological emergencies and critical care]. Rinsho Shinkeigaku 2024; 64:699-707. [PMID: 39322559 DOI: 10.5692/clinicalneurol.cn-001928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
EEG is useful for evaluation of pathophysiology and prognostication of neurocritically ill patients, as it provides non-invasive, real-time monitoring of cerebral function. There have been recently a lot of advances in research on critical care EEG according to the American Clinical Neurophysiology Society's Standardized Critical Care EEG Terminology. Based on the latest knowledge, this review discusses clinical utilization of EEG in neurocritically ill patients, including critical care continuous EEG monitoring, and key points of interpretation of critical care EEG, classifying main purposes into three points: detection of electrographic and electroclinical seizures, consideration of special encephalopathies, and evaluation and prognostication of cerebral function. Neurologists should have fundamental ability to read and interpret critical care EEG and support treating physicians in terms of therapeutic strategy.
Collapse
Affiliation(s)
- Hajime Yoshimura
- Department of Neurology, Kobe City Medical Center General Hospital
| |
Collapse
|
6
|
Sansevere AJ, Keenan JS, Pickup E, Conley C, Staso K, Harrar DB. Ictal-Interictal Continuum in the Pediatric Intensive Care Unit. Neurocrit Care 2024; 41:418-425. [PMID: 38671312 DOI: 10.1007/s12028-024-01978-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/08/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND The ictal-interictal continuum (IIC) consists of several electroencephalogram (EEG) patterns that are common in critically ill adults. Studies focused on the IIC are limited in critically ill children and have focused primarily on associations with electrographic seizures (ESs). We report the incidence of the IIC in the pediatric intensive care unit (PICU). We then compare IIC patterns to rhythmic and periodic patterns (RPP) not meeting IIC criteria looking for associations with acute cerebral abnormalities, ES, and in-hospital mortality. METHODS This was a retrospective review of prospectively collected data for patients admitted to the PICU at Children's National Hospital from July 2021 to January 2023 with continuous EEG. We excluded patients with known epilepsy and cerebral injury prior to presentation. All patients were screened for RPP. The American Clinical Neurophysiology Society standardized Critical Care EEG terminology for the IIC was applied to each RPP. Associations between IIC and RPP not meeting IIC criteria, with clinical and EEG variables, were calculated using odds ratios (ORs). RESULTS Of 201 patients, 21% (42/201) had RPP and 12% (24/201) met IIC criteria. Among patients with an IIC pattern, the median age was 3.4 years (interquartile range (IQR) 0.6-12 years). Sixty-seven percent (16/24) of patients met a single IIC criterion, whereas the remainder met two criteria. ESs were identified in 83% (20/24) of patients and cerebral injury was identified in 96% (23/24) of patients with IIC patterns. When comparing patients with IIC patterns with those with RPP not qualifying as an IIC pattern, both patterns were associated with acute cerebral abnormalities (IIC OR 26 [95% confidence interval {CI} 3.4-197], p = 0.0016 vs. RPP OR 3.5 [95% CI 1.1-11], p = 0.03), however, only the IIC was associated with ES (OR 121 [95% CI 33-451], p < 0.0001) versus RPP (OR 1.3 [0.4-5], p = 0.7). CONCLUSIONS Rhythmic and periodic patterns and subsequently the IIC are commonly seen in the PICU and carry a high association with cerebral injury. Additionally, the IIC, seen in more than 10% of critically ill children, is associated with ES. The independent impact of RPP and IIC patterns on secondary brain injury and need for treatment of these patterns independent of ES requires further study.
Collapse
Affiliation(s)
- Arnold J Sansevere
- Department of Neurology/Division of Epilepsy and Clinical Neurophysiology, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA.
| | - Julia S Keenan
- Department of Neurology/Division of Epilepsy and Clinical Neurophysiology, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Elizabeth Pickup
- Department of Neurology/Division of Epilepsy and Clinical Neurophysiology, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Caroline Conley
- Department of Neurology/Division of Epilepsy and Clinical Neurophysiology, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
- Department of Critical Care Medicine, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Katelyn Staso
- Department of Neurology/Division of Epilepsy and Clinical Neurophysiology, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
- Department of Critical Care Medicine, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Dana B Harrar
- Department of Neurology/Division of Epilepsy and Clinical Neurophysiology, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
| |
Collapse
|
7
|
McGraw CM, Rao S, Manjunath S, Jing J, Brandon Westover M. Automated quantification of periodic discharges in human electroencephalogram. Biomed Phys Eng Express 2024; 10:10.1088/2057-1976/ad6c53. [PMID: 39111323 PMCID: PMC11580140 DOI: 10.1088/2057-1976/ad6c53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/07/2024] [Indexed: 09/22/2024]
Abstract
Periodic discharges (PDs) are pathologic patterns of epileptiform discharges repeating at regular intervals, commonly detected in the human electroencephalogram (EEG) signals in patients who are critically ill. The frequency and spatial extent of PDs are associated with the tendency of PDs to cause brain injury, existing automated algorithms do not quantify the frequency and spatial extent of PDs. The present study presents an algorithm for quantifying frequency and spatial extent of PDs. The algorithm quantifies the evolution of these parameters within a short (10-14 second) window, with a focus on lateralized and generalized periodic discharges. We test our algorithm on 300 'easy', 300 'medium', and 240 'hard' examples (840 total epochs) of periodic discharges as quantified by interrater consensus from human experts when analyzing the given EEG epochs. We observe 95.0% agreement with a 95% confidence interval (CI) of [94.9%, 95.1%] between algorithm outputs with reviewer clincal judgement for easy examples, 92.0% agreement (95% CI [91.9%, 92.2%]) for medium examples, and 90.4% agreement (95% CI [90.3%, 90.6%]) for hard examples. The algorithm is also computationally efficient and is able to run in 0.385 ± 0.038 seconds for a single epoch using our provided implementation of the algorithm. The results demonstrate the algorithm's effectiveness in quantifying these discharges and provide a standardized and efficient approach for PD quantification as compared to existing manual approaches.
Collapse
Affiliation(s)
- Christopher M McGraw
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Samvrit Rao
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
- Thomas Jefferson High School for Science and Technology, Alexandria, VA, United States of America
| | - Shashank Manjunath
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, United States of America
| | - Jin Jing
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - M Brandon Westover
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
8
|
Loser V, Rossetti AO, Rasic M, Novy J, Schindler KA, Rüegg S, Alvarez V, Beuchat I. Relevance of Continuous EEG versus Routine EEG for Outcome Prediction after Traumatic Brain Injury. Eur Neurol 2024; 87:306-311. [PMID: 39278217 DOI: 10.1159/000541335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/02/2024] [Indexed: 09/18/2024]
Abstract
INTRODUCTION In a cohort of adult patients with disturbance of consciousness after TBI, we aimed to explore the relationship of continuous video-EEG (cEEG) versus routine EEG (rEEG) with mortality and functional outcome. METHODS This is a post hoc analysis of a randomized controlled trial (CERTA), in which adults with disorder of consciousness and needing EEG (excluding those with proven seizures/SE just before) were randomized 1:1 to cEEG or two rEEG. In TBI patients, correlation between EEG duration, mortality, and modified Rankin score (mRs, good 0-2) at 6 months was assessed. RESULTS Among 364 patients, 44 presenting with consciousness impairment after TBI were included; 29 randomized to cEEG and 15 to rEEG. Mortality (p = 0.88) and functional outcome (p = 0.58) at 6 months were similar between groups. There was a nonsignificant tendency toward more seizure/status epilepticus detection with cEEG (p = 0.08). In multivariable regression, cEEG was not related to functional outcome (OR: 0.75 [0.13-4.24], p = 0.745) or mortality (OR: 7.11 [0.51-99.32], p = 0.145). CONCLUSION Despite allowing increased seizure detections in TBI patients, cEEG does not seem to be associated with better functional outcome or mortality over rEEG. Pending larger trials, repeated rEEG might be acceptable in post-TBI disorder of consciousness, especially in resource-limited environments.
Collapse
Affiliation(s)
- Valentin Loser
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland,
| | - Andrea O Rossetti
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
| | - Marija Rasic
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
| | - Jan Novy
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
| | - Kaspar A Schindler
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Stephan Rüegg
- Department of Neurology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Vincent Alvarez
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
- Department of Neurology, Hôpital du Valais, Sion, Switzerland
| | - Isabelle Beuchat
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Bitar R, Khan UM, Rosenthal ES. Utility and rationale for continuous EEG monitoring: a primer for the general intensivist. Crit Care 2024; 28:244. [PMID: 39014421 PMCID: PMC11251356 DOI: 10.1186/s13054-024-04986-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/09/2024] [Indexed: 07/18/2024] Open
Abstract
This review offers a comprehensive guide for general intensivists on the utility of continuous EEG (cEEG) monitoring for critically ill patients. Beyond the primary role of EEG in detecting seizures, this review explores its utility in neuroprognostication, monitoring neurological deterioration, assessing treatment responses, and aiding rehabilitation in patients with encephalopathy, coma, or other consciousness disorders. Most seizures and status epilepticus (SE) events in the intensive care unit (ICU) setting are nonconvulsive or subtle, making cEEG essential for identifying these otherwise silent events. Imaging and invasive approaches can add to the diagnosis of seizures for specific populations, given that scalp electrodes may fail to identify seizures that may be detected by depth electrodes or electroradiologic findings. When cEEG identifies SE, the risk of secondary neuronal injury related to the time-intensity "burden" often prompts treatment with anti-seizure medications. Similarly, treatment may be administered for seizure-spectrum activity, such as periodic discharges or lateralized rhythmic delta slowing on the ictal-interictal continuum (IIC), even when frank seizures are not evident on the scalp. In this setting, cEEG is utilized empirically to monitor treatment response. Separately, cEEG has other versatile uses for neurotelemetry, including identifying the level of sedation or consciousness. Specific conditions such as sepsis, traumatic brain injury, subarachnoid hemorrhage, and cardiac arrest may each be associated with a unique application of cEEG; for example, predicting impending events of delayed cerebral ischemia, a feared complication in the first two weeks after subarachnoid hemorrhage. After brief training, non-neurophysiologists can learn to interpret quantitative EEG trends that summarize elements of EEG activity, enhancing clinical responsiveness in collaboration with clinical neurophysiologists. Intensivists and other healthcare professionals also play crucial roles in facilitating timely cEEG setup, preventing electrode-related skin injuries, and maintaining patient mobility during monitoring.
Collapse
Affiliation(s)
- Ribal Bitar
- Department of Neurology, Massachusetts General Hospital, 55 Fruit St., Lunder 644, Boston, MA, 02114, USA
| | - Usaamah M Khan
- Department of Neurology, Massachusetts General Hospital, 55 Fruit St., Lunder 644, Boston, MA, 02114, USA
| | - Eric S Rosenthal
- Department of Neurology, Massachusetts General Hospital, 55 Fruit St., Lunder 644, Boston, MA, 02114, USA.
| |
Collapse
|
10
|
Misirocchi F, De Stefano P, Zilioli A, Mannini E, Lazzari S, Mutti C, Zinno L, Parrino L, Florindo I. Periodic discharges and status epilepticus: A critical reappraisal. Clin Neurophysiol 2024; 163:124-131. [PMID: 38733702 DOI: 10.1016/j.clinph.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/04/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024]
Abstract
OBJECTIVE Periodic Discharges (PDs) in Status Epilepticus (SE) are historically related to negative outcome, and the Epidemiology-based Mortality Score in SE (EMSE) identifies PDs as an EEG feature associated with unfavorable prognosis. However, supportive evidence is conflicting. This study aims to evaluate the prognostic significance of interictal PDs during and following SE. METHODS All 2020-2023 non-hypoxic-ischemic SE patients with available EEG during SE were retrospectively assessed. Interictal PDs during SE (SE-PDs) and PDs occurring 24-72 h after SE resolution (post-SE-PDs) were examined. In-hospital death was defined as the primary outcome. RESULTS 189 SE patients were finally included. SE-PDs were not related to outcome, while post-SE-PDs were related to poor prognosis confirmed after multiple regression analysis. EMSE global AUC was 0.751 (95%CI:0.680-0.823) and for EMSE-64 cutoff sensitivity was 0.85, specificity 0.52, accuracy 63%. We recalculated EMSE score including only post-SE-PDs. Modified EMSE (mEMSE) global AUC was 0.803 (95%CI:0.734-0.872) and for mEMSE-64 cutoff sensitivity was 0.84, specificity 0.68, accuracy 73%. CONCLUSION Interictal PDs during SE were not related to outcome whereas PDs persisting or appearing > 24 h after SE resolution were strongly associated to unfavorable prognosis. EMSE performed well in our cohort but considering only post-SE-PDs raised specificity and accuracy for mEMSE64 cutoff. SIGNIFICANCE This study supports the utility of differentiating between interictal PDs during and after SE for prognostic assessment.
Collapse
Affiliation(s)
- Francesco Misirocchi
- Unit of Neurology, Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | - Pia De Stefano
- EEG & Epilepsy Unit, Department of Clinical Neurosciences, University Hospital of Geneva, Geneva, Switzerland; Neuro-Intensive Care Unit, Department of Intensive Care, University Hospital of Geneva, Geneva, Switzerland
| | - Alessandro Zilioli
- Unit of Neurology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Elisa Mannini
- Unit of Neurology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Stefania Lazzari
- Unit of Neurology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Carlotta Mutti
- Unit of Neurology, University Hospital of Parma, Parma, Italy; Sleep Disorders Center, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Lucia Zinno
- Unit of Neurology, University Hospital of Parma, Parma, Italy
| | - Liborio Parrino
- Unit of Neurology, Department of Medicine and Surgery, University of Parma, Parma, Italy; Sleep Disorders Center, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Irene Florindo
- Unit of Neurology, University Hospital of Parma, Parma, Italy
| |
Collapse
|
11
|
Parikh H, Sun H, Amerineni R, Rosenthal ES, Volfovsky A, Rudin C, Westover MB, Zafar SF. How many patients do you need? Investigating trial designs for anti-seizure treatment in acute brain injury patients. Ann Clin Transl Neurol 2024; 11:1681-1690. [PMID: 38867375 PMCID: PMC11251465 DOI: 10.1002/acn3.52059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND/OBJECTIVES Epileptiform activity (EA), including seizures and periodic patterns, worsens outcomes in patients with acute brain injuries (e.g., aneurysmal subarachnoid hemorrhage [aSAH]). Randomized control trials (RCTs) assessing anti-seizure interventions are needed. Due to scant drug efficacy data and ethical reservations with placebo utilization, and complex physiology of acute brain injury, RCTs are lacking or hindered by design constraints. We used a pharmacological model-guided simulator to design and determine the feasibility of RCTs evaluating EA treatment. METHODS In a single-center cohort of adults (age >18) with aSAH and EA, we employed a mechanistic pharmacokinetic-pharmacodynamic framework to model treatment response using observational data. We subsequently simulated RCTs for levetiracetam and propofol, each with three treatment arms mirroring clinical practice and an additional placebo arm. Using our framework, we simulated EA trajectories across treatment arms. We predicted discharge modified Rankin Scale as a function of baseline covariates, EA burden, and drug doses using a double machine learning model learned from observational data. Differences in outcomes across arms were used to estimate the required sample size. RESULTS Sample sizes ranged from 500 for levetiracetam 7 mg/kg versus placebo, to >4000 for levetiracetam 15 versus 7 mg/kg to achieve 80% power (5% type I error). For propofol 1 mg/kg/h versus placebo, 1200 participants were needed. Simulations comparing propofol at varying doses did not reach 80% power even at samples >1200. CONCLUSIONS Our simulations using drug efficacy show sample sizes are infeasible, even for potentially unethical placebo-control trials. We highlight the strength of simulations with observational data to inform the null hypotheses and propose use of this simulation-based RCT paradigm to assess the feasibility of future trials of anti-seizure treatment in acute brain injury.
Collapse
Affiliation(s)
- Harsh Parikh
- Department of BiostatisticsJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Haoqi Sun
- Department of NeurologyBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
| | - Rajesh Amerineni
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Eric S. Rosenthal
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | | | - Cynthia Rudin
- Department of Computer ScienceDuke UniversityDukeNorth CarolinaUSA
| | - M. Brandon Westover
- Department of NeurologyBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
| | - Sahar F. Zafar
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| |
Collapse
|
12
|
Geraghty JR, Butler M, Maharathi B, Tate AJ, Lung TJ, Balasubramanian G, Testai FD, Loeb JA. Diffuse microglial responses and persistent EEG changes correlate with poor neurological outcome in a model of subarachnoid hemorrhage. Sci Rep 2024; 14:13618. [PMID: 38871799 PMCID: PMC11176397 DOI: 10.1038/s41598-024-64631-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024] Open
Abstract
The mechanism by which subarachnoid hemorrhage (SAH) leads to chronic neurologic deficits is unclear. One possibility is that blood activates microglia to drive inflammation that leads to synaptic loss and impaired brain function. Using the endovascular perforation model of SAH in rats, we investigated short-term effects on microglia together with long-term effects on EEG and neurologic function for up to 3 months. Within the first week, microglia were increased both at the site of injury and diffusely across the cortex (2.5-fold increase in SAH compared to controls, p = 0.012). Concomitantly, EEGs from SAH animals showed focal increases in slow wave activity and diffuse reduction in fast activity. When expressed as a fast-slow spectral ratio, there were significant interactions between group and time (p < 0.001) with less ipsilateral recovery over time. EEG changes were most pronounced during the first week and correlated with neurobehavioral impairment. In vitro, the blood product hemin was sufficient to increase microglia phagocytosis nearly six-fold (p = 0.032). Immunomodulatory treatment with fingolimod after SAH reduced microglia, improved neurological function, and increased survival. These findings, which parallel many of the EEG changes seen in patients, suggest that targeting neuroinflammation could reduce long-term neurologic dysfunction following SAH.
Collapse
Affiliation(s)
- Joseph R Geraghty
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, Philadelphia, PA, 19104, USA
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, 912 S Wood St, NPI Suite 174N, Chicago, IL, 60612, USA
| | - Mitchell Butler
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, 912 S Wood St, NPI Suite 174N, Chicago, IL, 60612, USA
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, 851 S Morgan St, Chicago, IL, 60607, USA
| | - Biswajit Maharathi
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, 912 S Wood St, NPI Suite 174N, Chicago, IL, 60612, USA
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, 851 S Morgan St, Chicago, IL, 60607, USA
| | - Alexander J Tate
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, 912 S Wood St, NPI Suite 174N, Chicago, IL, 60612, USA
- Neuroscience Doctoral Program, Medical College of Wisconsin, Suite H2200, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Tyler J Lung
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, 912 S Wood St, NPI Suite 174N, Chicago, IL, 60612, USA
- The Ohio State University School of Medicine, 1645 Neil Ave, Columbus, OH, 43210, USA
| | - Giri Balasubramanian
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, 912 S Wood St, NPI Suite 174N, Chicago, IL, 60612, USA
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, 851 S Morgan St, Chicago, IL, 60607, USA
| | - Fernando D Testai
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, 912 S Wood St, NPI Suite 174N, Chicago, IL, 60612, USA
| | - Jeffrey A Loeb
- Department of Neurology & Rehabilitation, University of Illinois College of Medicine, 912 S Wood St, NPI Suite 174N, Chicago, IL, 60612, USA.
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, NPI North Bldg., Room 657, M/C 796, 912 S. Wood Street, Chicago, IL, 60612, USA.
| |
Collapse
|
13
|
Hsiao CL, Chen PY, Chen IA, Lin SK. The Role of Routine Electroencephalography in the Diagnosis of Seizures in Medical Intensive Care Units. Diagnostics (Basel) 2024; 14:1111. [PMID: 38893637 PMCID: PMC11171977 DOI: 10.3390/diagnostics14111111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Seizures should be diagnosed and treated to ensure optimal health outcomes in critically ill patients admitted in the medical intensive care unit (MICU). Continuous electroencephalography is still infrequently used in the MICU. We investigated the effectiveness of routine EEG (rEEG) in detecting seizures in the MICU. A total of 560 patients admitted to the MICU between October 2018 and March 2023 and who underwent rEEG were reviewed. Seizure-related rEEG constituted 47% of all rEEG studies. Totally, 39% of the patients experienced clinical seizures during hospitalization; among them, 48% experienced the seizure, and 13% experienced their first seizure after undergoing an rEEG study. Seventy-seven percent of the patients had unfavorable short-term outcomes. Patients with cardiovascular diseases were the most likely to have the suppression/burst suppression (SBS) EEG pattern and the highest mortality rate. The rhythmic and periodic patterns (RPPs) and electrographic seizure (ESz) EEG pattern were associated with seizures within 24 h after rEEG, which was also related to unfavorable outcomes. Significant predictors of death were age > 59 years, the male gender, the presence of cardiovascular disease, a Glasgow Coma Scale score ≤ 5, and the SBS EEG pattern, with a predictive performance of 0.737 for death. rEEG can help identify patients at higher risk of seizures. We recommend repeated rEEG in patients with ESz or RPP EEG patterns to enable a more effective monitoring of seizure activities.
Collapse
Affiliation(s)
- Cheng-Lun Hsiao
- Stroke Center and Department of Neurology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan; (C.-L.H.); (P.-Y.C.)
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Pei-Ya Chen
- Stroke Center and Department of Neurology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan; (C.-L.H.); (P.-Y.C.)
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - I-An Chen
- Taiwan Center for Drug Evaluation, Taipei 11557, Taiwan;
| | - Shinn-Kuang Lin
- Stroke Center and Department of Neurology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan; (C.-L.H.); (P.-Y.C.)
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| |
Collapse
|
14
|
Fung FW, Parikh DS, Massey SL, Fitzgerald MP, Vala L, Donnelly M, Jacobwitz M, Kessler SK, Xiao R, Topjian AA, Abend NS. Periodic Discharges in Critically Ill Children: Predictors and Outcome. J Clin Neurophysiol 2024; 41:297-304. [PMID: 38079254 PMCID: PMC11073928 DOI: 10.1097/wnp.0000000000000986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 10/04/2022] [Indexed: 05/08/2024] Open
Abstract
OBJECTIVES We aimed to identify clinical and EEG monitoring characteristics associated with generalized, lateralized, and bilateral-independent periodic discharges (GPDs, LPDs, and BIPDs) and to determine which patterns were associated with outcomes in critically ill children. METHODS We performed a prospective observational study of consecutive critically ill children undergoing continuous EEG monitoring, including standardized scoring of GPDs, LPDs, and BIPDs. We identified variables associated with GPDs, LPDs, and BIPDs and assessed whether each pattern was associated with hospital discharge outcomes including the Glasgow Outcome Scale-Extended Pediatric version (GOS-E-Peds), Pediatric Cerebral Performance Category (PCPC), and mortality. RESULTS PDs occurred in 7% (91/1,399) of subjects. Multivariable logistic regression indicated that patients with coma (odds ratio [OR], 3.45; 95% confidence interval [CI]: 1.55, 7.68) and abnormal EEG background category (OR, 6.85; 95% CI: 3.37, 13.94) were at increased risk for GPDs. GPDs were associated with mortality (OR, 3.34; 95% CI: 1.24, 9.02) but not unfavorable GOS-E-Peds (OR, 1.93; 95% CI: 0.88, 4.23) or PCPC (OR, 1.64; 95% CI: 0.75, 3.58). Patients with acute nonstructural encephalopathy did not experience LPDs, and LPDs were not associated with mortality or unfavorable outcomes. BIPDs were associated with mortality (OR, 3.68; 95% CI: 1.14, 11.92), unfavorable GOS-E-Peds (OR, 5.00; 95% CI: 1.39, 18.00), and unfavorable PCPC (OR, 5.96; 95% CI: 1.65, 21.46). SIGNIFICANCE Patients with coma or more abnormal EEG background category had an increased risk for GPDs and BIPDs, and no patients with an acute nonstructural encephalopathy experienced LPDs. GPDs were associated with mortality and BIPDs were associated with mortality and unfavorable outcomes, but LPDs were not associated with unfavorable outcomes.
Collapse
Affiliation(s)
- France W Fung
- Department of Pediatrics (Division of Neurology), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Departments of Neurology and Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Darshana S Parikh
- Department of Pediatrics (Division of Neurology), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Shavonne L Massey
- Department of Pediatrics (Division of Neurology), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Departments of Neurology and Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Mark P Fitzgerald
- Department of Pediatrics (Division of Neurology), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Departments of Neurology and Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Lisa Vala
- Department of Neurodiagnostics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Maureen Donnelly
- Department of Neurodiagnostics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Marin Jacobwitz
- Department of Pediatrics (Division of Neurology), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Sudha K Kessler
- Department of Pediatrics (Division of Neurology), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Departments of Neurology and Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Rui Xiao
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Alexis A Topjian
- Department of Anesthesia and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Anesthesia and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Nicholas S Abend
- Department of Pediatrics (Division of Neurology), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Departments of Neurology and Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Neurodiagnostics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Anesthesia and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Robba C, Busl KM, Claassen J, Diringer MN, Helbok R, Park S, Rabinstein A, Treggiari M, Vergouwen MDI, Citerio G. Contemporary management of aneurysmal subarachnoid haemorrhage. An update for the intensivist. Intensive Care Med 2024; 50:646-664. [PMID: 38598130 PMCID: PMC11078858 DOI: 10.1007/s00134-024-07387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/08/2024] [Indexed: 04/11/2024]
Abstract
Aneurysmal subarachnoid haemorrhage (aSAH) is a rare yet profoundly debilitating condition associated with high global case fatality and morbidity rates. The key determinants of functional outcome include early brain injury, rebleeding of the ruptured aneurysm and delayed cerebral ischaemia. The only effective way to reduce the risk of rebleeding is to secure the ruptured aneurysm quickly. Prompt diagnosis, transfer to specialized centers, and meticulous management in the intensive care unit (ICU) significantly improved the prognosis of aSAH. Recently, multimodality monitoring with specific interventions to correct pathophysiological imbalances has been proposed. Vigilance extends beyond intracranial concerns to encompass systemic respiratory and haemodynamic monitoring, as derangements in these systems can precipitate secondary brain damage. Challenges persist in treating aSAH patients, exacerbated by a paucity of robust clinical evidence, with many interventions showing no benefit when tested in rigorous clinical trials. Given the growing body of literature in this field and the issuance of contemporary guidelines, our objective is to furnish an updated review of essential principles of ICU management for this patient population. Our review will discuss the epidemiology, initial stabilization, treatment strategies, long-term prognostic factors, the identification and management of post-aSAH complications. We aim to offer practical clinical guidance to intensivists, grounded in current evidence and expert clinical experience, while adhering to a concise format.
Collapse
Affiliation(s)
- Chiara Robba
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy.
- IRCCS Policlinico San Martino, Genoa, Italy.
| | - Katharina M Busl
- Departments of Neurology and Neurosurgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jan Claassen
- Department of Neurology, New York Presbyterian Hospital, Columbia University, New York, NY, USA
| | - Michael N Diringer
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Raimund Helbok
- Department of Neurology, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
- Clinical Research Institute for Neuroscience, Johannes Kepler University Linz, Linz, Austria
| | - Soojin Park
- Department of Neurology, New York Presbyterian Hospital, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | | | - Miriam Treggiari
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Mervyn D I Vergouwen
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Giuseppe Citerio
- Department of Medicine and Surgery, Milano Bicocca University, Milan, Italy
- NeuroIntensive Care Unit, Neuroscience Department, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| |
Collapse
|
16
|
Appavu B, Riviello JJ. Multimodal neuromonitoring in the pediatric intensive care unit. Semin Pediatr Neurol 2024; 49:101117. [PMID: 38677796 DOI: 10.1016/j.spen.2024.101117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/23/2024] [Accepted: 01/28/2024] [Indexed: 04/29/2024]
Abstract
Neuromonitoring is used to assess the central nervous system in the intensive care unit. The purpose of neuromonitoring is to detect neurologic deterioration and intervene to prevent irreversible nervous system dysfunction. Neuromonitoring starts with the standard neurologic examination, which may lag behind the pathophysiologic changes. Additional modalities including continuous electroencephalography (CEEG), multiple physiologic parameters, and structural neuroimaging may detect changes earlier. Multimodal neuromonitoring now refers to an integrated combination and display of non-invasive and invasive modalities, permitting tailored treatment for the individual patient. This chapter reviews the non-invasive and invasive modalities used in pediatric neurocritical care.
Collapse
Affiliation(s)
- Brian Appavu
- Clinical Assistant Professor of Child Health and Neurology, University of Arizona School of Medicine-Phoenix, Barrow Neurological Institute at Phoenix Children's, 1919 E. Thomas Road, Ambulatory Building B, 3rd Floor, Phoenix, AZ 85016, United States.
| | - James J Riviello
- Associate Division Chief for Epilepsy, Neurophysiology, and Neurocritical Care, Division of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Professor of Pediatrics and Neurology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, United States
| |
Collapse
|
17
|
Xie D, Toutant D, Ng MC. Residual Seizure Rate of Intermittent Inpatient EEG Compared to a Continuous EEG Model. Can J Neurol Sci 2024; 51:246-254. [PMID: 37282558 DOI: 10.1017/cjn.2023.241] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
BACKGROUND Subclinical seizures are common in hospitalized patients and require electroencephalography (EEG) for detection and intervention. At our institution, continuous EEG (cEEG) is not available, but intermittent EEGs are subject to constant live interpretation. As part of quality improvement (QI), we sought to estimate the residual missed seizure rate at a typical quaternary Canadian health care center without cEEG. METHODS We calculated residual risk percentages using the clinically validated 2HELPS2B score to risk-stratify EEGs before deriving a risk percentage using a MATLAB calculator which modeled the risk decay curve for each recording. We generated a range of estimated residual seizure rates depending on whether a pre-cEEG screening EEG was simulated, EEGs showing seizures were included, or repeat EEGs on the same patient were excluded. RESULTS Over a 4-month QI period, 499 inpatient EEGs were scored as low (n = 125), medium (n = 123), and high (n = 251) seizure risk according to 2HELPS2B criteria. Median recording duration was 1:00:06 (interquartile range, IQR 30:40-2:21:10). The model with highest residual seizure rate included recordings with confirmed electrographic seizures (median 20.83%, IQR 20.6-26.6%), while the model with lowest residual seizure rate was in seizure-free recordings (median 10.59%, IQR 4%-20.6%). These rates were significantly higher than the benchmark 5% miss-rate threshold set by 2HELPS2B (p<0.0001). CONCLUSIONS We estimate that intermittent inpatient EEG misses 2-4 times more subclinical seizures than the 2HELPS2B-determined acceptable 5% seizure miss-rate threshold for cEEG. Future research is needed to determine the impact of potentially missed seizures on clinical care.
Collapse
Affiliation(s)
- Dave Xie
- Undergraduate Medical Education, University of Manitoba, Winnipeg, MB, Canada
| | - Darion Toutant
- Biomedical Engineering Program, University of Manitoba, Winnipeg, MB, Canada
| | - Marcus C Ng
- Biomedical Engineering Program, University of Manitoba, Winnipeg, MB, Canada
- Section of Neurology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
18
|
Gohara D, Neshige S, Sakahara H, Ohno N, Maruyama H. Therapeutic Time Window With DWI-ADC (Diffusion-Weighted Imaging-Apparent Diffusion Coefficient) Match and Periodic Discharges for Status Epilepticus. Cureus 2024; 16:e53811. [PMID: 38465051 PMCID: PMC10924183 DOI: 10.7759/cureus.53811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 03/12/2024] Open
Abstract
A man in his 70s with alcoholic dementia was admitted for acute, prolonged impaired consciousness. Blood and cerebrospinal fluid findings were unremarkable. Brain MRI revealed multiple high-signal cortical regions. Following diazepam and levetiracetam administration, electroencephalography (EEG) revealed <1 Hz lateralized periodic discharges, indicating that the seizures were ceasing. The periodic discharges had disappeared during the gradual recovery process by day 10; however, cortical arterial spin labeling findings persisted only in regions exhibiting cytotoxic edema. Without additional anti-seizure medication, no seizure recurred, but cognitive dysfunction remained. He was transferred to a rehabilitation hospital with the continued oral administration of levetiracetam at 1,000 mg/day. DWI-ADC (diffusion-weighted imaging-apparent diffusion coefficient) match may suggest an indication of a missed suitable treatment window for seizures.
Collapse
Affiliation(s)
- Daiki Gohara
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Hospital, Hiroshima, JPN
| | - Shuichiro Neshige
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University, Hiroshima, JPN
| | - Hideaki Sakahara
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, JPN
| | - Narumi Ohno
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, JPN
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, JPN
| |
Collapse
|
19
|
Hirsch KG, Abella BS, Amorim E, Bader MK, Barletta JF, Berg K, Callaway CW, Friberg H, Gilmore EJ, Greer DM, Kern KB, Livesay S, May TL, Neumar RW, Nolan JP, Oddo M, Peberdy MA, Poloyac SM, Seder D, Taccone FS, Uzendu A, Walsh B, Zimmerman JL, Geocadin RG. Critical Care Management of Patients After Cardiac Arrest: A Scientific Statement from the American Heart Association and Neurocritical Care Society. Neurocrit Care 2024; 40:1-37. [PMID: 38040992 PMCID: PMC10861627 DOI: 10.1007/s12028-023-01871-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 12/03/2023]
Abstract
The critical care management of patients after cardiac arrest is burdened by a lack of high-quality clinical studies and the resultant lack of high-certainty evidence. This results in limited practice guideline recommendations, which may lead to uncertainty and variability in management. Critical care management is crucial in patients after cardiac arrest and affects outcome. Although guidelines address some relevant topics (including temperature control and neurological prognostication of comatose survivors, 2 topics for which there are more robust clinical studies), many important subject areas have limited or nonexistent clinical studies, leading to the absence of guidelines or low-certainty evidence. The American Heart Association Emergency Cardiovascular Care Committee and the Neurocritical Care Society collaborated to address this gap by organizing an expert consensus panel and conference. Twenty-four experienced practitioners (including physicians, nurses, pharmacists, and a respiratory therapist) from multiple medical specialties, levels, institutions, and countries made up the panel. Topics were identified and prioritized by the panel and arranged by organ system to facilitate discussion, debate, and consensus building. Statements related to postarrest management were generated, and 80% agreement was required to approve a statement. Voting was anonymous and web based. Topics addressed include neurological, cardiac, pulmonary, hematological, infectious, gastrointestinal, endocrine, and general critical care management. Areas of uncertainty, areas for which no consensus was reached, and future research directions are also included. Until high-quality studies that inform practice guidelines in these areas are available, the expert panel consensus statements that are provided can advise clinicians on the critical care management of patients after cardiac arrest.
Collapse
Affiliation(s)
| | | | - Edilberto Amorim
- San Francisco-Weill Institute for Neurosciences, University of California, San Francisco, USA
| | - Mary Kay Bader
- Providence Mission Hospital Nursing Center of Excellence/Critical Care Services, Mission Viejo, USA
| | | | | | | | | | | | | | - Karl B Kern
- Sarver Heart Center, University of Arizona, Tucson, USA
| | | | | | | | - Jerry P Nolan
- Warwick Medical School, University of Warwick, Coventry, UK
- Royal United Hospital, Bath, UK
| | - Mauro Oddo
- CHUV-Lausanne University Hospital, Lausanne, Switzerland
| | | | | | | | | | - Anezi Uzendu
- St. Luke's Mid America Heart Institute, Kansas City, USA
| | - Brian Walsh
- University of Texas Medical Branch School of Health Sciences, Galveston, USA
| | | | | |
Collapse
|
20
|
Hirsch KG, Abella BS, Amorim E, Bader MK, Barletta JF, Berg K, Callaway CW, Friberg H, Gilmore EJ, Greer DM, Kern KB, Livesay S, May TL, Neumar RW, Nolan JP, Oddo M, Peberdy MA, Poloyac SM, Seder D, Taccone FS, Uzendu A, Walsh B, Zimmerman JL, Geocadin RG. Critical Care Management of Patients After Cardiac Arrest: A Scientific Statement From the American Heart Association and Neurocritical Care Society. Circulation 2024; 149:e168-e200. [PMID: 38014539 PMCID: PMC10775969 DOI: 10.1161/cir.0000000000001163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The critical care management of patients after cardiac arrest is burdened by a lack of high-quality clinical studies and the resultant lack of high-certainty evidence. This results in limited practice guideline recommendations, which may lead to uncertainty and variability in management. Critical care management is crucial in patients after cardiac arrest and affects outcome. Although guidelines address some relevant topics (including temperature control and neurological prognostication of comatose survivors, 2 topics for which there are more robust clinical studies), many important subject areas have limited or nonexistent clinical studies, leading to the absence of guidelines or low-certainty evidence. The American Heart Association Emergency Cardiovascular Care Committee and the Neurocritical Care Society collaborated to address this gap by organizing an expert consensus panel and conference. Twenty-four experienced practitioners (including physicians, nurses, pharmacists, and a respiratory therapist) from multiple medical specialties, levels, institutions, and countries made up the panel. Topics were identified and prioritized by the panel and arranged by organ system to facilitate discussion, debate, and consensus building. Statements related to postarrest management were generated, and 80% agreement was required to approve a statement. Voting was anonymous and web based. Topics addressed include neurological, cardiac, pulmonary, hematological, infectious, gastrointestinal, endocrine, and general critical care management. Areas of uncertainty, areas for which no consensus was reached, and future research directions are also included. Until high-quality studies that inform practice guidelines in these areas are available, the expert panel consensus statements that are provided can advise clinicians on the critical care management of patients after cardiac arrest.
Collapse
|
21
|
Woodward MR, Kardon A, Manners J, Schleicher S, Pergakis MB, Ciryam P, Podell J, Denney Zimmerman W, Galvagno SM, Butt B, Pritchard J, Parikh GY, Gilmore EJ, Badjatia N, Morris NA. Comparison of induction agents for rapid sequence intubation in refractory status epilepticus: A single-center retrospective analysis. Epilepsy Behav Rep 2024; 25:100645. [PMID: 38299124 PMCID: PMC10827579 DOI: 10.1016/j.ebr.2024.100645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
Endotracheal intubation, frequently required during management of refractory status epilepticus (RSE), can be facilitated by anesthetic medications; however, their effectiveness for RSE control is unknown. We performed a single-center retrospective review of patients admitted to a neurocritical care unit (NCCU) who underwent in-hospital intubation during RSE management. Patients intubated with propofol, ketamine, or benzodiazepines, termed anti-seizure induction (ASI), were compared to patients who received etomidate induction (EI). The primary endpoint was clinical or electrographic seizures within 12 h post-intubation. We estimated the association of ASI on post-intubation seizure using logistic regression. A sub-group of patients undergoing electroencephalography during intubation was identified to evaluate the immediate effect of ASI on RSE. We screened 697 patients admitted to the NCCU for RSE and identified 148 intubated in-hospital (n = 90 ASI, n = 58 EI). There was no difference in post-intubation seizure (26 % (n = 23) ASI, 29 % (n = 17) EI) in the cohort, however, there was increased RSE resolution with ASI in 24 patients with electrographic RSE during intubation (ASI: 61 % (n = 11/18) vs EI: 0 % (n = 0/6), p =.016). While anti-seizure induction did not appear to affect post-intubation seizure occurrence overall, a sub-group of patients undergoing electroencephalography during intubation had a higher incidence of seizure cessation, suggesting potential benefit in an enriched population.
Collapse
Affiliation(s)
- Matthew R. Woodward
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Trauma, R Adams Cowley Shock Trauma Center, 22 S Greene St., Baltimore, MD, USA
| | - Adam Kardon
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Trauma, R Adams Cowley Shock Trauma Center, 22 S Greene St., Baltimore, MD, USA
| | - Jody Manners
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Trauma, R Adams Cowley Shock Trauma Center, 22 S Greene St., Baltimore, MD, USA
| | - Samantha Schleicher
- Department of Internal Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Melissa B. Pergakis
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Trauma, R Adams Cowley Shock Trauma Center, 22 S Greene St., Baltimore, MD, USA
| | - Prajwal Ciryam
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Trauma, R Adams Cowley Shock Trauma Center, 22 S Greene St., Baltimore, MD, USA
| | - Jamie Podell
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Trauma, R Adams Cowley Shock Trauma Center, 22 S Greene St., Baltimore, MD, USA
| | - William Denney Zimmerman
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Trauma, R Adams Cowley Shock Trauma Center, 22 S Greene St., Baltimore, MD, USA
| | - Samuel M. Galvagno
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bilal Butt
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Trauma, R Adams Cowley Shock Trauma Center, 22 S Greene St., Baltimore, MD, USA
| | - Jennifer Pritchard
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gunjan Y. Parikh
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Trauma, R Adams Cowley Shock Trauma Center, 22 S Greene St., Baltimore, MD, USA
| | - Emily J. Gilmore
- Department of Neurology, Yale University School of Medicine, 20 York Street, New Haven, CT, USA
| | - Neeraj Badjatia
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Trauma, R Adams Cowley Shock Trauma Center, 22 S Greene St., Baltimore, MD, USA
| | - Nicholas A. Morris
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Trauma, R Adams Cowley Shock Trauma Center, 22 S Greene St., Baltimore, MD, USA
| |
Collapse
|
22
|
Benedetti GM, Guerriero RM, Press CA. Review of Noninvasive Neuromonitoring Modalities in Children II: EEG, qEEG. Neurocrit Care 2023; 39:618-638. [PMID: 36949358 PMCID: PMC10033183 DOI: 10.1007/s12028-023-01686-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/30/2023] [Indexed: 03/24/2023]
Abstract
Critically ill children with acute neurologic dysfunction are at risk for a variety of complications that can be detected by noninvasive bedside neuromonitoring. Continuous electroencephalography (cEEG) is the most widely available and utilized form of neuromonitoring in the pediatric intensive care unit. In this article, we review the role of cEEG and the emerging role of quantitative EEG (qEEG) in this patient population. cEEG has long been established as the gold standard for detecting seizures in critically ill children and assessing treatment response, and its role in background assessment and neuroprognostication after brain injury is also discussed. We explore the emerging utility of both cEEG and qEEG as biomarkers of degree of cerebral dysfunction after specific injuries and their ability to detect both neurologic deterioration and improvement.
Collapse
Affiliation(s)
- Giulia M Benedetti
- Division of Pediatric Neurology, Department of Neurology, Seattle Children's Hospital and the University of Washington School of Medicine, Seattle, WA, USA.
- Division of Pediatric Neurology, Department of Pediatrics, C.S. Mott Children's Hospital and the University of Michigan, 1540 E Hospital Drive, Ann Arbor, MI, 48109-4279, USA.
| | - Rejéan M Guerriero
- Division of Pediatric and Developmental Neurology, Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Craig A Press
- Departments of Neurology and Pediatric, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
23
|
Rubinos C, Bruzzone MJ, Viswanathan V, Figueredo L, Maciel CB, LaRoche S. Electroencephalography as a Biomarker of Prognosis in Acute Brain Injury. Semin Neurol 2023; 43:675-688. [PMID: 37832589 DOI: 10.1055/s-0043-1775816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Electroencephalography (EEG) is a noninvasive tool that allows the monitoring of cerebral brain function in critically ill patients, aiding with diagnosis, management, and prognostication. Specific EEG features have shown utility in the prediction of outcomes in critically ill patients with status epilepticus, acute brain injury (ischemic stroke, intracranial hemorrhage, subarachnoid hemorrhage, and traumatic brain injury), anoxic brain injury, and toxic-metabolic encephalopathy. Studies have also found an association between particular EEG patterns and long-term functional and cognitive outcomes as well as prediction of recovery of consciousness following acute brain injury. This review summarizes these findings and demonstrates the value of utilizing EEG findings in the determination of prognosis.
Collapse
Affiliation(s)
- Clio Rubinos
- Department of Neurology, University of North Carolina, Chapel Hill, North Carolina
| | | | - Vyas Viswanathan
- Department of Neurology, University of North Carolina, Chapel Hill, North Carolina
| | - Lorena Figueredo
- Department of Neurology, University of Florida, Gainesville, Florida
| | - Carolina B Maciel
- Department of Neurology, University of Florida, Gainesville, Florida
| | - Suzette LaRoche
- Department of Neurology, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
24
|
Parikh H, Sun H, Amerineni R, Rosenthal ES, Volfovsky A, Rudin C, Westover MB, Zafar SF. How Many Patients Do You Need? Investigating Trial Designs for Anti-Seizure Treatment in Acute Brain Injury Patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.21.23294339. [PMID: 37662339 PMCID: PMC10473786 DOI: 10.1101/2023.08.21.23294339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Objectives Epileptiform activity (EA) worsens outcomes in patients with acute brain injuries (e.g., aneurysmal subarachnoid hemorrhage [aSAH]). Randomized trials (RCTs) assessing anti-seizure interventions are needed. Due to scant drug efficacy data and ethical reservations with placebo utilization, RCTs are lacking or hindered by design constraints. We used a pharmacological model-guided simulator to design and determine feasibility of RCTs evaluating EA treatment. Methods In a single-center cohort of adults (age >18) with aSAH and EA, we employed a mechanistic pharmacokinetic-pharmacodynamic framework to model treatment response using observational data. We subsequently simulated RCTs for levetiracetam and propofol, each with three treatment arms mirroring clinical practice and an additional placebo arm. Using our framework we simulated EA trajectories across treatment arms. We predicted discharge modified Rankin Scale as a function of baseline covariates, EA burden, and drug doses using a double machine learning model learned from observational data. Differences in outcomes across arms were used to estimate the required sample size. Results Sample sizes ranged from 500 for levetiracetam 7 mg/kg vs placebo, to >4000 for levetiracetam 15 vs. 7 mg/kg to achieve 80% power (5% type I error). For propofol 1mg/kg/hr vs. placebo 1200 participants were needed. Simulations comparing propofol at varying doses did not reach 80% power even at samples >1200. Interpretation Our simulations using drug efficacy show sample sizes are infeasible, even for potentially unethical placebo-control trials. We highlight the strength of simulations with observational data to inform the null hypotheses and assess feasibility of future trials of EA treatment.
Collapse
Affiliation(s)
| | - Haoqi Sun
- Beth Israel Deaconess Medical Center, Department of Neurology
| | | | | | | | | | | | | |
Collapse
|
25
|
Gouvea Bogossian E, Battaglini D, Fratino S, Minini A, Gianni G, Fiore M, Robba C, Taccone FS. The Role of Brain Tissue Oxygenation Monitoring in the Management of Subarachnoid Hemorrhage: A Scoping Review. Neurocrit Care 2023; 39:229-240. [PMID: 36802011 DOI: 10.1007/s12028-023-01680-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/19/2023] [Indexed: 02/19/2023]
Abstract
Monitoring of brain tissue oxygenation (PbtO2) is an important component of multimodal monitoring in traumatic brain injury. Over recent years, use of PbtO2 monitoring has also increased in patients with poor-grade subarachnoid hemorrhage (SAH), particularly in those with delayed cerebral ischemia. The aim of this scoping review was to summarize the current state of the art regarding the use of this invasive neuromonitoring tool in patients with SAH. Our results showed that PbtO2 monitoring is a safe and reliable method to assess regional cerebral tissue oxygenation and that PbtO2 represents the oxygen available in the brain interstitial space for aerobic energy production (i.e., the product of cerebral blood flow and the arterio-venous oxygen tension difference). The PbtO2 probe should be placed in the area at risk of ischemia (i.e., in the vascular territory in which cerebral vasospasm is expected to occur). The most widely used PbtO2 threshold to define brain tissue hypoxia and initiate specific treatment is between 15 and 20 mm Hg. PbtO2 values can help identify the need for or the effects of various therapies, such as hyperventilation, hyperoxia, induced hypothermia, induced hypertension, red blood cell transfusion, osmotic therapy, and decompressive craniectomy. Finally, a low PbtO2 value is associated with a worse prognosis, and an increase of the PbtO2 value in response to treatment is a marker of good outcome.
Collapse
Affiliation(s)
- Elisa Gouvea Bogossian
- Department of Intensive Care, Université Libre de Bruxelles, Erasme Hospital, Route de Lennik, 808, 1070, Brussels, Belgium.
| | - Denise Battaglini
- Anesthesia and Intensive Care, Instituto di Ricovero e Cura a carattere scientifico for Oncology and Neuroscience, San Martino Policlinico Hospital, Genoa, Italy
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Sara Fratino
- Department of Intensive Care, Université Libre de Bruxelles, Erasme Hospital, Route de Lennik, 808, 1070, Brussels, Belgium
| | - Andrea Minini
- Department of Intensive Care, Université Libre de Bruxelles, Erasme Hospital, Route de Lennik, 808, 1070, Brussels, Belgium
| | - Giuseppina Gianni
- Department of Intensive Care, Université Libre de Bruxelles, Erasme Hospital, Route de Lennik, 808, 1070, Brussels, Belgium
| | - Marco Fiore
- Department of Women, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Chiara Robba
- Anesthesia and Intensive Care, Instituto di Ricovero e Cura a carattere scientifico for Oncology and Neuroscience, San Martino Policlinico Hospital, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Fabio Silvio Taccone
- Department of Intensive Care, Université Libre de Bruxelles, Erasme Hospital, Route de Lennik, 808, 1070, Brussels, Belgium
| |
Collapse
|
26
|
Woodward MR, Doddi S, Marano C, Regenold W, Pritchard J, Chen S, Margiotta M, Chang WTW, Alkhachroum A, Morris NA. Evaluating salvage electroconvulsive therapy for the treatment of prolonged super refractory status epilepticus: A case series. Epilepsy Behav 2023; 144:109286. [PMID: 37276802 PMCID: PMC10330823 DOI: 10.1016/j.yebeh.2023.109286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND AND OBJECTIVES Clinicians have treated super refractory status epilepticus (SRSE) with electroconvulsive therapy (ECT); however, data supporting the practice are scant and lack rigorous evaluation of continuous electroencephalogram (cEEG) changes related to therapy. This study aims to describe a series of patients with SRSE treated at our institution with ECT and characterize cEEG changes using a blinded review process. METHODS We performed a single-center retrospective study of consecutive patients admitted for SRSE and treated with ECT from January 2014 to December 2022. Our primary outcome was the resolution of SRSE. Secondary outcomes included changes in ictal-interictal EEG patterns, anesthetic burden, treatment-associated adverse events, and changes in clinical examination. cEEG was reviewed pre- and post-ECT by blinded epileptologists. RESULTS Ten patients underwent treatment with ECT across 11 admissions (8 female, median age 57 years). At the time of ECT initiation, nine patients had ongoing SRSE while two had highly ictal patterns and persistent encephalopathy following anesthetic wean, consistent with late-stage SRSE. Super-refractory status epilepticus resolution occurred with a median time to cessation of 4 days (interquartile range [IQR]: 3-9 days) following ECT initiation. Background continuity improved in five patients and periodic discharge frequency decreased in six. There was a decrease in anesthetic use following the completion of ECT and an improvement in neurological exams. There were no associated adverse events. DISCUSSION In our cohort, ECT was associated with improvement of ictal-interictal patterns on EEG, and resolution of SRSE, and was not associated with serious adverse events. Further controlled studies are needed.
Collapse
Affiliation(s)
- Matthew R Woodward
- Departments of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA; Program in Trauma, R Adams Cowley Shock Trauma Center, Baltimore, MD, USA.
| | - Seshagiri Doddi
- Departments of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christopher Marano
- Departments of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - William Regenold
- Noninvasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Jennifer Pritchard
- Departments of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Stephanie Chen
- Departments of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Megan Margiotta
- Departments of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Wan-Tsu W Chang
- Departments of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA; Departments of Emergency Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Program in Trauma, R Adams Cowley Shock Trauma Center, Baltimore, MD, USA
| | | | - Nicholas A Morris
- Departments of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA; Program in Trauma, R Adams Cowley Shock Trauma Center, Baltimore, MD, USA
| |
Collapse
|
27
|
Kochar A, Hildebrandt K, Silverstein R, Appavu B. Approaches to neuroprotection in pediatric neurocritical care. World J Crit Care Med 2023; 12:116-129. [PMID: 37397588 PMCID: PMC10308339 DOI: 10.5492/wjccm.v12.i3.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 06/08/2023] Open
Abstract
Acute neurologic injuries represent a common cause of morbidity and mortality in children presenting to the pediatric intensive care unit. After primary neurologic insults, there may be cerebral brain tissue that remains at risk of secondary insults, which can lead to worsening neurologic injury and unfavorable outcomes. A fundamental goal of pediatric neurocritical care is to mitigate the impact of secondary neurologic injury and improve neurologic outcomes for critically ill children. This review describes the physiologic framework by which strategies in pediatric neurocritical care are designed to reduce the impact of secondary brain injury and improve functional outcomes. Here, we present current and emerging strategies for optimizing neuroprotective strategies in critically ill children.
Collapse
Affiliation(s)
- Angad Kochar
- Department of Neurosciences, Phoenix Children's Hospital, Phoenix, AZ 85213, United States
| | - Kara Hildebrandt
- Department of Neurosciences, Phoenix Children's Hospital, Phoenix, AZ 85213, United States
| | - Rebecca Silverstein
- Department of Neurosciences, Phoenix Children's Hospital, Phoenix, AZ 85213, United States
| | - Brian Appavu
- Department of Neurosciences, Phoenix Children's Hospital, Phoenix, AZ 85213, United States
- Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ 85016, United States
| |
Collapse
|
28
|
Fong MWK. Critical care EEG monitoring: improving access and unravelling potentially epileptic patterns. Curr Opin Neurol 2023; 36:61-68. [PMID: 36762643 DOI: 10.1097/wco.0000000000001147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
PURPOSE OF REVIEW The major advances in critical care EEG have been the development of rapid response EEG, major revision of the American Clinical Neurophysiology Society's (ACNS) standardized critical care EEG terminology, and the commencement of treatment trials on rhythmic and periodic patterns (RPPs) that do not qualify as seizures. RECENT FINDINGS Rapid response EEG (rEEG) has proven an important supplement to full montage continuous EEG monitoring (cEEG). This EEG can be applied in a few minutes and provides excellent ability to exclude seizures, selecting those where conversion to cEEG would have the greatest diagnostic yield. Once cEEG has been commenced, the durations required to adequately exclude seizures have been refined. The ACNS provided major revision and expansion to the standardized critical care EEG terminology, which paved the way for determining with great accuracy the RPPs that are associated with seizures and that are capable of causing neurologic symptoms and/or secondary neuronal injury. The current limitations to multicenter treatment trials of these patterns have been highlighted. SUMMARY Novel methods of EEG in critical care have been expanding access to all patients where clinically indicated. Standardized EEG terminology has provided the framework to determine what patterns in which presenting causes warrant treatment vs. those that do not.
Collapse
Affiliation(s)
- Michael W K Fong
- Westmead Comprehensive Epilepsy Unit, Westmead Hospital, University of Sydney, Sydney, Australia
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
29
|
Husari KS, Solnes L, Cervenka MC, Venkatesan A, Probasco J, Ritzl EK, Johnson EL. EEG Correlates of Qualitative Hypermetabolic FDG-PET in Patients With Neurologic Disorders. Neurol Clin Pract 2023; 13:e200135. [PMID: 36936394 PMCID: PMC10022725 DOI: 10.1212/cpj.0000000000200135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/28/2022] [Indexed: 03/16/2023]
Abstract
Background and Objectives Case reports and case series have described fluorodeoxyglucose (FDG)-PET findings in critically ill patients with rhythmic or periodic EEG patterns, with one reporting that metabolic activity increases with increasing lateralized periodic discharge (LPD) frequency. However, larger studies examining the relationship between FDG-PET hypermetabolism and rhythmic or periodic EEG patterns are lacking. The goal of this study was to investigate the association of FDG-PET hypermetabolism with electroencephalographic features in patients with neurologic disorders. Methods This was a single-center, retrospective study of adult patients admitted with acute neurologic symptoms who underwent FDG-PET imaging and EEG monitoring within 24 hours. Subjects were divided into 2 groups based on their FDG-PET metabolism pattern: hypermetabolic activity vs hypometabolic or normal metabolic activity. Chi-square tests and logistic regression were used to determine the relationship of FDG-PET metabolism and EEG findings. Results Sixty patients met the inclusion criteria and underwent 63 FDG-PET studies and EEGs. Twenty-seven studies (43%) showed hypermetabolism while 36 studies (57%) showed either hypometabolism or no abnormalities on FDG-PET. Subjects with hypermetabolic FDG-PET were more likely to have electrographic seizures (44% vs 8%, p = 0.001) and LPDs with/without seizures (44% vs 14%, p = 0.007), but not other rhythmic or periodic EEG patterns (lateralized rhythmic delta activity, generalized periodic discharges, or generalized rhythmic delta activity). Subjects with hypermetabolism and LPDs were more likely to have concurrent electrographic seizures (58% vs 0%, p = 0.03), fast activity associated with the discharges (67% vs 0, p = 0.01), or spike morphology (67% vs 0, p = 0.03), compared with subjects with hypometabolic FDG-PET and LPDs. Discussion Adults admitted with acute neurologic symptoms who had hypermetabolic FDG-PET were more likely to show electrographic seizures and LPDs, but not other rhythmic or periodic EEG patterns, compared with those with hypometabolic FDG-PET. Subjects with hypermetabolic FDG-PET and LPDs were more likely to have LPDs with concurrent electrographic seizures, LPDs with a spike morphology, and LPDs +F, compared with subjects with hypometabolic FDG-PET.
Collapse
Affiliation(s)
- Khalil S Husari
- Department of Neurology (KSH, MCC, EKR, ELJ), Comprehensive Epilepsy Center, Department of Radiology and Radiological Science (LS), Division of Neuroimmunology and Neurological Infections (AV), and Division of Advanced Clinical Neurology (JP), Department of Neurology, and Department of Anesthesiology and Critical Care Medicine (EKR), Johns Hopkins University, Baltimore, MD
| | - Lilja Solnes
- Department of Neurology (KSH, MCC, EKR, ELJ), Comprehensive Epilepsy Center, Department of Radiology and Radiological Science (LS), Division of Neuroimmunology and Neurological Infections (AV), and Division of Advanced Clinical Neurology (JP), Department of Neurology, and Department of Anesthesiology and Critical Care Medicine (EKR), Johns Hopkins University, Baltimore, MD
| | - Mackenzie C Cervenka
- Department of Neurology (KSH, MCC, EKR, ELJ), Comprehensive Epilepsy Center, Department of Radiology and Radiological Science (LS), Division of Neuroimmunology and Neurological Infections (AV), and Division of Advanced Clinical Neurology (JP), Department of Neurology, and Department of Anesthesiology and Critical Care Medicine (EKR), Johns Hopkins University, Baltimore, MD
| | - Arun Venkatesan
- Department of Neurology (KSH, MCC, EKR, ELJ), Comprehensive Epilepsy Center, Department of Radiology and Radiological Science (LS), Division of Neuroimmunology and Neurological Infections (AV), and Division of Advanced Clinical Neurology (JP), Department of Neurology, and Department of Anesthesiology and Critical Care Medicine (EKR), Johns Hopkins University, Baltimore, MD
| | - John Probasco
- Department of Neurology (KSH, MCC, EKR, ELJ), Comprehensive Epilepsy Center, Department of Radiology and Radiological Science (LS), Division of Neuroimmunology and Neurological Infections (AV), and Division of Advanced Clinical Neurology (JP), Department of Neurology, and Department of Anesthesiology and Critical Care Medicine (EKR), Johns Hopkins University, Baltimore, MD
| | - Eva K Ritzl
- Department of Neurology (KSH, MCC, EKR, ELJ), Comprehensive Epilepsy Center, Department of Radiology and Radiological Science (LS), Division of Neuroimmunology and Neurological Infections (AV), and Division of Advanced Clinical Neurology (JP), Department of Neurology, and Department of Anesthesiology and Critical Care Medicine (EKR), Johns Hopkins University, Baltimore, MD
| | - Emily L Johnson
- Department of Neurology (KSH, MCC, EKR, ELJ), Comprehensive Epilepsy Center, Department of Radiology and Radiological Science (LS), Division of Neuroimmunology and Neurological Infections (AV), and Division of Advanced Clinical Neurology (JP), Department of Neurology, and Department of Anesthesiology and Critical Care Medicine (EKR), Johns Hopkins University, Baltimore, MD
| |
Collapse
|
30
|
Lasek-Bal A, Dewerenda-Sikora M, Binek Ł, Student S, Łabuz-Roszak B, Krzystanek E, Kaczmarczyk A, Krzan A, Żak A, Cieślik A, Bosak M. Epileptiform activity in the acute phase of stroke predicts the outcomes in patients without seizures. Front Neurol 2023; 14:1096876. [PMID: 36994378 PMCID: PMC10040780 DOI: 10.3389/fneur.2023.1096876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/13/2023] [Indexed: 03/14/2023] Open
Abstract
Background and purposeThe abnormalities in EEG of stroke-patients increase the risk of epilepsy but their significancy for poststroke outcome is unclear. This presented study was aimed at determining the prevalence and nature of changes in EEG recordings from the stroke hemisphere and from the contralateral hemisphere. Another objective was to determine the significance of abnormalities in EEG in the first days of stroke for the post-stroke functional status on the acute and chronic phase of disease.MethodsIn all qualified stroke-patients, EEG was performed during the first 3 days of hospitalization and at discharge. The correlation between EEG abnormalities both in the stroke hemisphere and in the collateral hemisphere with the neurological and functional state in various time points was performed.ResultsOne hundred thirty-one patients were enrolled to this study. Fifty-eight patients (44.27%) had abnormal EEG. The sporadic discharges and generalized rhythmic delta activity were the most common abnormalities in the EEG. The neurological status on the first day and the absence of changes in the EEG in the hemisphere without stroke were the independent factors for good neurological state (0–2 mRS) at discharge. The age-based analysis model (OR 0.981 CI 95% 0.959–1.001, p = 0.047), neurological status on day 1 (OR 0.884 CI 95% 0.82–0.942, p < 0.0001) and EEG recording above the healthy hemisphere (OR 0.607 CI 95% 0.37–0.917, p = 0.028) had the highest prognostic value in terms of achieving good status 90 days after stroke.ConclusionsAbnormalities in EEG without clinical manifestation are present in 40% of patients with acute stroke. Changes in EEG in acute stroke are associated with a poor neurological status in the first days and poor functional status in the chronic period of stroke.
Collapse
Affiliation(s)
- Anetta Lasek-Bal
- Department of Neurology, School of Health Sciences, Medical University of Silesia, Katowice, Poland
- Department of Neurology, Upper-Silesian Medical Centre of the Silesian Medical University, Katowice, Poland
- *Correspondence: Anetta Lasek-Bal
| | - Milena Dewerenda-Sikora
- Department of Neurology, Upper-Silesian Medical Centre of the Silesian Medical University, Katowice, Poland
| | - Łukasz Binek
- Department of Neurology, Upper-Silesian Medical Centre of the Silesian Medical University, Katowice, Poland
| | - Sebastian Student
- Faculty of Automatic Control Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland
- Biotechnology Center, Silesian University of Technology, Gliwice, Poland
| | - Beata Łabuz-Roszak
- Department of Neurology, Institute of Medical Sciences University of Opole, Opole, Poland
| | - Ewa Krzystanek
- Department of Neurology, School of Health Sciences, Medical University of Silesia, Katowice, Poland
- Department of Neurology, Upper-Silesian Medical Centre of the Silesian Medical University, Katowice, Poland
| | - Aleksandra Kaczmarczyk
- Department of Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Aleksandra Krzan
- Department of Neurology, School of Health Sciences, Medical University of Silesia, Katowice, Poland
- Department of Neurology, Upper-Silesian Medical Centre of the Silesian Medical University, Katowice, Poland
| | - Amadeusz Żak
- Department of Neurology, School of Health Sciences, Medical University of Silesia, Katowice, Poland
- Department of Neurology, Upper-Silesian Medical Centre of the Silesian Medical University, Katowice, Poland
| | - Aleksandra Cieślik
- Department of Neurology, School of Health Sciences, Medical University of Silesia, Katowice, Poland
- Department of Neurology, Upper-Silesian Medical Centre of the Silesian Medical University, Katowice, Poland
| | - Magdalena Bosak
- Department of Neurology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
31
|
Waak M, Laing J, Nagarajan L, Lawn N, Harvey AS. Continuous electroencephalography in the intensive care unit: A critical review and position statement from an Australian and New Zealand perspective. CRIT CARE RESUSC 2023; 25:9-19. [PMID: 37876987 PMCID: PMC10581281 DOI: 10.1016/j.ccrj.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Objectives This article aims to critically review the literature on continuous electroencephalography (cEEG) monitoring in the intensive care unit (ICU) from an Australian and New Zealand perspective and provide recommendations for clinicians. Design and review methods A taskforce of adult and paediatric neurologists, selected by the Epilepsy Society of Australia, reviewed the literature on cEEG for seizure detection in critically ill neonates, children, and adults in the ICU. The literature on routine EEG and cEEG for other indications was not reviewed. Following an evaluation of the evidence and discussion of controversial issues, consensus was reached, and a document that highlighted important clinical, practical, and economic considerations regarding cEEG in Australia and New Zealand was drafted. Results This review represents a summary of the literature and consensus opinion regarding the use of cEEG in the ICU for detection of seizures, highlighting gaps in evidence, practical problems with implementation, funding shortfalls, and areas for future research. Conclusion While cEEG detects electrographic seizures in a significant proportion of at-risk neonates, children, and adults in the ICU, conferring poorer neurological outcomes and guiding treatment in many settings, the health economic benefits of treating such seizures remain to be proven. Presently, cEEG in Australian and New Zealand ICUs is a largely unfunded clinical resource that is subsequently reserved for the highest-impact patient groups. Wider adoption of cEEG requires further research into impact on functional and health economic outcomes, education and training of the neurology and ICU teams involved, and securement of the necessary resources and funding to support the service.
Collapse
Affiliation(s)
- Michaela Waak
- Paediatric Critical Care Research Group, Child Health Research Centre, The University of Queensland, Brisbane, Australia
- Paediatric Intensive Care Unit, Queensland Children's Hospital, South Brisbane, Australia
| | - Joshua Laing
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, Australia
- Comprehensive Epilepsy Program, Alfred Health, Melbourne, Australia
- Department of Neurology, The Royal Melbourne Hospital, Melbourne, Australia
| | - Lakshmi Nagarajan
- Department of Neurology, Perth Children's Hospital, Perth, Australia
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
- Telethon Kids Institute, Perth Children's Hospital, Perth, Australia
| | - Nicholas Lawn
- Western Australian Adult Epilepsy Service, Sir Charles Gardiner Hospital, Perth, Australia
| | - A. Simon Harvey
- Department of Neurology, The Royal Children's Hospital, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
- Neurosciences Research Group, Murdoch Children's Research Institute, Melbourne, Australia
| |
Collapse
|
32
|
Avoiding brain hypoxia in severe traumatic brain injury in settings with limited resources - A pathophysiological guide. J Crit Care 2023; 75:154260. [PMID: 36773368 DOI: 10.1016/j.jcrc.2023.154260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/17/2022] [Accepted: 01/22/2023] [Indexed: 02/11/2023]
Abstract
Cerebral oxygenation represents the balance between oxygen delivery, consumption and utilization by the brain, and therefore reflects the adequacy of cerebral perfusion. Different factors can influence the amount of oxygen to the brain including arterial blood pressure, hemoglobin levels, systemic oxygenation, and transfer of oxygen from blood to the cerebral microcirculation. A mismatch between cerebral oxygen supply and demand results in cerebral hypoxia/ischemia, and is associated with secondary brain damage and worsened outcome after acute brain injury. Therefore, monitoring and prompt treatment of cerebral oxygenation compromise is warranted in both neuro and general intensive care unit populations. Several tools have been proposed for the assessment of cerebral oxygenation, including non-invasive/invasive or indirect/direct methods, including Jugular Venous Oxygen Saturation (SjO2), Partial Brain Tissue Oxygen Tension (PtiO2), Near infrared spectroscopy (NIRS), Transcranial Doppler, electroencephalography and Computed Tomography. In this manuscript, we aim to review the pathophysiology of cerebral oxygenation, describe monitoring technics, and generate recommendations for avoiding brain hypoxia in settings with low availability of resources for direct brain oxygen monitoring.
Collapse
|
33
|
Knipe MF, Bush WW, Thomas KE, Williams DC. Periodic discharges in veterinary electroencephalography-A visual review. Front Vet Sci 2023; 10:1037404. [PMID: 36777678 PMCID: PMC9909489 DOI: 10.3389/fvets.2023.1037404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/03/2023] [Indexed: 01/27/2023] Open
Abstract
First described in human EEG over 60 years ago, there are very few examples of periodic discharges in the veterinary literature. They are associated with a wide variety of etiologies, both intracranial and systemic, making interpretation challenging. Whether these patterns are indicative of ictal, interictal, or postictal activity is a matter of debate and may vary depending on the clinical features in an individual patient. Periodic discharges have a repeated waveform occurring at nearly regular intervals, with varying morphology of individual discharges from simple sharp waves or slow waves to more complex events. Amplitudes, frequencies, and morphologies of the discharges can fluctuate, occasionally evolving, or resolving over time. This study presents a visual review of several veterinary cases with periodic discharges on EEG similar to those described in human EEG, and discusses the current known pathophysiology of these discharges.
Collapse
Affiliation(s)
- Marguerite F. Knipe
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States,*Correspondence: Marguerite F. Knipe ✉
| | - William W. Bush
- Bush Veterinary Neurology Service, Leesburg, VA, United States
| | | | - D. Colette Williams
- School of Veterinary Medicine, William R. Pritchard Veterinary Medical Teaching Hospital, University of California, Davis, Davis, CA, United States
| |
Collapse
|
34
|
Martinez P, Sheikh I, Westover MB, Zafar SF. Implications of stimulus-induced, rhythmic, periodic, or ictal discharges (SIRPIDs) in hospitalized patients. Front Neurol 2023; 13:1062330. [PMID: 36756343 PMCID: PMC9899805 DOI: 10.3389/fneur.2022.1062330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/29/2022] [Indexed: 01/24/2023] Open
Abstract
Background Stimulus-induced electroencephalographic (EEG) patterns are commonly seen in acutely ill patients undergoing continuous EEG monitoring. Despite ongoing investigations, the pathophysiology, therapeutic and prognostic significance of stimulus-induced rhythmic, periodic or ictal discharges (SIRPIDs) and how it applies to specific pathologies remain unclear. We aimed to investigate the clinical implications of SIRPIDs in hospitalized patients. Methods This is a retrospective single-center study of hospitalized patients from May 2016 to August 2017. We included patients above the age of 18 years who underwent >16 h of EEG monitoring during a single admission. We excluded patients with cardiac arrest and anoxic brain injury. Demographic data were obtained as well as admission GCS, and discharge modified Rankin Score (mRS). EEGs were reviewed for background activity in addition to epileptiform, periodic, and rhythmic patterns. The presence or absence of SIRPIDs was recorded. Our outcome was discharge mRS defined as good outcome, mRS 0-4, and poor outcome mRS, 5-6. Results A total of 351 patients were included in the final analysis. The median age was 63 years and 175 (50%) were women. SIRPIDs were identified in 82 patients (23.4%). Patients with SIRPIDs had a median initial GCS of 12 (IQR, 6-15) and a length of stay of 12 days (IQR, 6-15). They were more likely to have absent posterior dominant rhythm, decreased reactivity, and more likely to have spontaneous periodic and rhythmic patterns and higher frequency of burst suppression. After adjusting for baseline clinical variables, underlying disease type and severity, and EEG background features, the presence of SIRPIDs was also associated with poor outcomes classified as MRS 5 or 6 (OR 4.75 [2.74-8.24] p ≤ 0.0001). Conclusion In our cohort of hospitalized patients excluding anoxic brain injury, SIRPIDs were identified in 23.4% and were seen most commonly in patients with primary systemic illness. We found SIRPIDs were independently associated with poor neurologic outcomes. Several studies are indicated to validate these findings and determine the risks vs. benefits of anti-seizure treatment.
Collapse
|
35
|
Fan TH, Rosenthal ES. Physiological Monitoring in Patients with Acute Brain Injury: A Multimodal Approach. Crit Care Clin 2023; 39:221-233. [PMID: 36333033 DOI: 10.1016/j.ccc.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neurocritical care management of acute brain injury (ABI) is focused on identification, prevention, and management of secondary brain injury (SBI). Physiologic monitoring of the brain and other organ systems has a role to predict patient recovery or deterioration, guide individualized therapeutic interventions, and measure response to treatment, with the goal of improving patient outcomes. In this review, we detail how specific physiologic markers of brain injury and neuromonitoring tools are integrated and used in ABI patients to develop therapeutic approaches to prevent SBI.
Collapse
Affiliation(s)
- Tracey H Fan
- Department of Neurology, Division of Neurocritical Care, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02493, USA; Department of Neurology, Division of Neurocritical Care, Brigham and Women's Hospital, 55 Fruit Street, Boston, MA 02493, USA
| | - Eric S Rosenthal
- Department of Neurology, Division of Neurocritical Care, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02493, USA; Department of Neurology, Division of Clinical Neurophysiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02493, USA.
| |
Collapse
|
36
|
Mahizhnan MM, Gillinder L, Craig D, Wensley I, Coyle S, Ferguson S, Papacostas J, McGonigal A. Electroencephalographic evolution of SEEG-associated intracerebral haemorrhage. Neurophysiol Clin 2022; 52:486-488. [PMID: 36283913 DOI: 10.1016/j.neucli.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Marai Mozhy Mahizhnan
- Department of Neurosciences, Mater Misericordiae Hospital, Brisbane, Queensland, Australia
| | - Lisa Gillinder
- Department of Neurosciences, Mater Misericordiae Hospital, Brisbane, Queensland, Australia; Mater Research Institute, Faculty of Medicine, University of Queensland, Australia
| | - Donald Craig
- Department of Neurosciences, Mater Misericordiae Hospital, Brisbane, Queensland, Australia
| | - Isaac Wensley
- Department of Neurosciences, Mater Misericordiae Hospital, Brisbane, Queensland, Australia
| | - Stephen Coyle
- Department of Neurosciences, Mater Misericordiae Hospital, Brisbane, Queensland, Australia
| | - Stuart Ferguson
- Department of Neurosciences, Mater Misericordiae Hospital, Brisbane, Queensland, Australia
| | - Jason Papacostas
- Department of Neurosciences, Mater Misericordiae Hospital, Brisbane, Queensland, Australia; Department of Neurosurgery, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Aileen McGonigal
- Department of Neurosciences, Mater Misericordiae Hospital, Brisbane, Queensland, Australia; Mater Research Institute, Faculty of Medicine, University of Queensland, Australia.
| |
Collapse
|
37
|
Guerriero RM, Morrissey MJ, Loe M, Reznikov J, Binkley MM, Ganniger A, Griffith JL, Khanmohammadi S, Rudock R, Guilliams KP, Ching S, Tomko SR. Macroperiodic Oscillations Are Associated With Seizures Following Acquired Brain Injury in Young Children. J Clin Neurophysiol 2022; 39:602-609. [PMID: 33587388 PMCID: PMC8674933 DOI: 10.1097/wnp.0000000000000828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Seizures occur in 10% to 40% of critically ill children. We describe a phenomenon seen on color density spectral array but not raw EEG associated with seizures and acquired brain injury in pediatric patients. METHODS We reviewed EEGs of 541 children admitted to an intensive care unit between October 2015 and August 2018. We identified 38 children (7%) with a periodic pattern on color density spectral array that oscillates every 2 to 5 minutes and was not apparent on the raw EEG tracing, termed macroperiodic oscillations (MOs). Internal validity measures and interrater agreement were assessed. We compared demographic and clinical data between those with and without MOs. RESULTS Interrater reliability yielded a strong agreement for MOs identification (kappa: 0.778 [0.542-1.000]; P < 0.0001). There was a 76% overlap in the start and stop times of MOs among reviewers. All patients with MOs had seizures as opposed to 22.5% of the general intensive care unit monitoring population ( P < 0.0001). Macroperiodic oscillations occurred before or in the midst of recurrent seizures. Patients with MOs were younger (median of 8 vs. 208 days; P < 0.001), with indications for EEG monitoring more likely to be clinical seizures (42 vs. 16%; P < 0.001) or traumatic brain injury (16 vs. 5%, P < 0.01) and had fewer premorbid neurologic conditions (10.5 vs. 33%; P < 0.01). CONCLUSIONS Macroperiodic oscillations are a slow periodic pattern occurring over a longer time scale than periodic discharges in pediatric intensive care unit patients. This pattern is associated with seizures in young patients with acquired brain injuries.
Collapse
Affiliation(s)
- Réjean M. Guerriero
- Division of Pediatric Neurology, Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, U.S.A
| | - Michael J. Morrissey
- Division of Pediatric Neurology, Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, U.S.A
| | - Maren Loe
- Medical Scientist Training Program, Washington University School of Medicine, Washington University School of Medicine, St. Louis, Missouri, U.S.A
- Department of Electrical and Systems Engineering, Washington University School of Medicine, St. Louis, Missouri, U.S.A
| | - Joseph Reznikov
- Division of Pediatric Neurology, Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, U.S.A
| | - Michael M. Binkley
- Division of Pediatric Neurology, Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, U.S.A
| | - Alex Ganniger
- Division of Pediatric Neurology, Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, U.S.A
| | - Jennifer L. Griffith
- Division of Pediatric Neurology, Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, U.S.A
| | - Sina Khanmohammadi
- Department of Electrical and Systems Engineering, Washington University School of Medicine, St. Louis, Missouri, U.S.A
| | - Robert Rudock
- Division of Pediatric Neurology, Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, U.S.A
| | - Kristin P. Guilliams
- Division of Pediatric Neurology, Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, U.S.A
- Division of Critical Care, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, U.S.A
| | - ShiNung Ching
- Department of Electrical and Systems Engineering, Washington University School of Medicine, St. Louis, Missouri, U.S.A
| | - Stuart R. Tomko
- Division of Pediatric Neurology, Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, U.S.A
| |
Collapse
|
38
|
Holla SK, Krishnamurthy PV, Subramaniam T, Dhakar MB, Struck AF. Electrographic Seizures in the Critically Ill. Neurol Clin 2022; 40:907-925. [PMID: 36270698 PMCID: PMC10508310 DOI: 10.1016/j.ncl.2022.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Identifying and treating critically ill patients with seizures can be challenging. In this article, the authors review the available data on patient populations at risk, seizure prognostication with tools such as 2HELPS2B, electrographic seizures and the various ictal-interictal continuum patterns with their latest definitions and associated risks, ancillary testing such as imaging studies, serum biomarkers, and invasive multimodal monitoring. They also illustrate 5 different patient scenarios, their treatment and outcomes, and propose recommendations for targeted treatment of electrographic seizures in critically ill patients.
Collapse
Affiliation(s)
- Smitha K Holla
- Department of Neurology, UW Medical Foundation Centennial building, 1685 Highland Avenue, Madison, WI 53705, USA.
| | | | - Thanujaa Subramaniam
- Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Yale School of Medicine, 15 York Street, Building LLCI, 10th Floor, Suite 1003 New Haven, CT 06520, USA
| | - Monica B Dhakar
- Department of Neurology, The Warren Alpert Medical School of Brown University, 593 Eddy St, APC 5, Providence, RI 02903, USA
| | - Aaron F Struck
- Department of Neurology, UW Medical Foundation Centennial building, 1685 Highland Avenue, Madison, WI 53705, USA; William S Middleton Veterans Hospital, Madison WI, USA
| |
Collapse
|
39
|
Gélisse P, Kaplan PW. How to evaluate and assess the epileptogenic/seizure potential of periodic discharges along the ictal-interictal continuum? ZEITSCHRIFT FÜR EPILEPTOLOGIE 2022. [DOI: 10.1007/s10309-022-00526-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe ictal–interictal continuum (IIC) is a concept used for those particular EEG patterns that do not meet the strict criteria for status epilepticus but may be associated with neuronal injury. The aim of this article is to review equivocal periodic patterns and to discuss their clinical significance along the IIC. The risk of seizures increases when the frequency of periodic discharges exceeds 2 Hz and when the pattern has features of superimposed rhythmic, sharp, or fast activity (plus modifier). Lateralized periodic discharges (LPDs) are one of the best examples of the IIC. Criteria have been proposed for identifying patterns along the IIC that we called “peri-ictal” LPDs. There is ongoing debate about when to treat patients with these EEG patterns along this spectrum. The term IIC is only an EEG description, and does not in itself reflect a clinical diagnosis, hence management is based on EEG alone. The decision to intensify treatment is based on the combination of EEG, the underlying etiology, the level of consciousness, comorbidities, imaging, and other surrogates of “damage.”
Collapse
|
40
|
Alkhachroum A, Appavu B, Egawa S, Foreman B, Gaspard N, Gilmore EJ, Hirsch LJ, Kurtz P, Lambrecq V, Kromm J, Vespa P, Zafar SF, Rohaut B, Claassen J. Electroencephalogram in the intensive care unit: a focused look at acute brain injury. Intensive Care Med 2022; 48:1443-1462. [PMID: 35997792 PMCID: PMC10008537 DOI: 10.1007/s00134-022-06854-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/31/2022] [Indexed: 02/04/2023]
Abstract
Over the past decades, electroencephalography (EEG) has become a widely applied and highly sophisticated brain monitoring tool in a variety of intensive care unit (ICU) settings. The most common indication for EEG monitoring currently is the management of refractory status epilepticus. In addition, a number of studies have associated frequent seizures, including nonconvulsive status epilepticus (NCSE), with worsening secondary brain injury and with worse outcomes. With the widespread utilization of EEG (spot and continuous EEG), rhythmic and periodic patterns that do not fulfill strict seizure criteria have been identified, epidemiologically quantified, and linked to pathophysiological events across a wide spectrum of critical and acute illnesses, including acute brain injury. Increasingly, EEG is not just qualitatively described, but also quantitatively analyzed together with other modalities to generate innovative measurements with possible clinical relevance. In this review, we discuss the current knowledge and emerging applications of EEG in the ICU, including seizure detection, ischemia monitoring, detection of cortical spreading depolarizations, assessment of consciousness and prognostication. We also review some technical aspects and challenges of using EEG in the ICU including the logistics of setting up ICU EEG monitoring in resource-limited settings.
Collapse
Affiliation(s)
- Ayham Alkhachroum
- Department of Neurology, University of Miami, Miami, FL, USA
- Department of Neurology, Jackson Memorial Hospital, Miami, FL, USA
| | - Brian Appavu
- Department of Child Health and Neurology, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
- Department of Neurosciences, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Satoshi Egawa
- Neurointensive Care Unit, Department of Neurosurgery, and Stroke and Epilepsy Center, TMG Asaka Medical Center, Saitama, Japan
| | - Brandon Foreman
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, USA
| | - Nicolas Gaspard
- Department of Neurology, Erasme Hospital, Free University of Brussels, Brussels, Belgium
| | - Emily J Gilmore
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Neurocritical Care and Emergency Neurology, Department of Neurology, Ale University School of Medicine, New Haven, CT, USA
| | - Lawrence J Hirsch
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Pedro Kurtz
- Department of Intensive Care Medicine, D'or Institute for Research and Education, Rio de Janeiro, Brazil
- Neurointensive Care, Paulo Niemeyer State Brain Institute, Rio de Janeiro, Brazil
| | - Virginie Lambrecq
- Department of Clinical Neurophysiology and Epilepsy Unit, AP-HP, Pitié Salpêtrière Hospital, Reference Center for Rare Epilepsies, 75013, Paris, France
| | - Julie Kromm
- Departments of Critical Care Medicine and Clinical Neurosciences, Cumming School of Medicine, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, Calgary, AB, Canada
| | - Paul Vespa
- Brain Injury Research Center, Department of Neurosurgery, University of California, Los Angeles, USA
| | - Sahar F Zafar
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Benjamin Rohaut
- Department of Neurology, Sorbonne Université, Pitié-Salpêtrière-AP-HP and Paris Brain Institute, ICM, Inserm, CNRS, Paris, France
| | - Jan Claassen
- Department of Neurology, Neurological Institute, Columbia University, New York Presbyterian Hospital, 177 Fort Washington Avenue, MHB 8 Center, Room 300, New York, NY, 10032, USA.
| |
Collapse
|
41
|
Abstract
Subarachnoid haemorrhage (SAH) is the third most common subtype of stroke. Incidence has decreased over past decades, possibly in part related to lifestyle changes such as smoking cessation and management of hypertension. Approximately a quarter of patients with SAH die before hospital admission; overall outcomes are improved in those admitted to hospital, but with elevated risk of long-term neuropsychiatric sequelae such as depression. The disease continues to have a major public health impact as the mean age of onset is in the mid-fifties, leading to many years of reduced quality of life. The clinical presentation varies, but severe, sudden onset of headache is the most common symptom, variably associated with meningismus, transient or prolonged unconsciousness, and focal neurological deficits including cranial nerve palsies and paresis. Diagnosis is made by CT scan of the head possibly followed by lumbar puncture. Aneurysms are commonly the underlying vascular cause of spontaneous SAH and are diagnosed by angiography. Emergent therapeutic interventions are focused on decreasing the risk of rebleeding (ie, preventing hypertension and correcting coagulopathies) and, most crucially, early aneurysm treatment using coil embolisation or clipping. Management of the disease is best delivered in specialised intensive care units and high-volume centres by a multidisciplinary team. Increasingly, early brain injury presenting as global cerebral oedema is recognised as a potential treatment target but, currently, disease management is largely focused on addressing secondary complications such as hydrocephalus, delayed cerebral ischaemia related to microvascular dysfunction and large vessel vasospasm, and medical complications such as stunned myocardium and hospital acquired infections.
Collapse
Affiliation(s)
- Jan Claassen
- Department of Neurology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY, USA.
| | - Soojin Park
- Department of Neurology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
42
|
Reply: Amnestic aphasia in MELAS can be epileptogenic. Brain Dev 2022; 44:590-591. [PMID: 35811189 DOI: 10.1016/j.braindev.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 06/23/2022] [Indexed: 11/22/2022]
|
43
|
Peter-Derex L, Philippeau F, Garnier P, André-Obadia N, Boulogne S, Catenoix H, Convers P, Mazzola L, Gouttard M, Esteban M, Fontaine J, Mechtouff L, Ong E, Cho TH, Nighoghossian N, Perreton N, Termoz A, Haesebaert J, Schott AM, Rabilloud M, Pivot C, Dhelens C, Filip A, Berthezène Y, Rheims S, Boutitie F, Derex L. Safety and efficacy of prophylactic levetiracetam for prevention of epileptic seizures in the acute phase of intracerebral haemorrhage (PEACH): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol 2022; 21:781-791. [PMID: 35963261 DOI: 10.1016/s1474-4422(22)00235-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 12/19/2022]
Abstract
BACKGROUND The incidence of early seizures (occurring within 7 days of stroke onset) after intracerebral haemorrhage reaches 30% when subclinical seizures are diagnosed by continuous EEG. Early seizures might be associated with haematoma expansion and worse neurological outcomes. Current guidelines do not recommend prophylactic antiseizure treatment in this setting. We aimed to assess whether prophylactic levetiracetam would reduce the risk of acute seizures in patients with intracerebral haemorrhage. METHODS The double-blind, randomised, placebo-controlled, phase 3 PEACH trial was conducted at three stroke units in France. Patients (aged 18 years or older) who presented with a non-traumatic intracerebral haemorrhage within 24 h after onset were randomly assigned (1:1) to levetiracetam (intravenous 500 mg every 12 h) or matching placebo. Randomisation was done with a web-based system and stratified by centre and National Institutes of Health Stroke Scale (NIHSS) score at baseline. Treatment was continued for 6 weeks. Continuous EEG was started within 24 h after inclusion and recorded over 48 h. The primary endpoint was the occurrence of at least one clinical seizure within 72 h of inclusion or at least one electrographic seizure recorded on continuous EEG, analysed in the modified intention-to-treat population, which comprised all patients who were randomly assigned to treatment and who had a continuous EEG performed. This trial was registered at ClinicalTrials.gov, NCT02631759, and is now closed. Recruitment was prematurely stopped after 48% of the recruitment target was reached due to a low recruitment rate and cessation of funding. FINDINGS Between June 1, 2017, and April 14, 2020, 50 patients with mild-to-moderate severity intracerebral haemorrhage were included: 24 were assigned to levetiracetam and 26 to placebo. During the first 72 h, a clinical or electrographic seizure was observed in three (16%) of 19 patients in the levetiracetam group versus ten (43%) of 23 patients in the placebo group (odds ratio 0·16, 95% CI 0·03-0·94, p=0·043). All seizures in the first 72 h were electrographic seizures only. No difference in depression or anxiety reporting was observed between the groups at 1 month or 3 months. Depression was recorded in three (13%) patients who received levetiracetam versus four (15%) patients who received placebo, and anxiety was reported for two (8%) patients versus one (4%) patient. The most common treatment-emergent adverse events in the levetiracetam group versus the placebo group were headache (nine [39%] vs six [24%]), pain (three [13%] vs ten [40%]), and falls (seven [30%] vs four [16%]). The most frequent serious adverse events were neurological deterioration due to the intracerebral haemorrhage (one [4%] vs four [16%]) and severe pneumonia (two [9%] vs two [8%]). No treatment-related death was reported in either group. INTERPRETATION Levetiracetam might be effective in preventing acute seizures in intracerebral haemorrhage. Larger studies are needed to determine whether seizure prophylaxis improves functional outcome in patients with intracerebral haemorrhage. FUNDING French Ministry of Health.
Collapse
Affiliation(s)
- Laure Peter-Derex
- Centre for Sleep Medicine and Respiratory Diseases, Croix-Rousse Hospital, Lyon University Hospital, Lyon, France; Lyon Neuroscience Research Centre, CNRS UMR 5292, INSERM U1028, Lyon, France.
| | - Frédéric Philippeau
- Stroke Unit, Department of Neurology, Fleyriat Hospital, Bourg en Bresse, France
| | - Pierre Garnier
- Stroke Centre, Department of Neurology, Saint-Etienne University Hospital, Saint-Etienne, France
| | - Nathalie André-Obadia
- Department of Functional Neurology and Epileptology, Lyon University Hospital, Lyon, France; Lyon Neuroscience Research Centre, CNRS UMR 5292, INSERM U1028, Lyon, France
| | - Sébastien Boulogne
- Department of Functional Neurology and Epileptology, Lyon University Hospital, Lyon, France; Lyon Neuroscience Research Centre, CNRS UMR 5292, INSERM U1028, Lyon, France
| | - Hélène Catenoix
- Department of Functional Neurology and Epileptology, Lyon University Hospital, Lyon, France; Lyon Neuroscience Research Centre, CNRS UMR 5292, INSERM U1028, Lyon, France
| | - Philippe Convers
- Lyon Neuroscience Research Centre, CNRS UMR 5292, INSERM U1028, Lyon, France; Clinical Neurophysiology Unit, Department of Neurology, Saint-Etienne University Hospital, Saint-Etienne, France
| | - Laure Mazzola
- Lyon Neuroscience Research Centre, CNRS UMR 5292, INSERM U1028, Lyon, France; Clinical Neurophysiology Unit, Department of Neurology, Saint-Etienne University Hospital, Saint-Etienne, France
| | - Michel Gouttard
- Stroke Unit, Department of Neurology, Fleyriat Hospital, Bourg en Bresse, France
| | - Maud Esteban
- Stroke Centre, Lyon University Hospital, Lyon, France
| | | | | | - Elodie Ong
- Stroke Centre, Lyon University Hospital, Lyon, France
| | - Tae-Hee Cho
- Stroke Centre, Lyon University Hospital, Lyon, France
| | | | - Nathalie Perreton
- Public Health Unit, Clinical Research and Epidemiology Department, Lyon University Hospital, Lyon, France; University Claude Bernard Lyon 1, Research on Healthcare Performance (RESHAPE), INSERM U1290, Lyon, France
| | - Anne Termoz
- Public Health Unit, Clinical Research and Epidemiology Department, Lyon University Hospital, Lyon, France; University Claude Bernard Lyon 1, Research on Healthcare Performance (RESHAPE), INSERM U1290, Lyon, France
| | - Julie Haesebaert
- Public Health Unit, Clinical Research and Epidemiology Department, Lyon University Hospital, Lyon, France; University Claude Bernard Lyon 1, Research on Healthcare Performance (RESHAPE), INSERM U1290, Lyon, France
| | - Anne-Marie Schott
- Public Health Unit, Clinical Research and Epidemiology Department, Lyon University Hospital, Lyon, France; University Claude Bernard Lyon 1, Research on Healthcare Performance (RESHAPE), INSERM U1290, Lyon, France
| | - Muriel Rabilloud
- Department of Biostatistics, Lyon University Hospital, Lyon, France; Biometry and Evolutionary Biology Laboratory, CNRS UMR 5558, Biostatistics Health Team, Villeurbanne, France
| | - Christine Pivot
- Pharmacy, FRIPHARM, Edouard Herriot Hospital, Lyon University Hospital, Lyon, France
| | - Carole Dhelens
- Pharmacy, FRIPHARM, Edouard Herriot Hospital, Lyon University Hospital, Lyon, France
| | - Andrea Filip
- Department of Neuroradiology, Neurological Hospital, Lyon University Hospital, Lyon, France
| | - Yves Berthezène
- Department of Neuroradiology, Neurological Hospital, Lyon University Hospital, Lyon, France
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology, Lyon University Hospital, Lyon, France; Lyon Neuroscience Research Centre, CNRS UMR 5292, INSERM U1028, Lyon, France
| | - Florent Boutitie
- Department of Biostatistics, Lyon University Hospital, Lyon, France; Biometry and Evolutionary Biology Laboratory, CNRS UMR 5558, Biostatistics Health Team, Villeurbanne, France
| | - Laurent Derex
- Stroke Centre, Lyon University Hospital, Lyon, France; University Claude Bernard Lyon 1, Research on Healthcare Performance (RESHAPE), INSERM U1290, Lyon, France
| |
Collapse
|
44
|
Dhakar MB, Sheikh Z, Kumari P, Lawson EC, Jeanneret V, Desai D, Ruiz AR, Haider HA. Epileptiform Abnormalities in Acute Ischemic Stroke: Impact on Clinical Management and Outcomes. J Clin Neurophysiol 2022; 39:446-452. [PMID: 33298681 PMCID: PMC8371977 DOI: 10.1097/wnp.0000000000000801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
PURPOSE Studies examining seizures (Szs) and epileptiform abnormalities (EAs) using continuous EEG in acute ischemic stroke (AIS) are limited. Therefore, we aimed to describe the prevalence of Sz and EA in AIS, its impact on anti-Sz drug management, and association with discharge outcomes. METHODS The study included 132 patients with AIS who underwent continuous EEG monitoring >6 hours. Continuous EEG was reviewed for background, Sz and EA (lateralized periodic discharges [LPD], generalized periodic discharges, lateralized rhythmic delta activity, and sporadic epileptiform discharges). Relevant clinical, demographic, and imaging factors were abstracted to identify risk factors for Sz and EA. Outcomes included all-cause mortality, functional outcome at discharge (good outcome as modified Rankin scale of 0-2 and poor outcome as modified Rankin scale of 3-6) and changes to anti-Sz drugs (escalation or de-escalation). RESULTS The frequency of Sz was 7.6%, and EA was 37.9%. Patients with Sz or EA were more likely to have cortical involvement (84.6% vs. 67.5% P = 0.028). Among the EAs, the presence of LPD was associated with an increased risk of Sz (25.9% in LPD vs. 2.9% without LPD, P = 0.001). Overall, 21.2% patients had anti-Sz drug changes because of continuous EEG findings, 16.7% escalation and 4.5% de-escalation. The presence of EA or Sz was not associated with in-hospital mortality or discharge functional outcomes. CONCLUSIONS Despite the high incidence of EA, the rate of Sz in AIS is relatively lower and is associated with the presence of LPDs. These continuous EEG findings resulted in anti-Sz drug changes in one-fifth of the cohort. Epileptiform abnormality and Sz did not affect mortality or discharge functional outcomes.
Collapse
Affiliation(s)
- Monica B. Dhakar
- Epilepsy Section, Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, U.S.A
| | - Zubeda Sheikh
- Department of Neurology, West Virginia University School of Medicine, Morgantown, West Virginia, U.S.A
| | - Polly Kumari
- Epilepsy Section, Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, U.S.A
| | - Eric C. Lawson
- Epilepsy Section, Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, U.S.A
| | - Valerie Jeanneret
- Epilepsy Section, Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, U.S.A
| | - Dhaval Desai
- Epilepsy Section, Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, U.S.A
| | - Andres Rodriguez Ruiz
- Epilepsy Section, Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, U.S.A
| | - Hiba A. Haider
- Epilepsy Section, Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, U.S.A
| |
Collapse
|
45
|
Sanches PR, Tabaeizadeh M, Moura LMVR, Rosenthal ES, Caboclo LO, Hsu J, Patorno E, Westover MB, Zafar SF. Anti-seizure medication treatment and outcomes in acute ischemic stroke patients undergoing continuous EEG monitoring. Neurol Sci 2022; 43:5441-5449. [PMID: 35713732 PMCID: PMC11550088 DOI: 10.1007/s10072-022-06183-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/28/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVES To determine the association of anti-seizure medication (ASM) treatment with outcomes in acute ischemic stroke (AIS) patients undergoing continuous electroencephalography (cEEG). METHODS Retrospective analysis of AIS patients admitted between 2012 and 2019. The following are the inclusion criteria: age ≥ 18 years and ≥ 16 h of cEEG within the first 7 days of admission. ASM treatment exposure was defined as > 48 h of treatment after the first 24 h of cEEG. The primary outcome measure was 90-day mortality, and the secondary outcome was 90-day functional recovery (Modified Ranking Scale 0-3). Propensity scores were used to adjust for baseline covariates and presence of epileptiform abnormalities (seizures, periodic and rhythmic patterns). RESULTS One hundred thirteen patients met the inclusion criteria; 39 (34.5%) were exposed to ASM. ASM treatment was not associated with 90-day mortality (propensity adjusted HR 1.0 [0.31-3.27], p = 0.999) or functional outcomes (adjusted HR 0.99 [0.32-3.02], p = 0.989), compared to no treatment. CONCLUSIONS In our study, ASM treatment in AIS patients with cEEG abnormalities was not significantly associated with a change in 90-day mortality and functional recovery. Larger comparative effectiveness studies are indicated to identify which acute ischemic stroke patients with cEEG abnormalities benefit most from ASM treatment.
Collapse
Affiliation(s)
- Paula R Sanches
- Lunder 6 Neurosciences Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
- Department of Critical Care Medicine, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Mohammad Tabaeizadeh
- Lunder 6 Neurosciences Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Lidia M V R Moura
- Lunder 6 Neurosciences Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Eric S Rosenthal
- Lunder 6 Neurosciences Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Luis Otavio Caboclo
- Department of Clinical Neurophysiology, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - John Hsu
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Health Care Policy, Harvard Medical School, Boston, MA, USA
| | - Elisabetta Patorno
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - M Brandon Westover
- Lunder 6 Neurosciences Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Sahar F Zafar
- Lunder 6 Neurosciences Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA.
| |
Collapse
|
46
|
Kim JA, Zheng WL, Elmer J, Jing J, Zafar SF, Ghanta M, Moura V, Gilmore EJ, Hirsch LJ, Patel A, Rosenthal E, Westover MB. High epileptiform discharge burden predicts delayed cerebral ischemia after subarachnoid hemorrhage. Clin Neurophysiol 2022; 141:139-146. [PMID: 33812771 PMCID: PMC8429508 DOI: 10.1016/j.clinph.2021.01.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/30/2020] [Accepted: 01/04/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate whether epileptiform discharge burden can identify those at risk for delayed cerebral ischemia (DCI) after subarachnoid hemorrhage (SAH). METHODS Retrospective analysis of 113 moderate to severe grade SAH patients who had continuous EEG (cEEG) recordings during their hospitalization. We calculated the burden of epileptiform discharges (ED), measured as number of ED per hour. RESULTS We find that many SAH patients have an increase in ED burden during the first 3-10 days following rupture, the major risk period for DCI. However, those who develop DCI have a significantly higher hourly burden from days 3.5-6 after SAH vs. those who do not. ED burden is higher in DCI patients when assessed in relation to the onset of DCI (area under the receiver operator curve 0.72). Finally, specific trends of ED burden over time, assessed by group-based trajectory analysis, also help stratify DCI risk. CONCLUSIONS These results suggest that ED burden is a useful parameter for identifying those at higher risk of developing DCI after SAH. The higher burden rate associated with DCI supports the theory of metabolic supply-demand mismatch which contributes to this complication. SIGNIFICANCE ED burden is a novel biomarker for predicting those at high risk of DCI.
Collapse
Affiliation(s)
- Jennifer A Kim
- Department of Neurology, Yale University, New Haven, CT 06520, USA.
| | - Wei-Long Zheng
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jonathan Elmer
- Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Jin Jing
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sahar F Zafar
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Manohar Ghanta
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Valdery Moura
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Emily J Gilmore
- Department of Neurology, Yale University, New Haven, CT 06520, USA
| | | | - Aman Patel
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Eric Rosenthal
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - M Brandon Westover
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
47
|
Amorim E, Firme MS, Zheng WL, Shelton KT, Akeju O, Cudemus G, Yuval R, Westover MB. High incidence of epileptiform activity in adults undergoing extracorporeal membrane oxygenation. Clin Neurophysiol 2022; 140:4-11. [PMID: 35691268 PMCID: PMC9340813 DOI: 10.1016/j.clinph.2022.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 02/20/2022] [Accepted: 04/27/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The prevalence of seizures and other types of epileptiform brain activity in patients undergoing extracorporeal membrane oxygenation (ECMO) is unknown. We aimed to estimate the prevalence of seizures and ictal-interictal continuum patterns in patients undergoing electroencephalography (EEG) during ECMO. METHODS Retrospective review of a prospective ECMO registry from 2011-2018 in a university-affiliated academic hospital. Adult subjects who had decreased level of consciousness and underwent EEG monitoring for seizure screening were included. EEG classification followed the American Clinical Neurophysiology Society criteria. Poor neurological outcome was defined as a Cerebral Performance Category of 3-5 at hospital discharge. RESULTS Three hundred and ninety-five subjects had ECMO, and one hundred and thirteen (28.6%) had EEG monitoring. Ninety-two (23.3%) subjects had EEG performed during ECMO and were included in the study (average EEG duration 54 h). Veno-arterial ECMO was the most common cannulation strategy (83%) and 26 (28%) subjects had extracorporeal cardiopulmonary resuscitation. Fifty-eight subjects (63%) had epileptiform activity or ictal-interictal continuum patterns on EEG, including three (3%) subjects with nonconvulsive status epilepticus, 33 (36%) generalized periodic discharges, and 4 (5%) lateralized periodic discharges. Comparison between subjects with or without epileptiform activity showed comparable in-hospital mortality (57% vs. 47%, p = 0.38) and poor neurological outcome (and 56% and 36%, p = 0.23). Twenty-seven subjects (33%) had acute neuroimaging abnormalities (stroke N = 21). CONCLUSIONS Seizures and ictal-interictal continuum patterns are commonly observed in patients managed with ECMO. Further studies are needed to evaluate whether epileptiform activity is an actionable target for interventions. SIGNIFICANCE Epileptiform and ictal-interictal continuum abnormalities are frequently observed in patients supported with ECMO undergoing EEG monitoring.
Collapse
Affiliation(s)
- Edilberto Amorim
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA; Neurology Service, Zuckerberg San Francisco General Hospital, San Francisco, California, USA; Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA.
| | - Marcos S Firme
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Wei-Long Zheng
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kenneth T Shelton
- Department of Medicine, Division of Cardiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Oluwaseun Akeju
- Department of Anesthesia, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Gaston Cudemus
- Department of Anesthesia, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Raz Yuval
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - M Brandon Westover
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
48
|
Tian J, Zhou Y, Liu H, Qu Z, Zhang L, Liu L. Quantitative EEG parameters can improve the predictive value of the non-traumatic neurological ICU patient prognosis through the machine learning method. Front Neurol 2022; 13:897734. [PMID: 35968284 PMCID: PMC9366714 DOI: 10.3389/fneur.2022.897734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/04/2022] [Indexed: 12/04/2022] Open
Abstract
Background Better outcome prediction could assist in reliable classification of the illnesses in neurological intensive care unit (ICU) severity to support clinical decision-making. We developed a multifactorial model including quantitative electroencephalography (QEEG) parameters for outcome prediction of patients in neurological ICU. Methods We retrospectively analyzed neurological ICU patients from November 2018 to November 2021. We used 3-month mortality as the outcome. Prediction models were created using a linear discriminant analysis (LDA) based on QEEG parameters, APACHEII score, and clinically relevant features. Additionally, we compared our best models with APACHEII score and Glasgow Coma Scale (GCS). The DeLong test was carried out to compare the ROC curves in different models. Results A total of 110 patients were included and divided into a training set (n=80) and a validation set (n = 30). The best performing model had an AUC of 0.85 in the training set and an AUC of 0.82 in the validation set, which were better than that of GCS (training set 0.64, validation set 0.61). Models in which we selected only the 4 best QEEG parameters had an AUC of 0.77 in the training set and an AUC of 0.71 in the validation set, which were similar to that of APACHEII (training set 0.75, validation set 0.73). The models also identified the relative importance of each feature. Conclusion Multifactorial machine learning models using QEEG parameters, clinical data, and APACHEII score have a better potential to predict 3-month mortality in non-traumatic patients in neurological ICU.
Collapse
Affiliation(s)
- Jia Tian
- Neurocritical Care Unit, Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yi Zhou
- Neurocritical Care Unit, Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hu Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhenzhen Qu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Limiao Zhang
- Neurocritical Care Unit, Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lidou Liu
- Neurocritical Care Unit, Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Lidou Liu
| |
Collapse
|
49
|
Sharma S, Nunes M, Alkhachroum A. Adult Critical Care Electroencephalography Monitoring for Seizures: A Narrative Review. Front Neurol 2022; 13:951286. [PMID: 35911927 PMCID: PMC9334872 DOI: 10.3389/fneur.2022.951286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Electroencephalography (EEG) is an important and relatively inexpensive tool that allows intensivists to monitor cerebral activity of critically ill patients in real time. Seizure detection in patients with and without acute brain injury is the primary reason to obtain an EEG in the Intensive Care Unit (ICU). In response to the increased demand of EEG, advances in quantitative EEG (qEEG) created an approach to review large amounts of data instantly. Finally, rapid response EEG is now available to reduce the time to detect electrographic seizures in limited-resource settings. This review article provides a concise overview of the technical aspects of EEG monitoring for seizures, clinical indications for EEG, the various available modalities of EEG, common and challenging EEG patterns, and barriers to EEG monitoring in the ICU.
Collapse
Affiliation(s)
- Sonali Sharma
- Department of Neurology, University of Miami, Miami, FL, United States
- Department of Neurology, Jackson Memorial Hospital, Miami, FL, United States
| | - Michelle Nunes
- Department of Neurology, University of Miami, Miami, FL, United States
- Department of Neurology, Jackson Memorial Hospital, Miami, FL, United States
| | - Ayham Alkhachroum
- Department of Neurology, University of Miami, Miami, FL, United States
- Department of Neurology, Jackson Memorial Hospital, Miami, FL, United States
- *Correspondence: Ayham Alkhachroum
| |
Collapse
|
50
|
Ferlini L, Nonclercq A, Su F, Creteur J, Taccone FS, Gaspard N. Sepsis modulates cortical excitability and alters the local and systemic hemodynamic response to seizures. Sci Rep 2022; 12:11336. [PMID: 35790848 PMCID: PMC9256588 DOI: 10.1038/s41598-022-15426-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/23/2022] [Indexed: 11/09/2022] Open
Abstract
Non-convulsive seizures and status epilepticus are frequent and associated with increased mortality in septic patients. However, the mechanism through which seizures impact outcome in these patients is unclear. As previous studies yielded an alteration of neurovascular coupling (NVC) during sepsis, we hypothesized that non-convulsive seizures, might further impair NVC, leading to brain tissue hypoxia. We used a previously developed ovine model of sepsis. Animals were allocated to sham procedure or sepsis; septic animals were studied either during the hyperdynamic phase (sepsis group) or after septic shock occurrence (septic shock group). After allocation, seizures were induced by cortical application of penicillin. We recorded a greater seizure-induced increase in the EEG gamma power in the sepsis group than in sham. Using a neural mass model, we also found that the theoretical activity of the modeled inhibitory interneurons, thought to be important to reproduce gamma oscillations, were relatively greater in the sepsis group. However, the NVC was impaired in sepsis animals, despite a normal brain tissue oxygenation. In septic shock animals, it was not possible to induce seizures. Cortical activity declined in case of septic shock, but it did not differ between sham or sepsis animals. As the alteration in NVC preceded cortical activity reduction, we suggest that, during sepsis progression, the NVC inefficiency could be partially responsible for the alteration of brain function, which might prevent seizure occurrence during septic shock. Moreover, we showed that cardiac output decreased during seizures in sepsis animals instead of increasing as in shams. The alteration of the seizure-induced systemic hemodynamic variations in sepsis might further affect cerebrovascular response to neuronal activation. Our findings support the hypothesis that anomalies in the cerebral blood flow regulation may contribute to the sepsis-associated encephalopathy and that seizures might be dangerous in such a vulnerable setting.
Collapse
Affiliation(s)
- Lorenzo Ferlini
- Department of Neurology, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik, 808, 1070, Brussels, Belgium
| | - Antoine Nonclercq
- Bio-, Electro- And Mechanical Systems (BEAMS), Université Libre de Bruxelles, Avenue F.D. Roosevelt 50 CP165/56, 1050, Brussels, Belgium
| | - Fuhong Su
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik, 808, 1070, Brussels, Belgium
| | - Jacques Creteur
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik, 808, 1070, Brussels, Belgium
| | - Fabio Silvio Taccone
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik, 808, 1070, Brussels, Belgium
| | - Nicolas Gaspard
- Department of Neurology, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik, 808, 1070, Brussels, Belgium.
| |
Collapse
|