1
|
Fernández-Martín R, Feys O, Juvené E, Aeby A, Urbain C, De Tiège X, Wens V. Towards the automated detection of interictal epileptiform discharges with magnetoencephalography. J Neurosci Methods 2024; 403:110052. [PMID: 38151188 DOI: 10.1016/j.jneumeth.2023.110052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND The analysis of clinical magnetoencephalography (MEG) in patients with epilepsy traditionally relies on visual identification of interictal epileptiform discharges (IEDs), which is time consuming and dependent on subjective criteria. NEW METHOD Here, we explore the ability of Independent Components Analysis (ICA) and Hidden Markov Modeling (HMM) to automatically detect and localize IEDs. We tested our pipelines on resting-state MEG recordings from 10 school-aged children with (multi)focal epilepsy. RESULTS In focal epilepsy patients, both pipelines successfully detected visually identified IEDs, but also revealed unidentified low-amplitude IEDs. Success was more mitigated in patients with multifocal epilepsy, as our automated pipeline missed IED activity associated with some foci-an issue that could be alleviated by post-hoc manual selection of epileptiform ICs or HMM states. COMPARISON WITH EXISTING METHODS We compared our results with visual IED detection by an experienced clinical magnetoencephalographer, getting heightened sensitivity and requiring minimal input from clinical practitioners. CONCLUSIONS IED detection based on ICA or HMM represents an efficient way to identify IED localization and timing. The development of these automatic IED detection algorithms provide a step forward in clinical MEG practice by decreasing the duration of MEG analysis and enhancing its sensitivity.
Collapse
Affiliation(s)
- Raquel Fernández-Martín
- Université libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles (LNbT), Brussels, Belgium.
| | - Odile Feys
- Université libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles (LNbT), Brussels, Belgium; Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B.), Hôpital Erasme, Department of Neurology, Brussels, Belgium
| | - Elodie Juvené
- Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B.), Department of Pediatric Neurology, Brussels, Belgium
| | - Alec Aeby
- Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B.), Department of Pediatric Neurology, Brussels, Belgium
| | - Charline Urbain
- Université libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles (LNbT), Brussels, Belgium; Université libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Centre for Research in Cognition and Neurosciences (CRCN), Neuropsychology and Functional Neuroimaging Research Unit (UR2NF), Brussels, Belgium
| | - Xavier De Tiège
- Université libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles (LNbT), Brussels, Belgium; Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B.), Hôpital Erasme, Service of translational Neuroimaging, Brussels, Belgium
| | - Vincent Wens
- Université libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles (LNbT), Brussels, Belgium; Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B.), Hôpital Erasme, Service of translational Neuroimaging, Brussels, Belgium
| |
Collapse
|
2
|
Feys O, De Tiège X. From cryogenic to on-scalp magnetoencephalography for the evaluation of paediatric epilepsy. Dev Med Child Neurol 2024; 66:298-306. [PMID: 37421175 DOI: 10.1111/dmcn.15689] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/28/2023] [Accepted: 06/02/2023] [Indexed: 07/09/2023]
Abstract
Magnetoencephalography (MEG) is a neurophysiological technique based on the detection of brain magnetic fields. Whole-head MEG systems typically house a few hundred sensors requiring cryogenic cooling in a rigid one-size-fits-all (commonly adult-sized) helmet to keep a thermal insulation space. This leads to an increased brain-to-sensor distance in children, because of their smaller head circumference, and decreased signal-to-noise ratio. MEG allows detection and localization of interictal and ictal epileptiform discharges, and pathological high frequency oscillations, as a part of the presurgical assessment of children with refractory focal epilepsy, where electroencephalography is not contributive. MEG can also map the eloquent cortex before surgical resection. MEG also provides insights into the physiopathology of both generalized and focal epilepsy. On-scalp recordings based on cryogenic-free sensors have demonstrated their use in the field of childhood focal epilepsy and should become a reference technique for diagnosing epilepsy in the paediatric population. WHAT THIS PAPER ADDS: Magnetoencephalography (MEG) contributes to the diagnosis and understanding of paediatric epilepsy. On-scalp MEG recordings demonstrate some advantages over cryogenic MEG.
Collapse
Affiliation(s)
- Odile Feys
- Department of Neurology, Université libre de Bruxelles, Hôpital Universitaire de Bruxelles, Hôpital Erasme, Bruxelles, Belgium
- Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles, Université libre de Bruxelles, ULB Neuroscience Institute, Bruxelles, Belgium
| | - Xavier De Tiège
- Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles, Université libre de Bruxelles, ULB Neuroscience Institute, Bruxelles, Belgium
- Department of Translational Neuroimaging, Université libre de Bruxelles, Hôpital Universitaire de Bruxelles, Hôpital Erasme, Bruxelles, Belgium
| |
Collapse
|
3
|
Westin K, Beniczky S, Pfeiffer C, Hämäläinen M, Lundqvist D. On the clinical utility of on-scalp MEG: A modeling study of epileptic activity source estimation. Clin Neurophysiol 2023; 156:143-155. [PMID: 37951041 DOI: 10.1016/j.clinph.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/06/2023] [Accepted: 10/21/2023] [Indexed: 11/13/2023]
Abstract
OBJECTIVE Epilepsy surgery requires localization of the seizure onset zone (SOZ). Today this can only be achieved by intracranial electroencephalography (iEEG). The iEEG electrode placement is guided by findings from non-invasive modalities that cannot themselves detect SOZ-generated initial seizure activity. On scalp magnetoencephalography (osMEG), with sensors placed on the scalp, demonstrates higher sensitivity than conventional MEG (convMEG) and could potentially detect early seizure activity. Here, we modeled EEG, convMEG and osMEG to compare the modalities' ability to localize SOZ activity and to detect epileptic spikes. METHODS We modeled seizure propagation within ten epileptic networks located in the mesial and lateral temporal lobe; basal, dorsal, central and frontopolar frontal lobe; parietal and occipital lobe as well as insula and cingulum. The networks included brain regions often involved in focal epilepsy. 128-channel osMEG, convMEG, EEG and combined osMEG + EEG and convMEG + EEG were modeled, and the SOZ source estimation accuracy was quantified and compared using Student's t-test. RESULTS OsMEG was significantly (p-value <0.01) better than both convMEG and EEG at detecting the earliest SOZ-generated seizure activity and epileptic spikes, and better at localizing seizure activity from all epileptic networks (p < 0.01). CONCLUSIONS Our modeling results clearly show that osMEG has an unsurpassed potential to detect both epileptic spikes and seizure activity from all simulated anatomical sites. SIGNIFICANCE No clinically available non-invasive technique can detect SOZ activity from all brain regions. Our study indicates that osMEG has the potential to become an important clinical tool, improving both non-invasive SOZ localization and iEEG electrode placement accuracy.
Collapse
Affiliation(s)
- Karin Westin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Clinical Neurophysiology, Karolinska University Hospital, Stockholm, Sweden.
| | - Sándor Beniczky
- Department of Clinical Neurophysiology, Aarhus University Hospital, Denmark and Danish Epilepsy Centre, Dianalund, Denmark
| | - Christoph Pfeiffer
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Matti Hämäläinen
- Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo, Finland
| | - Daniel Lundqvist
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Badier JM, Schwartz D, Bénar CG, Kanzari K, Daligault S, Romain R, Mitryukovskiy S, Fourcault W, Josselin V, Le Prado M, Jung J, Palacios-Laloy A, Romain C, Bartolomei F, Labyt E, Bonini F. Helium Optically Pumped Magnetometers Can Detect Epileptic Abnormalities as Well as SQUIDs as Shown by Intracerebral Recordings. eNeuro 2023; 10:ENEURO.0222-23.2023. [PMID: 37932045 PMCID: PMC10748329 DOI: 10.1523/eneuro.0222-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 11/08/2023] Open
Abstract
Magnetoencephalography based on superconducting quantum interference devices (SQUIDs) has been shown to improve the diagnosis and surgical treatment decision for presurgical evaluation of drug-resistant epilepsy. Still, its use remains limited because of several constraints such as cost, fixed helmet size, and the obligation of immobility. A new generation of sensors, optically pumped magnetometers (OPMs), could overcome these limitations. In this study, we validate the ability of helium-based OPM (4He-OPM) sensors to record epileptic brain activity thanks to simultaneous recordings with intracerebral EEG [stereotactic EEG (SEEG)]. We recorded simultaneous SQUIDs-SEEG and 4He-OPM-SEEG signals in one patient during two sessions. We show that epileptic activities on intracerebral EEG can be recorded by OPMs with a better signal-to noise ratio than classical SQUIDs. The OPM sensors open new venues for the widespread application of magnetoencephalography in the management of epilepsy and other neurologic diseases and fundamental neuroscience.
Collapse
Affiliation(s)
- Jean-Michel Badier
- Institut de Neurosciences des Systèmes, Institut National de la Santé et de la Recherche Médicale, Aix Marseille Université, Marseille 13005, France
| | - Denis Schwartz
- MEG Departement, CERMEP-Imagerie du Vivant, Lyon 69003, France
| | - Christian-George Bénar
- Institut de Neurosciences des Systèmes, Institut National de la Santé et de la Recherche Médicale, Aix Marseille Université, Marseille 13005, France
| | - Khoubeib Kanzari
- Institut de Neurosciences des Systèmes, Institut National de la Santé et de la Recherche Médicale, Aix Marseille Université, Marseille 13005, France
| | | | - Rudy Romain
- CEA-LETI, MINATEC, Université Grenoble Alpes, Grenoble 38054, France
- MAG4Health, Grenoble 38000, France
| | - Sergey Mitryukovskiy
- CEA-LETI, MINATEC, Université Grenoble Alpes, Grenoble 38054, France
- MAG4Health, Grenoble 38000, France
| | - William Fourcault
- CEA-LETI, MINATEC, Université Grenoble Alpes, Grenoble 38054, France
| | - Vincent Josselin
- CEA-LETI, MINATEC, Université Grenoble Alpes, Grenoble 38054, France
| | - Matthieu Le Prado
- CEA-LETI, MINATEC, Université Grenoble Alpes, Grenoble 38054, France
- MAG4Health, Grenoble 38000, France
| | - Julien Jung
- Centre de Recherche en Neurosciences de Lyon, Unité Mixte de Recherche S1028, Centre National de la Recherche Scientifique, Hospices Civils de Lyon, Institut National de la Santé et de la Recherche Médicale, Université Lyon 1, Lyon 69002, France
| | - Augustin Palacios-Laloy
- CEA-LETI, MINATEC, Université Grenoble Alpes, Grenoble 38054, France
- MAG4Health, Grenoble 38000, France
| | - Carron Romain
- Institut de Neurosciences des Systèmes, Institut National de la Santé et de la Recherche Médicale, Aix Marseille Université, Marseille 13005, France
- Department of Functional and Stereotactic Neurosurgery, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, Marseille 3005, France
| | - Fabrice Bartolomei
- Institut de Neurosciences des Systèmes, Institut National de la Santé et de la Recherche Médicale, Aix Marseille Université, Marseille 13005, France
- Department of Epileptology and Cerebral Rythmology, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, Marseille 3005, France
| | - Etienne Labyt
- CEA-LETI, MINATEC, Université Grenoble Alpes, Grenoble 38054, France
- MAG4Health, Grenoble 38000, France
| | - Francesca Bonini
- Institut de Neurosciences des Systèmes, Institut National de la Santé et de la Recherche Médicale, Aix Marseille Université, Marseille 13005, France
- MEG Departement, CERMEP-Imagerie du Vivant, Lyon 69003, France
| |
Collapse
|
5
|
Bagić AI, Bowyer SM, Burgess RC, Funke ME, Lowden A, Mohamed IS, Wilson T, Zhang W, Zillgitt AJ, Tenney JR. Role of optically pumped magnetometers in presurgical epilepsy evaluation: Commentary of the American Clinical Magnetoencephalography Society. Epilepsia 2023; 64:3155-3159. [PMID: 37728519 DOI: 10.1111/epi.17770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/18/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023]
Abstract
One of the major challenges of modern epileptology is the underutilization of epilepsy surgery for treatment of patients with focal, medication resistant epilepsy (MRE). Aggravating this distressing failure to deliver optimum care to these patients is the underuse of proven localizing tools, such as magnetoencephalography (MEG), a clinically validated, non-invasive, neurophysiological method used to directly measure and localize brain activity. A sizable mass of published evidence indicates that MEG can improve identification of surgical candidates and guide pre-surgical planning, increasing the yield of SEEG and improving operative outcomes. However, despite at least 10 common, evidence supported, clinical scenarios in MRE patients where MEG can offer non-redundant information and improve the pre-surgical evaluation, it is regularly used by only a minority of USA epilepsy centers. The current state of the art in MEG sensors employs SQUIDs, which require cooling with liquid helium to achieve superconductivity. This sensor technology has undergone significant generational improvement since whole head MEG scanners were introduced around in 1990s, but still has limitations. Further advances in sensor technology which may make ME G more easily accessible and affordable have been eagerly awaited, and development of new techniques should be encouraged. Of late, optically pumped magnetometers (OPMs) have received considerable attention, even prompting some potential acquisitions of new MEG systems to be put on hold, based on a hope that OPMs will usher in a new generation of MEG equipment and procedures. The development of any new clinical test used to guide intracranial EEG monitoring and/or surgical planning must address several specific issues. The goal of this commentary is to recognize the current state of OPM technology and to suggest a framework for it to advance in the clinical realm where it can eventually be deemed clinically valuable to physicians and patients. The American Clinical MEG Society (ACMEGS) strongly supports more advanced and less expensive technology and looks forward to continuing work with researchers to develop new sensors and clinical devices which will improve the experience and outcome for patients, and perhaps extend the role of MEG. However, currently, there are no OPM devices ready for practical clinical use. Based on the engineering obstacles and the clinical tradeoffs to be resolved, the assessment of experts suggests that there will most likely be another decade relying solely on "frozen SQUIDs" in the clinical MEG field.
Collapse
Affiliation(s)
- Anto I Bagić
- University of Pittsburgh Comprehensive Epilepsy Center, Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Susan M Bowyer
- MEG Laboratory, Henry Ford Hospital, Wayne State University, Detroit, Michigan, USA
| | - Richard C Burgess
- Magnetoencephalography Laboratory, Cleveland Clinic Epilepsy Center, Cleveland, Ohio, USA
| | - Michael E Funke
- Department of Pediatrics, University of Texas Health Science Center, McGovern Medical School, Houston, Texas, USA
| | - Andrea Lowden
- Division of Pediatric Neurology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Ismail S Mohamed
- Department of Pediatrics, University of Alabama, Birmingham, Alabama, USA
| | - Tony Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, Nebraska, USA
| | - Wenbo Zhang
- Minnesota Epilepsy Group, Roseville, Minnesota, USA
| | - Andrew J Zillgitt
- Corewell Health William Beaumont University Hospital, Royal Oak, Minnesota, USA
| | - Jeffrey R Tenney
- MEG Center, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
6
|
Feys O, Wens V, Corvilain P, Ferez M, Holmes N, Brookes M, De Tiège X. Where do we stand exactly with on-scalp magnetoencephalography in the presurgical evaluation of refractory focal epilepsy? Epilepsia 2023; 64:3414-3417. [PMID: 37863642 DOI: 10.1111/epi.17806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Affiliation(s)
- Odile Feys
- Department of Neurology, Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Hôpital Erasme, Brussels, Belgium
- Laboratoire de Neuroimagerie et Neuroanatomie translationnelles (LN2T), ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Vincent Wens
- Laboratoire de Neuroimagerie et Neuroanatomie translationnelles (LN2T), ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium
- Department of Translational Neuroimaging, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Hôpital Erasme, Brussels, Belgium
| | - Pierre Corvilain
- Laboratoire de Neuroimagerie et Neuroanatomie translationnelles (LN2T), ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Maxime Ferez
- Laboratoire de Neuroimagerie et Neuroanatomie translationnelles (LN2T), ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Niall Holmes
- School of Physics and Astronomy, Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
- Cerca Magnetics Ltd, Nottingham, UK
| | - Matthew Brookes
- School of Physics and Astronomy, Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
- Cerca Magnetics Ltd, Nottingham, UK
| | - Xavier De Tiège
- Laboratoire de Neuroimagerie et Neuroanatomie translationnelles (LN2T), ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium
- Department of Translational Neuroimaging, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Hôpital Erasme, Brussels, Belgium
| |
Collapse
|
7
|
Xu F, Xu Y, Wang Y, Niu K, Li Y, Wang P, Li Y, Sun J, Chen Q, Wang X. Language-related brain areas in childhood epilepsy with centrotemporal spikes studied with MEG. Clin Neurophysiol 2023; 152:11-21. [PMID: 37257319 DOI: 10.1016/j.clinph.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 06/02/2023]
Abstract
OBJECTIVE Children with self-limited epilepsy with centrotemporal spikes (SeLECTS) typically indicate cognitive impairment with widespread speech impairment. We explored how epilepsy affects language-related brain areas and areas in their vicinity. METHODS Twenty-two children with SeLECTS and declined verbal comprehension (DVC), 21 with SeLECTS and normal verbal comprehension (NVC), and 23 healthy controls (HCs) underwent high-sampling magnetoencephalography recordings. According to a previous study, 24 language-related regions of interest were selected bilaterally, and the relative spectral power was estimated using a minimum norm estimate. RESULTS The highest mean power spectral density was observed in the delta band for the DVC group, in the theta band for the NVC group, and in the alpha band for HCs within language-specific brain regions. The distinctions between the DVC and NVC groups in the delta and theta frequency bands were primarily concentrated in the right linguistic brain area. CONCLUSIONS Children with SeLECTS may have developmental problems in language-related brain areas, with different developmental levels observed in the DVC, NVC, and HC groups. The DVC group could have inferior speech comprehension due to a more significant number of seizures and more left-sided spike locations. SIGNIFICANCE Children having SeLECTS showed impaired brain maturation, leading to associated language impairment.
Collapse
Affiliation(s)
- Fengyuan Xu
- Country Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Xu
- Country Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yingfan Wang
- Country Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Kai Niu
- Country Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yihan Li
- Country Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Pengfei Wang
- Country Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yanzhang Li
- Country Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jintao Sun
- Country Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Qiqi Chen
- Country MEG Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoshan Wang
- Country Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
8
|
Beamforming Seizures from the Temporal Lobe Using Magnetoencephalography. Can J Neurol Sci 2023; 50:201-213. [PMID: 35022091 DOI: 10.1017/cjn.2022.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Surgical treatment of drug-resistant temporal lobe epilepsy (TLE) depends on proper identification of the seizure onset zone (SOZ) and differentiation of mesial, temporolimbic seizure onsets from temporal neocortical seizure onsets. Noninvasive source imaging using electroencephalography (EEG) and magnetoencephalography (MEG) can provide accurate information on interictal spike localization; however, EEG and MEG have low sensitivity for epileptiform activity restricted to deep temporolimbic structures. Moreover, in mesial temporal lobe epilepsy (MTLE), interictal spikes frequently arise in neocortical foci distant from the SOZ, rendering interictal spike localization potentially misleading for presurgical planning. METHODS In this study, we used two different beamformer techniques applied to the MEG signal of ictal events acquired during EEG-MEG recordings in six patients with TLE (three neocortical, three MTLE) in whom the ictal source localization results could be compared to ground truth SOZ localizations determined from intracranial EEG and/or clinical, neuroimaging, and postsurgical outcome evidence. RESULTS Beamformer analysis proved to be highly accurate in all cases and was able to identify focal SOZs in mesial, temporolimbic structures. In three patients, interictal spikes were absent, too complex for dipole modeling, or localized to anterolateral temporal neocortex distant to a mesial temporal SOZ, and thus unhelpful in presurgical investigation. CONCLUSIONS MEG beamformer source reconstruction is suitable for analysis of ictal events in TLE and can complement or supersede the traditional analysis of interictal spikes. The method outlined is applicable to any type of epileptiform event, expanding the information value of MEG and broadening its utility for presurgical recording in epilepsy.
Collapse
|
9
|
Passaro EA. Neuroimaging in Adults and Children With Epilepsy. Continuum (Minneap Minn) 2023; 29:104-155. [PMID: 36795875 DOI: 10.1212/con.0000000000001242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
OBJECTIVE This article discusses the fundamental importance of optimal epilepsy imaging using the International League Against Epilepsy-endorsed Harmonized Neuroimaging of Epilepsy Structural Sequences (HARNESS) protocol and the use of multimodality imaging in the evaluation of patients with drug-resistant epilepsy. It outlines a methodical approach to evaluating these images, particularly in the context of clinical information. LATEST DEVELOPMENTS Epilepsy imaging is rapidly evolving, and a high-resolution epilepsy protocol MRI is essential in evaluating newly diagnosed, chronic, and drug-resistant epilepsy. The article reviews the spectrum of relevant MRI findings in epilepsy and their clinical significance. Integrating multimodality imaging is a powerful tool in the presurgical evaluation of epilepsy, particularly in "MRI-negative" cases. For example, correlation of clinical phenomenology, video-EEG with positron emission tomography (PET), ictal subtraction single-photon emission computerized tomography (SPECT), magnetoencephalography (MEG), functional MRI, and advanced neuroimaging such as MRI texture analysis and voxel-based morphometry enhances the identification of subtle cortical lesions such as focal cortical dysplasias to optimize epilepsy localization and selection of optimal surgical candidates. ESSENTIAL POINTS The neurologist has a unique role in understanding the clinical history and seizure phenomenology, which are the cornerstones of neuroanatomic localization. When integrated with advanced neuroimaging, the clinical context has a profound impact on identifying subtle MRI lesions or finding the "epileptogenic" lesion when multiple lesions are present. Patients with an identified lesion on MRI have a 2.5-fold improved chance of achieving seizure freedom with epilepsy surgery compared with those without a lesion. This clinical-radiographic integration is essential to accurate classification, localization, determination of long-term prognosis for seizure control, and identification of candidates for epilepsy surgery to reduce seizure burden or attain seizure freedom.
Collapse
|
10
|
Laohathai C, Funke M. Epilepsy highlight: Ictal MEG in epilepsy surgery candidates - Results from largest cohort. Clin Neurophysiol 2023; 145:98-99. [PMID: 36435692 DOI: 10.1016/j.clinph.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022]
Affiliation(s)
| | - Michael Funke
- Department of Pediatrics, University of Texas Health Science Center, McGovern Medical School, Houston, TX, USA
| |
Collapse
|
11
|
Katagiri M, Wang ZI, Hirfanoglu T, Aldosari MM, Aung T, Wang S, Kobayashi K, Bulacio J, Bingaman W, Najm IM, Alexopoulos AV, Burgess RC. Clinical significance of ictal magnetoencephalography in patients undergoing epilepsy surgery. Clin Neurophysiol 2023; 145:108-118. [PMID: 36443170 DOI: 10.1016/j.clinph.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE The significance of ictal magnetoencephalography (MEG) is not well appreciated. We evaluated the relationships between ictal MEG, MRI, intracranial electroencephalography (ICEEG), surgery and postoperative seizure outcome. METHODS A total of 45 patients (46 cases) with ictal MEG who underwent epilepsy surgery was included. We examined the localization of each modality, surgical resection area and seizure freedom after surgery. RESULTS Twenty-one (45.7%) out of 46 cases were seizure-free at more than 6 months follow-up. Median duration of postoperative follow-up was 16.5 months. The patients in whom ictal, interictal single equivalent current dipole (SECD) and MRI lesion localization were completely included in the resection had a higher chance of being seizure-free significantly (p < 0.05). Concordance between ictal and interictal SECD localizations was significantly associated with seizure-freedom. Concordance between MRI lesion and ictal SECD, concordance between ictal ICEEG and ictal and interictal SECD, as well as concordance between ictal ICEEG and MRI lesion were significantly associated with seizure freedom. CONCLUSIONS Ictal MEG can contribute useful information for delineating the resection area in epilepsy surgery. SIGNIFICANCE Resection should include ictal, interictal SECDs and MRI lesion localization, when feasible. Concordant ictal and interictal SECDs on MEG can be a favorable predictor of seizure freedom.
Collapse
Affiliation(s)
- Masaya Katagiri
- Epilepsy Center, Cleveland Clinic, OH, USA; Department of Neurosurgery, Graduate School of Medicine, Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | | | - Tugba Hirfanoglu
- Epilepsy Center, Cleveland Clinic, OH, USA; Department of Pediatric Neurology, Gazi University School of Medicine, Ankara, Turkey
| | - Mubarak M Aldosari
- Epilepsy Center, Cleveland Clinic, OH, USA; Epilepsy Program, National Neurosciences Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Thandar Aung
- Epilepsy Center, Cleveland Clinic, OH, USA; Comprehensive Epilepsy Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Shan Wang
- Epilepsy Center, Cleveland Clinic, OH, USA; Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Katsuya Kobayashi
- Epilepsy Center, Cleveland Clinic, OH, USA; Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Plute TJ, Spencer DD, Alkawadri R. Age-dependent vestibular cingulate-cerebral network underlying gravitational perception: a cross-sectional multimodal study. Brain Inform 2022; 9:30. [PMID: 36542188 PMCID: PMC9772366 DOI: 10.1186/s40708-022-00176-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/26/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The cingulate gyrus (CG) is a frequently studied yet not wholly understood area of the human cerebrum. Previous studies have implicated CG in different adaptive cognitive-emotional functions and fascinating or debilitating symptoms. We describe an unusual loss of gravity perception/floating sensation in consecutive persons with drug-resistant epilepsy undergoing electrical cortical stimulation (ECS), network analysis, and network robustness mapping. METHODS Using Intracranial-EEG, Granger causality analysis, cortico-cortical evoked potentials, and fMRI, we explicate the functional networks arising from this phenomenon's anterior, middle, and posterior cingulate cortex. RESULTS Fifty-four icEEG cases from 2013 to 2019 were screened. In 40.7% of cases, CG was sampled and in 22.2% the sampling was bilateral. ECS mapping was carried out in 18.5% of the entire cohort and 45.4% of the cingulate sampled cases. Five of the ten CG cases experienced symptoms during stimulation. A total of 1942 electrodes were implanted with a median number of 182 electrode contacts per patient (range: 106-274). The electrode contacts sampled all major cortex regions. Sixty-three contacts were within CG. Of those, 26 were electrically stimulated; 53.8% of the stimulated contacts produced positive responses, whereas 46.2% produced no observable responses. Our study reports a unique perceptive phenomenon of a subjective sense of weightlessness/floating sensation triggered by anterior and posterior CG stimulation, in 30% of cases and 21.42% of electrode stimulation sites. Notable findings include functional connections between the insula, the posterior and anterior cingulate cortex, and networks between the middle cingulate and the frontal and temporal lobes and the cerebellum. We also postulate a vestibular-cerebral-cingulate network responsible for the perception of gravity while suggesting that cingulate functional connectivity follows a long-term developmental trajectory as indicated by a robust, positive correlation with age and the extent of Granger connectivity (r = 0.82, p = 0.0035). DISCUSSION We propose, in conjunction with ECS techniques, that a better understanding of the underlying gravity perception networks can lead to promising neuromodulatory clinical applications. CLASSIFICATION OF EVIDENCE This study provides Class II evidence for CG's involvement in the higher order processing of gravity perception and related actions.
Collapse
Affiliation(s)
- Tritan J Plute
- School of Medicine, Department of Neurology, University of Pittsburgh, 3471 Fifth Avenue, LKB 8Th Floor, Suite 815.05, Pittsburgh, PA, 15213, USA
| | - Dennis D Spencer
- Department of Neurosurgery, Yale School of Medicine, New Haven, 06520-8062, USA
| | - Rafeed Alkawadri
- School of Medicine, Department of Neurology, University of Pittsburgh, 3471 Fifth Avenue, LKB 8Th Floor, Suite 815.05, Pittsburgh, PA, 15213, USA.
- Department of Neurology, Yale School of Medicine, New Haven, 06520-8018, USA.
| |
Collapse
|
13
|
Alkawadri R, Enatsu R, Hämäläinen M, Bagić A. Editorial: Magnetoencephalography: Methodological innovation paves the way for scientific discoveries and new clinical applications. Front Neurol 2022; 13:1056301. [PMID: 36504656 PMCID: PMC9731220 DOI: 10.3389/fneur.2022.1056301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Rafeed Alkawadri
- University of Pittsburgh Comprehensive Epilepsy Center (UPCEC), Department of Neurology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States,*Correspondence: Rafeed Alkawadri ; https://www.humanbrainmapping.net/contactus
| | - Rei Enatsu
- Department of Neurosurgery, Sapporo Medical University, Sapporo, Japan
| | - Matti Hämäläinen
- Department of Radiology, Harvard Medical School, Boston, MA, United States,Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo, Finland
| | - Anto Bagić
- University of Pittsburgh Comprehensive Epilepsy Center (UPCEC), Department of Neurology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
| |
Collapse
|
14
|
Xie M, Wang X, Qiao J, Zhou J, Guan Y, Liu C, Zhao M, Li T, Luan G. The long-term surgical outcomes of low-grade epilepsy-associated neuroepithelial tumors. Epilepsia Open 2022; 7:697-709. [PMID: 36081402 PMCID: PMC9712488 DOI: 10.1002/epi4.12648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/05/2022] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE This study aimed to evaluate the surgical outcomes and relevant prognostic factors in patients with low-grade epilepsy-associated neuroepithelial tumors (LEAT) and, especially, to develop a scoring system to predict postoperative seizure outcomes. METHODS The clinical data of patients who underwent epilepsy surgery for LEAT were retrospectively studied. The surgical outcomes of seizure and neurological statuses in patients were evaluated using Engel classification and modified Rankin Scale (mRS) scoring, respectively. A scoring system of seizure outcomes was constructed based on the weight of the β-coefficient estimate of each predictor in the final multivariate predicting model of seizure outcomes. RESULTS Of the 287 patients (106 female) enrolled, the median age was 19 years at surgery and 10 years at seizure onset, with a median duration of epilepsy of 60 months. Among 258 patients who were followed up for at least 12 months, 215 (83.3%) patients had a favorable seizure outcome (Engel class I) after surgery, and 43 (16.7%) patients had an unfavorable seizure outcome; longer duration of epilepsy, discordant magnetoencephalography (MEG) findings, and acute postoperative seizures were significantly included in the scoring system to predict unfavorable seizure outcomes, and in the scoring system, accumulated scoring of 0-19 scores was recorded, which were finally grouped into three risk levels: low risk (risk < 30%), medium risk (30% ≤ risk < 70%), and high risk (risk ≥ 70%). In addition, favorable neurological outcomes (mRS score 0-1) were recorded in 187 (72.5%) patients, while unfavorable neurological outcomes were recorded in 71 (27.5%) patients, which were significantly related to poor seizure control, older age at surgery, and longer duration of epilepsy and hospitalization time. SIGNIFICANCE The long-term surgical outcomes of LEAT after surgery were satisfactory. A scoring system for predicting unfavorable seizure outcomes with different risk levels was developed, which could partly guide clinical treatments of LEAT.
Collapse
Affiliation(s)
- Ming‐Guo Xie
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain HospitalCapital Medical UniversityBeijingChina,Beijing Key Laboratory of Epilepsy, Sanbo Brain HospitalCapital Medical UniversityBeijingChina
| | - Xiong‐Fei Wang
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain HospitalCapital Medical UniversityBeijingChina,Beijing Key Laboratory of Epilepsy, Sanbo Brain HospitalCapital Medical UniversityBeijingChina
| | - Jiao Qiao
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain HospitalCapital Medical UniversityBeijingChina,Beijing Key Laboratory of Epilepsy, Sanbo Brain HospitalCapital Medical UniversityBeijingChina
| | - Jian Zhou
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain HospitalCapital Medical UniversityBeijingChina,Beijing Key Laboratory of Epilepsy, Sanbo Brain HospitalCapital Medical UniversityBeijingChina
| | - Yu‐Guang Guan
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain HospitalCapital Medical UniversityBeijingChina,Beijing Key Laboratory of Epilepsy, Sanbo Brain HospitalCapital Medical UniversityBeijingChina
| | - Chang‐Qing Liu
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain HospitalCapital Medical UniversityBeijingChina,Beijing Key Laboratory of Epilepsy, Sanbo Brain HospitalCapital Medical UniversityBeijingChina
| | - Meng Zhao
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain HospitalCapital Medical UniversityBeijingChina,Beijing Key Laboratory of Epilepsy, Sanbo Brain HospitalCapital Medical UniversityBeijingChina
| | - Tian‐Fu Li
- Beijing Key Laboratory of Epilepsy, Sanbo Brain HospitalCapital Medical UniversityBeijingChina,Beijing Institute for Brain DisordersCapital Medical UniversityBeijingChina,Department of Neurology, Epilepsy Center, Sanbo Brain HospitalCapital Medical UniversityBeijingChina
| | - Guo‐Ming Luan
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain HospitalCapital Medical UniversityBeijingChina,Beijing Key Laboratory of Epilepsy, Sanbo Brain HospitalCapital Medical UniversityBeijingChina,Beijing Institute for Brain DisordersCapital Medical UniversityBeijingChina
| |
Collapse
|
15
|
Hirano R, Emura T, Nakata O, Nakashima T, Asai M, Kagitani-Shimono K, Kishima H, Hirata M. Fully-Automated Spike Detection and Dipole Analysis of Epileptic MEG Using Deep Learning. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:2879-2890. [PMID: 35536808 DOI: 10.1109/tmi.2022.3173743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Magnetoencephalography (MEG) is a useful tool for clinically evaluating the localization of interictal spikes. Neurophysiologists visually identify spikes from the MEG waveforms and estimate the equivalent current dipoles (ECD). However, presently, these analyses are manually performed by neurophysiologists and are time-consuming. Another problem is that spike identification from MEG waveforms largely depends on neurophysiologists' skills and experiences. These problems cause poor cost-effectiveness in clinical MEG examination. To overcome these problems, we fully automated spike identification and ECD estimation using a deep learning approach fully automated AI-based MEG interictal epileptiform discharge identification and ECD estimation (FAMED). We applied a semantic segmentation method, which is an image processing technique, to identify the appropriate times between spike onset and peak and to select appropriate sensors for ECD estimation. FAMED was trained and evaluated using clinical MEG data acquired from 375 patients. FAMED training was performed in two stages: in the first stage, a classification network was learned, and in the second stage, a segmentation network that extended the classification network was learned. The classification network had a mean AUC of 0.9868 (10-fold patient-wise cross-validation); the sensitivity and specificity were 0.7952 and 0.9971, respectively. The median distance between the ECDs estimated by the neurophysiologists and those using FAMED was 0.63 cm. Thus, the performance of FAMED is comparable to that of neurophysiologists, and it can contribute to the efficiency and consistency of MEG ECD analysis.
Collapse
|
16
|
Poghosyan V, Rampp S, Wang ZI. Editorial: Magnetoencephalography (MEG) in Epilepsy and Neurosurgery. Front Hum Neurosci 2022; 16:873153. [PMID: 35360284 PMCID: PMC8963912 DOI: 10.3389/fnhum.2022.873153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Vahe Poghosyan
- Department of Neurophysiology, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
- *Correspondence: Vahe Poghosyan
| | - Stefan Rampp
- Department of Neurosurgery, University Hospital Erlangen, Erlangen, Germany
- Department of Neurosurgery, University Hospital Halle (Saale), Halle (Saale), Germany
| | - Zhong Irene Wang
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
17
|
Cao M, Galvis D, Vogrin SJ, Woods WP, Vogrin S, Wang F, Woldman W, Terry JR, Peterson A, Plummer C, Cook MJ. Virtual intracranial EEG signals reconstructed from MEG with potential for epilepsy surgery. Nat Commun 2022; 13:994. [PMID: 35194035 PMCID: PMC8863890 DOI: 10.1038/s41467-022-28640-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 01/28/2022] [Indexed: 12/17/2022] Open
Abstract
Modelling the interactions that arise from neural dynamics in seizure genesis is challenging but important in the effort to improve the success of epilepsy surgery. Dynamical network models developed from physiological evidence offer insights into rapidly evolving brain networks in the epileptic seizure. A limitation of previous studies in this field is the dependence on invasive cortical recordings with constrained spatial sampling of brain regions that might be involved in seizure dynamics. Here, we propose virtual intracranial electroencephalography (ViEEG), which combines non-invasive ictal magnetoencephalographic imaging (MEG), dynamical network models and a virtual resection technique. In this proof-of-concept study, we show that ViEEG signals reconstructed from MEG alone preserve critical temporospatial characteristics for dynamical approaches to identify brain areas involved in seizure generation. We show the non-invasive ViEEG approach may have some advantage over intracranial electroencephalography (iEEG). Future work may be designed to test the potential of the virtual iEEG approach for use in surgical management of epilepsy.
Collapse
Affiliation(s)
- Miao Cao
- Department of Medicine St Vincent's Hospital, The University of Melbourne, Melbourne, Australia.,Centre for Clinical Neurosciences and Neurological Research, St Vincent's Hospital Melbourne, Melbourne, Australia
| | - Daniel Galvis
- Translational Research Exchange at Exeter, University of Exeter, Exeter, UK.,Living Systems Institute, University of Exeter, Exeter, UK.,Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, UK.,Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Simon J Vogrin
- Department of Medicine St Vincent's Hospital, The University of Melbourne, Melbourne, Australia.,Centre for Clinical Neurosciences and Neurological Research, St Vincent's Hospital Melbourne, Melbourne, Australia.,Faculty of Health, Art and Design, Swinburne University of Technology, Melbourne, Australia
| | - William P Woods
- Faculty of Health, Art and Design, Swinburne University of Technology, Melbourne, Australia
| | - Sara Vogrin
- Department of Medicine St Vincent's Hospital, The University of Melbourne, Melbourne, Australia.,Department of Medicine Western Health, The University of Melbourne, Melbourne, Australia
| | - Fan Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,CAS Centre for Excellence in Brain Science and Intelligence Technology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wessel Woldman
- Translational Research Exchange at Exeter, University of Exeter, Exeter, UK.,Living Systems Institute, University of Exeter, Exeter, UK.,Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, UK.,Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - John R Terry
- Translational Research Exchange at Exeter, University of Exeter, Exeter, UK.,Living Systems Institute, University of Exeter, Exeter, UK.,Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, UK.,Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Andre Peterson
- Department of Medicine St Vincent's Hospital, The University of Melbourne, Melbourne, Australia.,Centre for Clinical Neurosciences and Neurological Research, St Vincent's Hospital Melbourne, Melbourne, Australia.,Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia
| | - Chris Plummer
- Department of Medicine St Vincent's Hospital, The University of Melbourne, Melbourne, Australia. .,Centre for Clinical Neurosciences and Neurological Research, St Vincent's Hospital Melbourne, Melbourne, Australia. .,Faculty of Health, Art and Design, Swinburne University of Technology, Melbourne, Australia.
| | - Mark J Cook
- Department of Medicine St Vincent's Hospital, The University of Melbourne, Melbourne, Australia.,Centre for Clinical Neurosciences and Neurological Research, St Vincent's Hospital Melbourne, Melbourne, Australia.,Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
18
|
Zillgitt A, Haykal MA, Elisevich K, Patra S, Sherburn F, Bowyer SM, Burdette DE. Magnetoencephalography-identified preictal spiking correlates to preictal spiking on stereotactic EEG. Epilepsy Behav Rep 2022; 19:100538. [PMID: 35573060 PMCID: PMC9095747 DOI: 10.1016/j.ebr.2022.100538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 11/01/2022] Open
Abstract
Ictal MEG can assist in sEEG implantation strategy and may improve surgical outcome. Preictal spiking is a seizure onset pattern that has been described with intracranial EEG, but preictal spiking can also be an ictal pattern on MEG. MEG-predominant or MEG-unique preictal spiking may represent neuronal hypersynchronization arising from a tangential source.
Magnetoencephalography (MEG) is a noninvasive diagnostic modality that directly measures neuronal signaling by recording the magnetic field created from dendritic, intracellular, electrical currents of the neuron at the surface of the head. In clinical practice, MEG is used in the epilepsy presurgical evaluation and most commonly is an “interictal” study that can provide source localization of spike-wave discharges. However, seizures may be recorded during MEG (“ictal MEG”) and mapping of these discharges may provide more accurate localization of the seizure onset zone. In addition, spike-negative EEG with unique MEG spike-waves may be present in up to 1/3 of MEG studies and unique MEG seizures (EEG-negative seizures) have been reported. This case report describes a patient with unique MEG seizures that exhibited MEG pre-ictal spiking in a tight cluster consistent with the independent interictal epileptiform activity. Stereotactic EEG demonstrated pre-ictal spiking concordant with the MEG pre-ictal spiking.
Collapse
|
19
|
Moreau JT, Simard-Tremblay E, Albrecht S, Rosenblatt B, Baillet S, Dudley RWR. Overnight Ictal Magnetoencephalography. Neurol Clin Pract 2021; 11:e732-e735. [PMID: 34840892 DOI: 10.1212/cpj.0000000000000937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/07/2020] [Indexed: 11/15/2022]
Affiliation(s)
- Jeremy T Moreau
- McConnell Brain Imaging Centre (JTM, SB), Montreal Neurological Institute and Hospital; Division of Neurology and Department of Clinical Neurophysiology (EST, BR), Montreal Children's Hospital; Department of Pathology (SA), Montreal Children's Hospital; and Division of Neurosurgery, Department of Pediatric Surgery (RWRD), Montreal Children's Hospital
| | - Elisabeth Simard-Tremblay
- McConnell Brain Imaging Centre (JTM, SB), Montreal Neurological Institute and Hospital; Division of Neurology and Department of Clinical Neurophysiology (EST, BR), Montreal Children's Hospital; Department of Pathology (SA), Montreal Children's Hospital; and Division of Neurosurgery, Department of Pediatric Surgery (RWRD), Montreal Children's Hospital
| | - Steffen Albrecht
- McConnell Brain Imaging Centre (JTM, SB), Montreal Neurological Institute and Hospital; Division of Neurology and Department of Clinical Neurophysiology (EST, BR), Montreal Children's Hospital; Department of Pathology (SA), Montreal Children's Hospital; and Division of Neurosurgery, Department of Pediatric Surgery (RWRD), Montreal Children's Hospital
| | - Bernard Rosenblatt
- McConnell Brain Imaging Centre (JTM, SB), Montreal Neurological Institute and Hospital; Division of Neurology and Department of Clinical Neurophysiology (EST, BR), Montreal Children's Hospital; Department of Pathology (SA), Montreal Children's Hospital; and Division of Neurosurgery, Department of Pediatric Surgery (RWRD), Montreal Children's Hospital
| | - Sylvain Baillet
- McConnell Brain Imaging Centre (JTM, SB), Montreal Neurological Institute and Hospital; Division of Neurology and Department of Clinical Neurophysiology (EST, BR), Montreal Children's Hospital; Department of Pathology (SA), Montreal Children's Hospital; and Division of Neurosurgery, Department of Pediatric Surgery (RWRD), Montreal Children's Hospital
| | - Roy W R Dudley
- McConnell Brain Imaging Centre (JTM, SB), Montreal Neurological Institute and Hospital; Division of Neurology and Department of Clinical Neurophysiology (EST, BR), Montreal Children's Hospital; Department of Pathology (SA), Montreal Children's Hospital; and Division of Neurosurgery, Department of Pediatric Surgery (RWRD), Montreal Children's Hospital
| |
Collapse
|
20
|
Laohathai C, Ebersole JS, Mosher JC, Bagić AI, Sumida A, Von Allmen G, Funke ME. Practical Fundamentals of Clinical MEG Interpretation in Epilepsy. Front Neurol 2021; 12:722986. [PMID: 34721261 PMCID: PMC8551575 DOI: 10.3389/fneur.2021.722986] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/06/2021] [Indexed: 11/29/2022] Open
Abstract
Magnetoencephalography (MEG) is a neurophysiologic test that offers a functional localization of epileptic sources in patients considered for epilepsy surgery. The understanding of clinical MEG concepts, and the interpretation of these clinical studies, are very involving processes that demand both clinical and procedural expertise. One of the major obstacles in acquiring necessary proficiency is the scarcity of fundamental clinical literature. To fill this knowledge gap, this review aims to explain the basic practical concepts of clinical MEG relevant to epilepsy with an emphasis on single equivalent dipole (sECD), which is one the most clinically validated and ubiquitously used source localization method, and illustrate and explain the regional topology and source dynamics relevant for clinical interpretation of MEG-EEG.
Collapse
Affiliation(s)
- Christopher Laohathai
- Division of Child Neurology, Department of Pediatrics, McGovern Medical School at UTHealth, Houston, TX, United States
- Department of Neurology, Saint Louis University, Saint Louis, MO, United States
| | - John S. Ebersole
- Northeast Regional Epilepsy Group, Atlantic Health Neuroscience Institute, Summit, NJ, United States
| | - John C. Mosher
- Department of Neurology, McGovern Medical School at UTHealth, Houston, TX, United States
| | - Anto I. Bagić
- University of Pittsburgh Comprehensive Epilepsy Center (UPCEC), Department of Neurology, University of Pittsburgh Medical Center, Pittsburg, PA, United States
| | - Ai Sumida
- Department of Neurology, McGovern Medical School at UTHealth, Houston, TX, United States
| | - Gretchen Von Allmen
- Division of Child Neurology, Department of Pediatrics, McGovern Medical School at UTHealth, Houston, TX, United States
| | - Michael E. Funke
- Division of Child Neurology, Department of Pediatrics, McGovern Medical School at UTHealth, Houston, TX, United States
| |
Collapse
|
21
|
Zhang K, Sun J, Sun Y, Niu K, Wang P, Wu C, Chen Q, Wang X. Pretreatment Source Location and Functional Connectivity Network Correlated With Therapy Response in Childhood Absence Epilepsy: A Magnetoencephalography Study. Front Neurol 2021; 12:692126. [PMID: 34413824 PMCID: PMC8368437 DOI: 10.3389/fneur.2021.692126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/07/2021] [Indexed: 11/30/2022] Open
Abstract
Objective: This study aims to investigate the differences between antiepileptic drug (AED) responders and nonresponders among patients with childhood absence epilepsy (CAE) using magnetoencephalography (MEG) and to additionally evaluate whether the neuromagnetic signals of the brain neurons were correlated with the response to therapy. Methods: Twenty-four drug-naïve patients were subjected to MEG under six frequency bandwidths during ictal periods. The source location and functional connectivity were analyzed using accumulated source imaging and correlation analysis, respectively. All patients were treated with appropriate AED, at least 1 year after their MEG recordings, their outcome was assessed, and they were consequently divided into responders and nonresponders. Results: The source location of the nonresponders was mainly in the frontal cortex at a frequency range of 8–12 and 30–80 Hz, especially 8–12 Hz, while the source location of the nonresponders was mostly in the medial frontal cortex, which was chosen as the region of interest. The nonresponders showed strong positive local frontal connections and deficient anterior and posterior connections at 80–250 Hz. Conclusion: The frontal cortex and especially the medial frontal cortex at α band might be relevant to AED-nonresponsive CAE patients. The local frontal positive epileptic network at 80–250 Hz in our study might further reveal underlying cerebral abnormalities even before treatment in CAE patients, which could cause them to be nonresponsive to AED. One single mechanism cannot explain AED resistance; the nonresponders may represent a subgroup of CAE who is refractory to several antiepileptic drugs.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jintao Sun
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yulei Sun
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Kai Niu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Pengfei Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Caiyun Wu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Qiqi Chen
- MEG Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoshan Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
van Heumen S, Moreau JT, Simard-Tremblay E, Albrecht S, Dudley RWR, Baillet S. Case Report: Aperiodic Fluctuations of Neural Activity in the Ictal MEG of a Child With Drug-Resistant Fronto-Temporal Epilepsy. Front Hum Neurosci 2021; 15:646426. [PMID: 33746727 PMCID: PMC7969518 DOI: 10.3389/fnhum.2021.646426] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/12/2021] [Indexed: 11/24/2022] Open
Abstract
Successful surgical treatment of patients with focal drug-resistant epilepsy remains challenging, especially in cases for which it is difficult to define the area of cortex from which seizures originate, the seizure onset zone (SOZ). Various diagnostic methods are needed to select surgical candidates and determine the extent of resection. Interictal magnetoencephalography (MEG) with source imaging has proven to be useful for presurgical evaluation, but the use of ictal MEG data remains limited. The purpose of the present study was to determine whether pre-ictal variations of spectral properties of neural activity from ictal MEG recordings are predictive of SOZ location.We performed a 4 h overnight MEG recording in an 8-year-old child with drug-resistant focal epilepsy of suspected right fronto-temporal origin and captured one ~45-s seizure. The patient underwent a right temporal resection from the anterior temporal neocortex and amygdala to the mid-posterior temporal neocortex, sparing the hippocampus proper. She remains seizure-free 21 months postoperatively. The histopathological assessment confirmed frank focal cortical dysplasia (FCD) type IIa in the MEG-defined SOZ, which was based on source imaging of averaged ictal spikes at seizure onset. We investigated temporal changes (inter-ictal, pre-ictal, and ictal periods) together with spatial differences (SOZ vs. control regions) in spectral parameters of background brain activity, namely the aperiodic broadband offset and slope, and assessed how they confounded the interpretation of apparent variations of signal power in typical electrophysiological bands. Our data show that the SOZ was associated with a higher aperiodic offset and exponent during the seizure compared to control regions. Both parameters increased in all regions from 2 min before the seizure onwards. Regions anatomically closer to the SOZ also expressed higher values compared to contralateral regions, potentially indicating ictal spread. We also show that narrow-band power changes were caused by these fluctuations in the aperiodic component of ongoing brain activity. Our results indicate that the broadband aperiodic component of ongoing brain activity cannot be reduced to background noise of no physiological interest, and rather may be indicative of the neuropathophysiology of the SOZ. We believe these findings will inspire future studies of ictal MEG cases and confirm their significance.
Collapse
Affiliation(s)
- Saskia van Heumen
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Jeremy T. Moreau
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
- Department of Pediatric Surgery, Division of Neurosurgery, Montreal Children’s Hospital, Montreal, QC, Canada
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Elisabeth Simard-Tremblay
- Department of Pediatrics, Division of Pediatric Neurology, Montreal Children’s Hospital, McGill University, Montreal, QC, Canada
| | - Steffen Albrecht
- Department of Pathology, Montreal Children’s Hospital, McGill University, Montreal, QC, Canada
| | - Roy WR. Dudley
- Department of Pediatric Surgery, Division of Neurosurgery, Montreal Children’s Hospital, Montreal, QC, Canada
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Epilepsy surgery is the therapy of choice for 30-40% of people with focal drug-resistant epilepsy. Currently only ∼60% of well selected patients become postsurgically seizure-free underlining the need for better tools to identify the epileptogenic zone. This article reviews the latest neurophysiological advances for EZ localization with emphasis on ictal EZ identification, interictal EZ markers, and noninvasive neurophysiological mapping procedures. RECENT FINDINGS We will review methods for computerized EZ assessment, summarize computational network approaches for outcome prediction and individualized surgical planning. We will discuss electrical stimulation as an option to reduce the time needed for presurgical work-up. We will summarize recent research regarding high-frequency oscillations, connectivity measures, and combinations of multiple markers using machine learning. This latter was shown to outperform single markers. The role of NREM sleep for best identification of the EZ interictally will be discussed. We will summarize recent large-scale studies using electrical or magnetic source imaging for clinical decision-making. SUMMARY New approaches based on technical advancements paired with artificial intelligence are on the horizon for better EZ identification. They are ultimately expected to result in a more efficient, less invasive, and less time-demanding presurgical investigation.
Collapse
|
24
|
Stefan H, Rampp S. Interictal and Ictal MEG in presurgical evaluation for epilepsy surgery. ACTA EPILEPTOLOGICA 2020. [DOI: 10.1186/s42494-020-00020-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractAlthough presurgical evaluation of patients with pharamacoresistent focal epilepsies provides essential information for successful epilepsy surgery, there is still a need for further improvement. Developments of noninvasive electrophysiological recording and analysis techniques offer additional information based on interictal and ictal epileptic activities. In this review, we provide an overview on the application of ictal magnetoencephalography (MEG). The results of a literature research for published interictal/ictal MEG findings and experiences with own cases are demonstrated and discussed. Ictal MEG may provide added value in comparison to interictal recordings. The results may be more focal and closer to the invasively determined seizure onset zone. In some patients without clear interictal findings, ictal MEG could provide correct localization. Novel recording and analysis techniques facilitate ictal recordings. However, extended recording durations, movement and artifacts still represent practical limitations. Ictal MEG may provide added value regarding the localization of the seizure onset zone but depends on the selection of patients and the application of optimal analysis techniques.
Collapse
|
25
|
Abstract
The report generated by the magnetoencephalographer's interpretation of the patient's magnetoencephalography examination is the magnetoencephalography laboratory's most important product and is a representation of the quality of the laboratory and the clinical acumen of the personnel. A magnetoencephalography report is not meant to enumerate all the technical details that went into the test nor to fulfill some imagined requirements of the electronic health record. It is meant to clearly and concisely answer the clinical question posed by the referring doctor and to convey the key findings that may inform the next step in the patient's care. The graphical component of a magnetoencephalography report is ordinarily the most welcomed by the referring doctor. Much of the text of the report may be glossed over, so the illustrations must be sufficiently annotated to provide clear and unambiguous findings. The particular images chosen for the report will be a function of the analysis software but should be selected and edited for maximum clarity. There should be a composite pictorial summary slide at the beginning or at the end of the report, which accurately conveys the gist of the report. Along with representative source localizations, reports should contain examples of the simultaneously recorded EEG that enable the referring physician to determine whether epileptic discharges occurred and whether they are consistent with the patient's previously recorded spikes. Information and images (e.g., statistics, magnetic field patterns) that provide convincing evidence of the validity of the source location should also be included.
Collapse
|
26
|
Redefining the role of Magnetoencephalography in refractory epilepsy. Seizure 2020; 83:70-75. [PMID: 33096459 DOI: 10.1016/j.seizure.2020.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/10/2020] [Indexed: 11/23/2022] Open
Abstract
Magnetoencephalography (MEG) possesses a number of features, including excellent spatiotemporal resolution, that lend itself to the functional imaging of epileptic activity. However its current use is restricted to specific scenarios, namely in the diagnosis refractory focal epilepsies where electroencephalography (EEG) has been inconclusive. This review highlights the recent progress of MEG within epilepsy, including advances in the technique itself such as simultaneous EEG/MEG and intracranial EEG/MEG recording and room temperature MEG recording using optically pumped magnetometers, as well as improved post processing of the data during interictal and ictal activity for accurate source localisation of the epileptogenic focus. These advances should broaden the scope of MEG as an important part of epilepsy diagnostics in the future.
Collapse
|
27
|
Ye S, Yang L, Lu Y, Kucewicz MT, Brinkmann B, Nelson C, Sohrabpour A, Worrell GA, He B. Contribution of Ictal Source Imaging for Localizing Seizure Onset Zone in Patients With Focal Epilepsy. Neurology 2020; 96:e366-e375. [PMID: 33097598 DOI: 10.1212/wnl.0000000000011109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/01/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To determine whether seizure onset zone (SOZ) can be localized accurately prior to surgical planning in patients with focal epilepsy, we performed noninvasive EEG recordings and source localization analyses on 39 patients. METHODS In 39 patients with focal epilepsy, we recorded and extracted 138 seizures and 1,325 interictal epileptic discharges using high-density EEG. We investigated a novel approach for directly imaging sources of seizures and interictal spikes from high-density EEG recordings, and rigorously validated it for noninvasive localization of SOZ determined from intracranial EEG findings and surgical resection volume. Conventional source imaging analyses were also performed for comparison. RESULTS Ictal source imaging showed a concordance rate of 95% when compared to intracranial EEG or resection results. The average distance from estimation to seizure onset (intracranial) electrodes is 1.35 cm in patients with concordant results, and 0.74 cm to surgical resection boundary in patients with successful surgery. About 41% of the patients were found to have multiple types of interictal activities; coincidentally, a lower concordance rate and a significantly worse performance in localizing SOZ were observed in these patients. CONCLUSION Noninvasive ictal source imaging with high-density EEG recording can provide highly concordant results with clinical decisions obtained by invasive monitoring or confirmed by resective surgery. By means of direct seizure imaging using high-density scalp EEG recordings, the added value of ictal source imaging is particularly high in patients with complex interictal activity patterns, who may represent the most challenging cases with poor prognosis.
Collapse
Affiliation(s)
- Shuai Ye
- From the Department of Biomedical Engineering (S.Y., A.S., B.H.), Carnegie Mellon University, Pittsburgh, PA; Department of Biomedical Engineering (L.Y., Y.L.), University of Minnesota, Minneapolis; Mayo Clinic (M.T.K., B.B., C.N., G.A.W.), Rochester, MN
| | - Lin Yang
- From the Department of Biomedical Engineering (S.Y., A.S., B.H.), Carnegie Mellon University, Pittsburgh, PA; Department of Biomedical Engineering (L.Y., Y.L.), University of Minnesota, Minneapolis; Mayo Clinic (M.T.K., B.B., C.N., G.A.W.), Rochester, MN
| | - Yunfeng Lu
- From the Department of Biomedical Engineering (S.Y., A.S., B.H.), Carnegie Mellon University, Pittsburgh, PA; Department of Biomedical Engineering (L.Y., Y.L.), University of Minnesota, Minneapolis; Mayo Clinic (M.T.K., B.B., C.N., G.A.W.), Rochester, MN
| | - Michal T Kucewicz
- From the Department of Biomedical Engineering (S.Y., A.S., B.H.), Carnegie Mellon University, Pittsburgh, PA; Department of Biomedical Engineering (L.Y., Y.L.), University of Minnesota, Minneapolis; Mayo Clinic (M.T.K., B.B., C.N., G.A.W.), Rochester, MN
| | - Benjamin Brinkmann
- From the Department of Biomedical Engineering (S.Y., A.S., B.H.), Carnegie Mellon University, Pittsburgh, PA; Department of Biomedical Engineering (L.Y., Y.L.), University of Minnesota, Minneapolis; Mayo Clinic (M.T.K., B.B., C.N., G.A.W.), Rochester, MN
| | - Cindy Nelson
- From the Department of Biomedical Engineering (S.Y., A.S., B.H.), Carnegie Mellon University, Pittsburgh, PA; Department of Biomedical Engineering (L.Y., Y.L.), University of Minnesota, Minneapolis; Mayo Clinic (M.T.K., B.B., C.N., G.A.W.), Rochester, MN
| | - Abbas Sohrabpour
- From the Department of Biomedical Engineering (S.Y., A.S., B.H.), Carnegie Mellon University, Pittsburgh, PA; Department of Biomedical Engineering (L.Y., Y.L.), University of Minnesota, Minneapolis; Mayo Clinic (M.T.K., B.B., C.N., G.A.W.), Rochester, MN
| | - Gregory A Worrell
- From the Department of Biomedical Engineering (S.Y., A.S., B.H.), Carnegie Mellon University, Pittsburgh, PA; Department of Biomedical Engineering (L.Y., Y.L.), University of Minnesota, Minneapolis; Mayo Clinic (M.T.K., B.B., C.N., G.A.W.), Rochester, MN
| | - Bin He
- From the Department of Biomedical Engineering (S.Y., A.S., B.H.), Carnegie Mellon University, Pittsburgh, PA; Department of Biomedical Engineering (L.Y., Y.L.), University of Minnesota, Minneapolis; Mayo Clinic (M.T.K., B.B., C.N., G.A.W.), Rochester, MN.
| |
Collapse
|
28
|
Tewari A, Mahmoud M, Rose D, Ding L, Tenney J. Intravenous dexmedetomidine sedation for magnetoencephalography: A retrospective study. Paediatr Anaesth 2020; 30:799-805. [PMID: 32436319 DOI: 10.1111/pan.13925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/13/2020] [Accepted: 05/15/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Magnetoencephalography (MEG) plays a preponderant role in the preoperative assessment of patients with drug-resistant epilepsy (DRE). However, the magnetoencephalography of patients with drug-resistant epilepsy can be difficult without sedation and/or general anesthesia. Our objective is to describe our experience with intravenous dexmedetomidine as sedation for magnetoencephalography and its effect, if any, on the ability to recognize epileptic spikes. METHODS In this retrospective study, we reviewed the records of 89 children who presented for Magnetoencephalography/electroencephalography (EEG) scans between August of 2008 and May of 2015. Data analyzed included demographics and the frequency of epileptic spikes. Sedated magnetoencephalography recordings were compared to nonsedated video-electroencephalography (vEEG) recordings in the same patients to determine the impact of dexmedetomidine. RESULTS Spike frequency between magnetoencephalography with sedation and video-electroencephalography without sedation was compared in 85 patients. Magnetoencephalography and video-electroencephalography were considered clinically concordant in 80 patients (94.1%) and discordant in 5 patients (5.9%), all with less spikes during Magnetoencephalography. The median (range) bolus dose of dexmedetomidine was 2 (1-2) mcg/kg. The median (range) infusion rate of dexmedetomidine was 2 (0.5-4) mcg/kg/h. All patients experienced reductions in heart rate after administration of dexmedetomidine; these reductions were statistically, but not clinically, significant. CONCLUSIONS Our results suggest that dexmedetomidine-based protocol provides reliable sedation in children undergoing MEG scanning because of the high success rate, limited interictal artifacts, and minimal impacts on spike frequency.
Collapse
Affiliation(s)
- Anurag Tewari
- Department of Anesthesiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mohamed Mahmoud
- Department of Anesthesiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Douglas Rose
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Lili Ding
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA.,Division of Biostatistics and Epidemiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jeffrey Tenney
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA.,Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
29
|
Sun J, Gao Y, Miao A, Yu C, Tang L, Huang S, Wu C, Shi Q, Zhang T, Li Y, Sun Y, Wang X. Multifrequency Dynamics of Cortical Neuromagnetic Activity Underlying Seizure Termination in Absence Epilepsy. Front Hum Neurosci 2020; 14:221. [PMID: 32670039 PMCID: PMC7332835 DOI: 10.3389/fnhum.2020.00221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/15/2020] [Indexed: 12/23/2022] Open
Abstract
Purpose This study aimed to investigate the spectral and spatial signatures of neuromagnetic activity underlying the termination of absence seizures. Methods Magnetoencephalography (MEG) data were recorded from 18 drug-naive patients with childhood absence epilepsy (CAE). Accumulated source imaging (ASI) was used to analyze MEG data at the source level in seven frequency ranges: delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), gamma (30–80 Hz), ripple (80–250 Hz), and fast ripple (250–500 Hz). Result In the 1–4, 4–8, and 8–12 Hz ranges, the magnetic source during seizure termination appeared to be consistent over the ictal period and was mainly localized in the frontal cortex (FC) and parieto-occipito-temporal junction (POT). In the 12–30 and 30–80 Hz ranges, a significant reduction in source activity was observed in the frontal lobe during seizure termination as well as a decrease in peak source strength. The ictal peak source strength in the 1–4 Hz range was negatively correlated with the ictal duration of the seizure, whereas in the 30–80 Hz range, it was positively correlated with the course of epilepsy. Conclusion The termination of absence seizures is associated with a dynamic neuromagnetic process. Frequency-dependent changes in the FC were observed during seizure termination, which may be involved in the process of neural network interaction. Neuromagnetic activity in different frequency bands may play different roles in the pathophysiological mechanism during absence seizures.
Collapse
Affiliation(s)
- Jintao Sun
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yuan Gao
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Ailiang Miao
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Chuanyong Yu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Lu Tang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Shuyang Huang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Caiyun Wu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Qi Shi
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Tingting Zhang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yihan Li
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yulei Sun
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Xiaoshan Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| |
Collapse
|
30
|
Abstract
Magnetoencephalography is the noninvasive measurement of miniscule magnetic fields produced by brain electrical currents, and is used most fruitfully to evaluate epilepsy patients. While other modalities infer brain function indirectly by measuring changes in blood flow, metabolism, and oxygenation, magnetoencephalography measures neuronal and synaptic function directly with submillisecond temporal resolution. The brain's magnetic field is recorded by neuromagnetometers surrounding the head in a helmet-shaped sensor array. Because magnetic signals are not distorted by anatomy, magnetoencephalography allows for a more accurate measurement and localization of brain activities than electroencephalography. Magnetoencephalography has become an indispensable part of the armamentarium at epilepsy centers.
Collapse
Affiliation(s)
- Richard C Burgess
- Epilepsy Center, Neurological Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
31
|
Ishizaki T, Maesawa S, Nakatsubo D, Yamamoto H, Takai S, Shibata M, Kato S, Natsume J, Hoshiyama M, Wakabayashi T. Distributed source analysis of magnetoencephalography using a volume head model combined with statistical methods improves focus diagnosis in epilepsy surgery. Sci Rep 2020; 10:5263. [PMID: 32210314 PMCID: PMC7093400 DOI: 10.1038/s41598-020-62098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/06/2020] [Indexed: 11/29/2022] Open
Abstract
Deep-seated epileptic focus estimation using magnetoencephalography is challenging because of its low signal-to-noise ratio and the ambiguity of current sources estimated by interictal epileptiform discharge (IED). We developed a distributed source (DS) analysis method using a volume head model as the source space of the forward model and standardized low-resolution brain electromagnetic tomography combined with statistical methods (permutation tests between IEDs and baselines and false discovery rate between voxels to reduce variation). We aimed to evaluate the efficacy of the combined DS (cDS) analysis in surgical cases. In total, 19 surgical cases with adult and pediatric focal epilepsy were evaluated. Both cDS and equivalent current dipole (ECD) analyses were performed in all cases. The concordance rates of the two methods with surgically identified epileptic foci were calculated and compared with surgical outcomes. Concordance rates from the cDS analysis were significantly higher than those from the ECD analysis (68.4% vs. 26.3%), especially in cases with deep-seated lesions, such as in the interhemispheric, fronto-temporal base, and mesial temporal structures (81.8% vs. 9.1%). Furthermore, the concordance rate correlated well with surgical outcomes. In conclusion, cDS analysis has better diagnostic performance in focal epilepsy, especially with deep-seated epileptic focus, and potentially leads to good surgical outcomes.
Collapse
Affiliation(s)
- Tomotaka Ishizaki
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.
| | - Satoshi Maesawa
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.,Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan
| | - Daisuke Nakatsubo
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.,Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan
| | - Hiroyuki Yamamoto
- Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan.,Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Sou Takai
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Masashi Shibata
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Sachiko Kato
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Jun Natsume
- Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan.,Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Minoru Hoshiyama
- Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan
| | - Toshihiko Wakabayashi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
32
|
Abstract
This scientific commentary refers to ‘Magnetoencephalography for epileptic focus localization in a series of 1000 cases’, by Rampp et al. (doi:10.1093/brain/awz231).
Collapse
Affiliation(s)
- Richard C Burgess
- Director, Magnetoencephalography Laboratory, Cleveland Clinic Epilepsy Center, Cleveland, Ohio, USA
| |
Collapse
|
33
|
Carrette E, Stefan H. Evidence for the Role of Magnetic Source Imaging in the Presurgical Evaluation of Refractory Epilepsy Patients. Front Neurol 2019; 10:933. [PMID: 31551904 PMCID: PMC6746885 DOI: 10.3389/fneur.2019.00933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 08/12/2019] [Indexed: 12/03/2022] Open
Abstract
Magnetoencephalography (MEG) in the field of epilepsy has multiple advantages; just like electroencephalography (EEG), MEG is able to measure the epilepsy specific information (i.e., the brain activity reflecting seizures and/or interictal epileptiform discharges) directly, non-invasively and with a very high temporal resolution (millisecond-range). In addition MEG has a unique sensitivity for tangential sources, resulting in a full picture of the brain activity when combined with EEG. It accurately allows to perform source imaging of focal epileptic activity and functional cortex and shows a specific high sensitivity for a source in the neocortex. In this paper the current evidence and practice for using magnetic source imaging of focal interictal and ictal epileptic activity during the presurgical evaluation of drug resistant patients is being reviewed.
Collapse
Affiliation(s)
- Evelien Carrette
- Reference Centre for Refractory Epilepsy, Ghent University Hospital, Ghent, Belgium
| | - Hermann Stefan
- Department of Neurology-Biomagnetism, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
34
|
Shih JJ. Combining Electrical and Magnetic Fields for Source Analysis: A(n) Attractive or Repelling Thought. Epilepsy Curr 2019; 19:291-293. [PMID: 31418289 PMCID: PMC6864579 DOI: 10.1177/1535759719868692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Electromagnetic Source Imaging in Presurgical Workup of Patients With Epilepsy: A Prospective Study. Duez L, Tankisi H, Hansen PO, et al. Neurology. 2019;92(6):e576-e586. doi:10.1212/WNL.0000000000006877. Epub 2019 Jan 4. PMID: 30610090 Objective: To determine the diagnostic accuracy and clinical utility of electromagnetic source imaging (EMSI) in presurgical evaluation of patients with epilepsy. Methods: We prospectively recorded magnetoencephalography (MEG) simultaneously with electroencephalogram (EEG) and performed EMSI, comprising electric source imaging, magnetic source imaging, and analysis of combined MEG-EEG data sets, using 2 different software packages. As reference standard for irritative zone (IZ) and seizure onset zone (SOZ), we used intracranial recordings and for localization accuracy outcome 1 year after operation. Results: We included 141 consecutive patients. Electromagnetic source imaging showed localized epileptiform discharges in 94 (67%) patients. Most (72%) of the epileptiform discharge clusters were identified by both modalities, 15% only by EEG, and 14% only by MEG. Agreement was substantial between inverse solutions and moderate between software packages. Electromagnetic source imaging provided new information that changed the management plan in 34% of the patients, and these changes were useful in 80%. Depending on the method, EMSI had a concordance of 53% to 89% with IZ and 35% to 73% with SOZ. Localization accuracy of EMSI was between 44% and 57% which was not significantly different from magnetic resonance imaging (49%-76%) and PET (54%-85%). Combined EMSI achieved significantly higher odds ratio compared to electric source imaging and magnetic source imaging. Conclusion: Electromagnetic source imaging has accuracy similar to established imaging methods and provides clinically useful, new information in 34% of the patients. Classification of evidence: This study provides class IV evidence that EMSI had a concordance of 53% to 89% and 35% to 73% (depending on analysis) for the localization of epileptic focus when compared to intracranial recordings (IZ and SOZ), respectively.
Collapse
|
35
|
Burgess RC. Magnetoencephalography for localizing and characterizing the epileptic focus. HANDBOOK OF CLINICAL NEUROLOGY 2019; 160:203-214. [PMID: 31277848 DOI: 10.1016/b978-0-444-64032-1.00013-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Magnetoencephalography (MEG) is the noninvasive measurement of the miniscule magnetic fields produced by electrical currents flowing in the brain-the same neuroelectric activity that produces the EEG. MEG is one of several diagnostic tests employed in the evaluation of patients with epilepsy, but without the need to expose the patient to any potentially harmful agents. MEG is especially important in those being considered for epilepsy surgery, in whom accurate localization of the epileptic focus is paramount. While other modalities infer brain function indirectly by measuring changes in blood flow, metabolism, oxygenation, etc., MEG, as well as EEG, measures neuronal and synaptic function directly and, like EEG, MEG enjoys submillisecond temporal resolution. The measurement of magnetic fields provides information not only about the amplitude of the current but also its orientation. MEG picks up the magnetic field from neuromagnetometers surrounding the head in a helmet-shaped array of sensors. Clinical whole-head systems currently have 200-300 magnetic sensors, thereby offering very high resolution. The magnetic signals are not distorted by anatomy, because magnetic susceptibility is the same for all tissues, including the skull. Hence, MEG allows for a more accurate measurement and localization of brain activities than does EEG. Because one of its primary strengths is the ability to precisely localize electromagnetic activity within brain areas, MEG results are always coregistered to the patient's MRI. When combined in this way with structural imaging, it has been called magnetic source imaging (MSI), but MEG is properly understood as a clinical neurophysiologic diagnostic test. Signal processing and clinical interpretation in magnetoencephalography require sophisticated noise reduction and computerized mathematical modeling. Technological advances in these areas have brought MEG to the point where it is now part of routine clinical practice. MEG has become an indispensable part of the armamentarium at epilepsy centers where MEG laboratories are located, especially when patients are MRI-negative or where results of other structural and functional tests are not entirely concordant.
Collapse
Affiliation(s)
- Richard C Burgess
- Department of Neurology, Cleveland Clinic Foundation, Cleveland, OH, United States.
| |
Collapse
|