1
|
Berg AT, Nili AN, Evans L, Paltell KC, Kaiser AJE, Anderson EL, Egan SM, Kaat AJ, Nesbitt G, Myers LS. Assessing Communication Impairments in a Rare Neurodevelopmental Disorder: The SCN2A Clinical Trials Readiness Study. Neurol Clin Pract 2025; 15:e200391. [PMID: 39439575 PMCID: PMC11492899 DOI: 10.1212/cpj.0000000000200391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/06/2024] [Indexed: 10/25/2024]
Abstract
Background and Objectives SCN2A-related disorders (SCN2A-RDs) entail severe impairments in multiple domains that could serve as nonseizure outcomes in clinical trials. This study evaluated the fitness for purpose of several clinical instruments with both standardized and alternative scoring and with some measures used out of their intended age range for assessing communication in SCN2A-affected participants. Methods Parents of SCN2A-affected children were recruited through FamilieSCN2A Foundation outreach for a combined cross-sectional and longitudinal study. They completed assessments of their children at study entry and 6 and 12 months later. Assessments included the Vineland Adaptive Behavior Scale (VABS-3), Adaptive Behavior Assessment System (ABAS), Communication Matrix, and Communication and Symbolic Behavior Scale (CSBS). Analyses examined floor and ceiling effects, inter-rater and test-retest reliability, discrimination among different levels of functional impairment, and sensitivity to clinical aspects of SCN2A-RDs. Results Of 65 participants (28 females, median age 6.4 years, IQR 4.1-10.5), 56 (86%) had epilepsy. Eleven (17%) used speech as their primary communication mode; 84% were considered ineffective communicators. The mean Vineland composite standardized score (SS) was 34 (IQR 26-46). Cross-sectionally, standardized scores decreased with increasing age. There were substantial floor effects for receptive (75%) and expressive (83%) communication. SSs discriminated poorly between verbal vs nonverbal and communicative vs noncommunicative participants and were not sensitive to features reflecting epilepsy severity (e.g., epileptic spasms and number of current medications). By contrast, Vineland growth scale value (GSV) and ABAS, Matrix, and CSBS raw scores had minimal floor effects; most increased with age. These alternative scores distinguished clearly between participants with different levels of communication and were sensitive to aspects of epilepsy severity. Longitudinally, SSs decreased, but other scores remained relatively stable over a year. Discussion SCN2A-RD is characterized by severe-to-profound impairment with a SS <4 SDs of the norm-referenced mean. Owing to severe floor effects and their insensitivity to markers of communication function, age-standardized scores (e.g., Vineland SS) are not fit for purpose in clinical trials or other settings for evaluating nonseizure outcomes such as communication. GSVs and alternative scoring and assessments have much better measurement profiles in all these regards and should be considered in future precision medicine trials for SCN2A-RDs and other similar rare diseases.
Collapse
Affiliation(s)
- Anne T Berg
- FamilieSCN2A Foundation (ATB, SME, LSM), Longmeadow, MA; Department of Medical and Social Sciences (ANN, AJK), Northwestern University Feinberg School of Medicine; Department of Psychology (LE), Illinois Institute of Technology; Department of Psychology (KCP, A.J. Kaiser AJEK), University of Illinois at Chicago; Institute for Innovations in Developmental Sciences (ELA), Northwestern University, Chicago, IL; and CLIRINX (GN), Dublin, Ireland
| | - Amanda N Nili
- FamilieSCN2A Foundation (ATB, SME, LSM), Longmeadow, MA; Department of Medical and Social Sciences (ANN, AJK), Northwestern University Feinberg School of Medicine; Department of Psychology (LE), Illinois Institute of Technology; Department of Psychology (KCP, A.J. Kaiser AJEK), University of Illinois at Chicago; Institute for Innovations in Developmental Sciences (ELA), Northwestern University, Chicago, IL; and CLIRINX (GN), Dublin, Ireland
| | - Lindsey Evans
- FamilieSCN2A Foundation (ATB, SME, LSM), Longmeadow, MA; Department of Medical and Social Sciences (ANN, AJK), Northwestern University Feinberg School of Medicine; Department of Psychology (LE), Illinois Institute of Technology; Department of Psychology (KCP, A.J. Kaiser AJEK), University of Illinois at Chicago; Institute for Innovations in Developmental Sciences (ELA), Northwestern University, Chicago, IL; and CLIRINX (GN), Dublin, Ireland
| | - Katherine C Paltell
- FamilieSCN2A Foundation (ATB, SME, LSM), Longmeadow, MA; Department of Medical and Social Sciences (ANN, AJK), Northwestern University Feinberg School of Medicine; Department of Psychology (LE), Illinois Institute of Technology; Department of Psychology (KCP, A.J. Kaiser AJEK), University of Illinois at Chicago; Institute for Innovations in Developmental Sciences (ELA), Northwestern University, Chicago, IL; and CLIRINX (GN), Dublin, Ireland
| | - Ariela J E Kaiser
- FamilieSCN2A Foundation (ATB, SME, LSM), Longmeadow, MA; Department of Medical and Social Sciences (ANN, AJK), Northwestern University Feinberg School of Medicine; Department of Psychology (LE), Illinois Institute of Technology; Department of Psychology (KCP, A.J. Kaiser AJEK), University of Illinois at Chicago; Institute for Innovations in Developmental Sciences (ELA), Northwestern University, Chicago, IL; and CLIRINX (GN), Dublin, Ireland
| | - Erica L Anderson
- FamilieSCN2A Foundation (ATB, SME, LSM), Longmeadow, MA; Department of Medical and Social Sciences (ANN, AJK), Northwestern University Feinberg School of Medicine; Department of Psychology (LE), Illinois Institute of Technology; Department of Psychology (KCP, A.J. Kaiser AJEK), University of Illinois at Chicago; Institute for Innovations in Developmental Sciences (ELA), Northwestern University, Chicago, IL; and CLIRINX (GN), Dublin, Ireland
| | - Shawn M Egan
- FamilieSCN2A Foundation (ATB, SME, LSM), Longmeadow, MA; Department of Medical and Social Sciences (ANN, AJK), Northwestern University Feinberg School of Medicine; Department of Psychology (LE), Illinois Institute of Technology; Department of Psychology (KCP, A.J. Kaiser AJEK), University of Illinois at Chicago; Institute for Innovations in Developmental Sciences (ELA), Northwestern University, Chicago, IL; and CLIRINX (GN), Dublin, Ireland
| | - Aaron J Kaat
- FamilieSCN2A Foundation (ATB, SME, LSM), Longmeadow, MA; Department of Medical and Social Sciences (ANN, AJK), Northwestern University Feinberg School of Medicine; Department of Psychology (LE), Illinois Institute of Technology; Department of Psychology (KCP, A.J. Kaiser AJEK), University of Illinois at Chicago; Institute for Innovations in Developmental Sciences (ELA), Northwestern University, Chicago, IL; and CLIRINX (GN), Dublin, Ireland
| | - Gerry Nesbitt
- FamilieSCN2A Foundation (ATB, SME, LSM), Longmeadow, MA; Department of Medical and Social Sciences (ANN, AJK), Northwestern University Feinberg School of Medicine; Department of Psychology (LE), Illinois Institute of Technology; Department of Psychology (KCP, A.J. Kaiser AJEK), University of Illinois at Chicago; Institute for Innovations in Developmental Sciences (ELA), Northwestern University, Chicago, IL; and CLIRINX (GN), Dublin, Ireland
| | - Leah S Myers
- FamilieSCN2A Foundation (ATB, SME, LSM), Longmeadow, MA; Department of Medical and Social Sciences (ANN, AJK), Northwestern University Feinberg School of Medicine; Department of Psychology (LE), Illinois Institute of Technology; Department of Psychology (KCP, A.J. Kaiser AJEK), University of Illinois at Chicago; Institute for Innovations in Developmental Sciences (ELA), Northwestern University, Chicago, IL; and CLIRINX (GN), Dublin, Ireland
| |
Collapse
|
2
|
Chung CT, Lee NC, Lin IT, Chen PY, Jao T. The role of genetic testing in adult patients with unexplained epilepsy. Epileptic Disord 2024; 26:814-826. [PMID: 39283677 DOI: 10.1002/epd2.20286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/01/2024] [Indexed: 12/18/2024]
Abstract
OBJECTIVE Genetic causes are often overlooked in patients with epilepsy of unknown etiology, particularly in adults. We aimed to evaluate clinical features of genetic epilepsy and the utility of genetic testing. METHODS We retrospectively screened consecutive unrelated adult epilepsy patients at an epilepsy clinic from April 2022 to May 2023. Patients with unknown etiology or special brain lesions were classified as unexplained epilepsy. In them, patients with young-onset seizures or family history of seizures who were recommended for and ultimately underwent genetic testing using either panel next-generation sequencing (NGS) or whole-exome sequencing (WES) were enrolled. A definite or probable genetic diagnosis was established through genotype-phenotype correlation. We compared the demographic characteristics between genetic epilepsy and other etiologies. RESULTS Of the 374 adult epilepsy patients, 258 were classified as unexplained epilepsy, 129 were suspected of having genetic epilepsy due to young-onset seizures or a positive family history, 33 underwent genetic testing; 13 harbored variants classified as pathogenic, and 6 reached a definite genetic diagnosis, resulting in a yield of 18%. Among the 27 patients without a definite genetic diagnosis, 7 had a nongenetic structural etiology. Patients with genetic etiology exhibited greater multisystem involvement particularly multiple structural anomalies and early childhood-onset seizures, but wasn't directly correlated with young-onset seizures or a positive family history. The diagnostic yield was comparable between panel NGS and WES. SIGNIFICANCE In adult patients with unexplained epilepsy, genetic epilepsy is more associated with multisystem involvement and multiple structural anomalies but not family history of seizures or young-onset seizures.
Collapse
Affiliation(s)
- Chi-Ting Chung
- Department of Neurology, En Chu Kong Hospital, New Taipei City, Taiwan
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ni-Chung Lee
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medical Genetics, National Taiwan University, Taipei, Taiwan
| | - I-Ting Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Pin-Yu Chen
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
- Epilepsy Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Tun Jao
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
- Epilepsy Center, National Taiwan University Hospital, Taipei, Taiwan
- Department of Neurology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Valente KD, Melo F, Marin R, Vega G, Neves‐Borg A, Spagnol B, Montenegro MA, Vincentiis S. The long odyssey for the DEE-CDKL5 diagnosis: A call for action. Epilepsia Open 2024; 9:2164-2172. [PMID: 39248178 PMCID: PMC11633692 DOI: 10.1002/epi4.13031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/12/2024] [Accepted: 08/04/2024] [Indexed: 09/10/2024] Open
Abstract
OBJECTIVES This study aims to determine the current state of CDD diagnosis and epilepsy treatment in an upper-middle-income country. METHODS Forty-seven families of the Brazilian CDD Association were invited to participate in an online survey to gather information about the diagnosis and treatment of epilepsy. RESULTS Forty-three families (91.5%) of unrelated patients with confirmed genetic diagnosis of CDD participated. The median age was 7 years (ranging from 1.3-25 years) and the male: female ratio was 1:6. Early and severe epilepsy started during infancy in 74.4%. Seizures occurred daily in 61.9% and 83.7% had clusters of seizures. The mean age of diagnosis was 3.3 years (ranging from 37 days to 16 years), and younger patients had an earlier diagnosis (p < 0.001). Patients were seen by an average of 4.4 physicians (1-15) before the diagnosis. The most relevant obstacles to genetic testing were cost (55.8%) and late requests by physicians (27.9%). At the moment of the assessment, patients received a mean of 3.6 ASMs/day (ranging from 1 to 5). Thirty-four (79.1%) caregivers reported side effects throughout life, including life-threatening events in 16.3%. SIGNIFICANCE Based on our findings, a sense of urgency for genetic assessment implementation is evident since the delay in the diagnosis with unnecessary use of resources and excessive polytherapy with serious side effects cause a higher burden to the healthcare system, caregivers, and patients. PLAIN LANGUAGE SUMMARY In this study, we assessed the diagnosis and treatment of patients with genetically confirmed DEE-CDKL5 from the Brazilian Association of CDD with an online survey. Caregivers reported a long delay in the diagnosis associated with cost and late referral to genetic testing, considered the last resource for one-third of the patients. Patients received a high number of ASM, mainly under polytherapy, with serious side effects. Although it is promising that younger patients received earlier diagnosis, public policies for genetic testing are needed to improve CDD patients' care.
Collapse
Affiliation(s)
- Kette D. Valente
- University of São Paulo Medical School – Clinic Hospital (HCFMUSP)São PauloBrazil
| | - Fernanda Melo
- University of São Paulo Medical School (FMUSP)São PauloBrazil
| | - Rachel Marin
- University of São Paulo Medical School – Clinic Hospital (HCFMUSP)São PauloBrazil
| | - Gustavo Vega
- University of São Paulo Medical School – Clinic Hospital (HCFMUSP)São PauloBrazil
| | | | | | | | - Silvia Vincentiis
- University of São Paulo Medical School – Clinic Hospital (HCFMUSP)São PauloBrazil
| |
Collapse
|
4
|
Rimmasch M, Wilson CA, Walton NA, Huynh K, Bonkowsky JL, Palmquist R. Factors impacting time to genetic diagnosis for children with epilepsy. Epilepsia Open 2024; 9:2495-2504. [PMID: 39467089 PMCID: PMC11633687 DOI: 10.1002/epi4.13053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 08/07/2024] [Accepted: 09/10/2024] [Indexed: 10/30/2024] Open
Abstract
Molecular diagnosis for pediatric epilepsy patients can impact treatment and health supervision recommendations. However, there is little known about factors affecting the time to receive a diagnosis. Our objective was to characterize factors affecting the time from first seizure to molecular diagnosis in children with epilepsy. A retrospective, population-based review was used to analyze data from pediatric patients with a genetic etiology for epilepsy over a 5 year period. A subgroup of patients with seizure onset after 2016 was evaluated for recent trends. We identified 119 patients in the main cohort and 62 in a more recent (contemporaneous) subgroup. Sex, race, and ethnicity were not significantly associated with time to molecular diagnosis. A greater number of hospitalizations was associated with a shorter time to diagnosis (p < 0.001). Developmental delay was associated with a longer time to diagnosis (p = 0.002). We found no association for time to diagnosis with a diagnosis of autism, utilization of free genetic testing, or epilepsy type. In the recent subgroup analysis, commercial insurance was associated with decreased time to diagnosis (p = 0.02). Developmental delay, public insurance, or patients in the outpatient setting had longer times to molecular diagnosis. These findings suggest that there may be opportunities to implement interventions aimed at accelerating the provision of genetic testing in pediatric epilepsy. PLAIN LANGUAGE SUMMARY: Genetic diagnosis for pediatric epilepsy patients can impact treatment and care. This study looked at factors that affect how long it takes a pediatric epilepsy patient to receive a genetic diagnosis. We found that sex, race and ethnicity, epilepsy type, and whether the patient had autism did not affect how long it took the patient to receive a diagnosis. However, we found that patients with developmental delay, fewer hospitalizations, and public insurance took a longer time to receive a diagnosis. Our findings suggest potential strategies for reducing the time to receive a genetic diagnosis.
Collapse
Affiliation(s)
- Megan Rimmasch
- Graduate Program in Genetic CounselingUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- Intermountain Heart Institute, Heart Failure and Transplant TeamIntermountain HealthSalt Lake CityUtahUSA
| | - Carey A. Wilson
- Division of Pediatric Neurology, Department of PediatricsUniversity of UtahSalt Lake CityUtahUSA
| | - Nephi A. Walton
- National Human Genome Research InstituteNational Institute of HealthBethesdaMarylandUSA
| | - Kelly Huynh
- Pediatric Analytics, Intermountain Children's HealthIntermountain HealthSalt Lake CityUtahUSA
| | - Joshua L. Bonkowsky
- Division of Pediatric Neurology, Department of PediatricsUniversity of UtahSalt Lake CityUtahUSA
- Center for Personalized MedicinePrimary Children's HospitalSalt Lake CityUtahUSA
| | - Rachel Palmquist
- Division of Pediatric Neurology, Department of PediatricsUniversity of UtahSalt Lake CityUtahUSA
- Center for Personalized MedicinePrimary Children's HospitalSalt Lake CityUtahUSA
| |
Collapse
|
5
|
Boyarchuk O, Volianska L, Smashna O, Makukh H. Exome sequencing in 90 children with developmental delay: a single-center experience. Front Genet 2024; 15:1505254. [PMID: 39678379 PMCID: PMC11638168 DOI: 10.3389/fgene.2024.1505254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
Introduction Developmental delay (DD) in children is often caused by genetic abnormalities, which are challenging to diagnose due to the vast genetic variability. Methods This study presents a detailed analysis of whole-exome sequencing (WES) on 90 children with DD at a single clinical center. Results We identified pathogenic or likely pathogenic variants in 27.8% of cases, with 7.8% revealing variants of uncertain significance (VUS). Among the positive findings, 21 (84.0%) corresponded to the main clinical manifestations in patients, and 4 (16.0%) secondary findings provided new insights into the patient's conditions. Positive and inconclusive cases led to a revision of the diagnosis or management plan in 34.4% of cases. The positive genetic result in children with Developmental delay was higher in the presence of epilepsy or seizures (odds ratio - 5.4444; 95% CI 2.0176 to 14.6918; p = 0.0008) and more than 3 dysmorphic features (odds ratio - 7.1739; 95% CI 1.7791 to 28.9282; p = 0.0056). Variants compatible with the clinical manifestations were identified in 11.9% of children with autistic spectrum disorders. Conclusion Our findings emphasize the utility of WES in clinical diagnostics, offering significant insights into patient management and potentially guiding therapeutic decisions.
Collapse
Affiliation(s)
- Oksana Boyarchuk
- Department of Children’s Diseases and Pediatric Surgery, I.Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Liubov Volianska
- Department of Children’s Diseases and Pediatric Surgery, I.Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Olena Smashna
- Department of Children’s Diseases and Pediatric Surgery, I.Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Halyna Makukh
- Department of the Research and Biotechnology, Scientific Medical Genetic Center LeoGENE, Lviv, Ukraine
| |
Collapse
|
6
|
Galer PD, Parthasarathy S, Xian J, McKee JL, Ruggiero SM, Ganesan S, Kaufman MC, Cohen SR, Haag S, Chen C, Ojemann WKS, Kim D, Wilmarth O, Vaidiswaran P, Sederman C, Ellis CA, Gonzalez AK, Boßelmann CM, Lal D, Sederman R, Lewis-Smith D, Litt B, Helbig I. Clinical signatures of genetic epilepsies precede diagnosis in electronic medical records of 32,000 individuals. Genet Med 2024; 26:101211. [PMID: 39011766 DOI: 10.1016/j.gim.2024.101211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024] Open
Abstract
PURPOSE An early genetic diagnosis can guide the time-sensitive treatment of individuals with genetic epilepsies. However, most genetic diagnoses occur long after disease onset. We aimed to identify early clinical features suggestive of genetic diagnoses in individuals with epilepsy through large-scale analysis of full-text electronic medical records. METHODS We extracted 89 million time-stamped standardized clinical annotations using Natural Language Processing from 4,572,783 clinical notes from 32,112 individuals with childhood epilepsy, including 1925 individuals with known or presumed genetic epilepsies. We applied these features to train random forest models to predict SCN1A-related disorders and any genetic diagnosis. RESULTS We identified 47,774 age-dependent associations of clinical features with genetic etiologies a median of 3.6 years before molecular diagnosis. Across all 710 genetic etiologies identified in our cohort, neurodevelopmental differences between 6 to 9 months increased the likelihood of a later molecular diagnosis 5-fold (P < .0001, 95% CI = 3.55-7.42). A later diagnosis of SCN1A-related disorders (area under the curve [AUC] = 0.91) or an overall positive genetic diagnosis (AUC = 0.82) could be reliably predicted using random forest models. CONCLUSION Clinical features predictive of genetic epilepsies precede molecular diagnoses by up to several years in conditions with known precision treatments. An earlier diagnosis facilitated by automated electronic medical records analysis has the potential for earlier targeted therapeutic strategies in the genetic epilepsies.
Collapse
Affiliation(s)
- Peter D Galer
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA; The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA; University of Pennsylvania, Center for Neuroengineering and Therapeutics, Philadelphia, PA
| | - Shridhar Parthasarathy
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA; The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA
| | - Julie Xian
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA; The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jillian L McKee
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA; The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA; Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Sarah M Ruggiero
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA; The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA
| | - Shiva Ganesan
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA; The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA
| | - Michael C Kaufman
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA; The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA
| | - Stacey R Cohen
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA; The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA
| | - Scott Haag
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - William K S Ojemann
- University of Pennsylvania, Center for Neuroengineering and Therapeutics, Philadelphia, PA
| | | | - Olivia Wilmarth
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA; The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA
| | - Priya Vaidiswaran
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA
| | - Casey Sederman
- Department of Human Genetics, University of Utah, Salt Lake City, UT; Utah Center for Genetic Discovery, School of Medicine, University of Utah, Salt Lake City, UT
| | - Colin A Ellis
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA; Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Alexander K Gonzalez
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA
| | - Christian M Boßelmann
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH
| | - Dennis Lal
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH; Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | | | - David Lewis-Smith
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA; Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK; Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK; FutureNeuro SFI Research Centre, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Brian Litt
- University of Pennsylvania, Center for Neuroengineering and Therapeutics, Philadelphia, PA; Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Ingo Helbig
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA; The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA; Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.
| |
Collapse
|
7
|
Specchio N, Trivisano M, Aronica E, Balestrini S, Arzimanoglou A, Colasante G, Cross JH, Jozwiak S, Wilmshurst JM, Vigevano F, Auvin S, Nabbout R, Curatolo P. The expanding field of genetic developmental and epileptic encephalopathies: current understanding and future perspectives. THE LANCET. CHILD & ADOLESCENT HEALTH 2024; 8:821-834. [PMID: 39419567 DOI: 10.1016/s2352-4642(24)00196-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 10/19/2024]
Abstract
Recent advances in genetic testing technologies have revolutionised the identification of genetic abnormalities in early onset developmental and epileptic encephalopathies (DEEs). In this Review, we provide an update on the expanding landscape of genetic factors contributing to DEEs, encompassing over 800 reported genes. We focus on the cellular and molecular mechanisms driving epileptogenesis, with an emphasis on emerging therapeutic strategies and effective treatment options. We explore noteworthy, novel genes linked to DEE phenotypes, such as gBRAT-1 and GNAO1, and gene families such as GRIN and HCN. Understanding the network-level effects of gene variants will pave the way for potential gene therapy applications. Given the diverse comorbidities associated with DEEs, a multidisciplinary team approach is essential. Despite ongoing efforts and improved genetic testing, DEEs lack a cure, and treatment complexities persist. This Review underscores the necessity for larger international prospective studies focusing on both seizure outcomes and developmental trajectories.
Collapse
Affiliation(s)
- Nicola Specchio
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesu' Children's Hospital IRCCS, Full Member of European Reference Network on Rare and Complex Epilepsies, EpiCARE, Rome, Italy.
| | - Marina Trivisano
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesu' Children's Hospital IRCCS, Full Member of European Reference Network on Rare and Complex Epilepsies, EpiCARE, Rome, Italy
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Department of (Neuro)Pathology, Amsterdam, Netherlands; Stichting Epilepsie Instellingen Nederland, Heemstede, Netherlands
| | - Simona Balestrini
- Neuroscience Department, Meyer Children's Hospital IRCCS, Full Member of European Reference Network on Rare and Complex Epilepsies, EpiCARE, Florence, Italy; Neuroscience Department, University of Florence, Florence, Italy; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Alexis Arzimanoglou
- Paediatric Epilepsy and Neurophysiology Department, Hospital San Juan de Dios, Coordinating member of the European Reference Network on Rare and Complex Epilepsies, EpiCARE, Barcelona, Spain
| | - Gaia Colasante
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - J Helen Cross
- UCL NIHR BRC Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London, UK
| | - Sergiusz Jozwiak
- Research Department, Children's Memorial Health Institute, EpicARE Member, Warsaw, Poland
| | - Jo M Wilmshurst
- Department of Paediatric Neurology, Red Cross War Memorial Children's Hospital, Neuroscience Institute, University of Cape Town, South Africa
| | - Federico Vigevano
- Pediatric Neurorehabilitation Department, IRCCS San Raffaele, Rome, Italy
| | - Stéphane Auvin
- AP-HP, Service de Neurologie Pédiatrique, Centre de référence Epilepsies Rares, Member of European Reference Network EpiCARE, Hôpital Universitaire Robert-Debré, Paris, France; Université Paris-Cité, INSERM Neuro Diderot, Paris, France; Institut Universitaire de France, Paris, France
| | - Rima Nabbout
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker-Enfants Malades Hospital, AP-HP, Member of European Reference Network EpiCARE, Institut Imagine, INSERM, UMR 1163, Université de Paris Cité, Paris, France
| | - Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, Rome, Italy
| |
Collapse
|
8
|
Beatty CW, Ahrens SM, Arredondo KH, Bagic AI, Bai S, Chapman KE, Ciliberto MA, Clarke DF, Eisner M, Fountain NB, Gavvala JR, Perry MS, Rossi KC, Wong-Kisiel LC, Herman ST, Ostendorf AP. Associations Between Testing and Treatment Pathways in a Case of Pediatric Nonlesional Epilepsy: A Census Survey of NAEC Center Directors. J Child Neurol 2024:8830738241288278. [PMID: 39449630 DOI: 10.1177/08830738241288278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
OBJECTIVE Epilepsy surgery is vital in managing of children with drug-resistant epilepsy. Noninvasive and invasive testing modalities allow for evaluation and treatment of children with drug-resistant epilepsy. Evidence-based algorithms for this process do not exist. This study examines expert response to a vignette of pediatric nonlesional epilepsy to assess associations in evaluation and treatment choices. METHODS We analyzed annual report data and an epilepsy practice survey reported in 2020 from 135 pediatric epilepsy center directors in the United States. Characteristics of centers along with noninvasive and invasive testing and surgical treatment strategies were collected. Multivariable logistic regression modeling was performed. RESULTS The response rate was 100% with 135 responses included in the analyses. Most used noninvasive testing modalities included Neuropsychology evaluation (90%), interictal brain fluorodeoxyglucose-positron emission tomography (85%), and functional magnetic resonance imaging (MRI) (72%) with nearly half obtaining genetic testing. Choosing functional MRI was associated with stereo electroencephalography (EEG) (P = .025) and selecting Wada with subdural grid/strips (P = .038). Directors from pediatric-only centers were more likely to choose stereo EEG as opposed to combined centers (P = .042). Laser interstitial thermal therapy was almost 7 times as likely to be chosen as a treatment modality compared with open resection in dedicated pediatric centers (OR 6.96, P = .002). SIGNIFICANCE In a vignette of nonlesional childhood drug-resistant epilepsy, epilepsy center directors' patterns of noninvasive testing, invasive testing, and treatment were examined. Management choices were associated with pediatric versus combined pediatric/adult center characteristics. Expert opinions demonstrated equipoise in evaluation and management of children with drug-resistant epilepsy and the need for evidence-based management strategies.
Collapse
Affiliation(s)
- Christopher W Beatty
- Department of Pediatrics, Division of Neurology, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH, USA
| | - Stephanie M Ahrens
- Department of Pediatrics, Division of Neurology, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH, USA
| | - Kristen H Arredondo
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - Anto I Bagic
- Department of Neurology, University of Pittsburgh Comprehensive Epilepsy Center (UPCEC), Pittsburgh, PA, USA
| | - Shasha Bai
- Pediatric Biostatistics Core, Emory University School of Medicine, Atlanta, GA, USA
| | - Kevin E Chapman
- Barrow Neurologic Institute at Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Michael A Ciliberto
- Department of Pediatrics, Stead Family Children's Hospital, University of Iowa, Iowa City, IA, USA
| | - Dave F Clarke
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - Mariah Eisner
- Biostatistics Resource at Nationwide Children's Hospital, Columbus, OH, USA
| | - Nathan B Fountain
- Department of Neurology, University of Virginia Health Sciences Center, Charlottesville, VA, USA
| | - Jay R Gavvala
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - M S Perry
- Jane and John Justin Neurosciences Center, Cook Children's Medical Center, Ft Worth, TX, USA
| | - Kyle C Rossi
- Department of Neurology, Division of Epilepsy, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | | | | | - Adam P Ostendorf
- Department of Pediatrics, Division of Neurology, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
9
|
Karlin A, Ruggiero S, Fitzgerald M. Genetic testing for unexplained epilepsy: A review of diagnostic approach, benefits, and referral algorithm. Curr Probl Pediatr Adolesc Health Care 2024; 54:101579. [PMID: 38480044 DOI: 10.1016/j.cppeds.2024.101579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
In the last several decades, advances in genetic testing have transformed the diagnostic and therapeutic approach to pediatric epilepsy. However, the interpretation of these genetic tests often requires expert analysis and counseling. For this reason, as our molecular understanding of the linkages between abnormal cerebral physiology and genetics has grown, so too has the field of clinical epilepsy genetics. Here we explore recent advances in genetic testing, describe the benefits of genetic testing in epilepsy, and provide a practice guideline for testing and referrals to specialized epilepsy genetics centers, highlighting the Epilepsy NeuroGenetics Initiative (ENGIN) Clinic and the Center for Epilepsy and Neurodevelopmental Disorders (ENDD) at the Children's Hospital of Philadelphia as an illustration of such a specialized center.
Collapse
Affiliation(s)
- Alexis Karlin
- Division of Child Neurology, Department of Neurology and Pediatrics, Buerger Center for Advanced Pediatric Care, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Sarah Ruggiero
- Division of Child Neurology, Department of Neurology and Pediatrics, Buerger Center for Advanced Pediatric Care, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Mark Fitzgerald
- Division of Child Neurology, Department of Neurology and Pediatrics, Buerger Center for Advanced Pediatric Care, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, United States; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
10
|
Zhou Z, Jiao X, Gong P, Niu Y, Xu Z, Zhang G, Zhang Y, Qin J, Yang Z. Clinical features and underlying etiology of children with Lennox-Gastaut syndrome. J Neurol 2024; 271:5392-5401. [PMID: 39008035 DOI: 10.1007/s00415-024-12465-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 07/16/2024]
Abstract
OBJECTIVE Lennox-Gastaut Syndrome (LGS) is characterized by the presence of multiple seizure types and encompasses a heterogenous group of etiologies. The aim of our study was to evaluate the etiological profile of LGS and investigate seizure outcomes based on different clinical variables. METHODS The clinical features, neuroimaging findings, genetic testing and other testing results of LGS patients were systematically reviewed. The identifiable etiology was categorized as either acquired or nonacquired. Univariate and multivariate regression analyses were performed to explore the association between clinical variables and seizure outcome at the last follow-up. RESULTS We enrolled 156 patients diagnosed with LGS, of whom 66% were male. The mean age of patients was 34.2 months and the median follow-up duration was 29.5 months (interquartile range = 14-56.25 months). The initial seizure type was epileptic spasm in 61 patients, among which 33 of them met the criteria for infantile epileptic spasm syndrome. All patients underwent neuroimaging test, with 25% falling into the acquired structural category. Etiology could be identified in 84 individuals, including pathogenetic variants found in 34 out of 117 patients with nonacquired etiology. CHD2 mutations were most frequently observed among these pathogenetic variants. At the last follow-up, favorable outcomes were observed in 27 patients. The identification of etiology emerged as a significant determinant influencing LGS outcome; specifically, patients with unknown etiology had a higher likelihood of experiencing favorable outcomes compared to those with known cause (p = 0.041). Early onset age and longer epilepsy duration significantly increased the odds of an unfavorable outcome (p = 0.006 and 0.024). SIGNIFICANCE We present novel data on the clinical and etiological spectrum of LGS, with determined etiology observed in over half of the patients. Epileptic spasms were found to be more prevalent than tonic seizures as seizure onset types in LGS. The presence of a known etiology, earlier age at onset, and longer duration of epilepsy were associated with a poorer long-term epileptological outcome.
Collapse
Affiliation(s)
- Zongpu Zhou
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
- Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Xianru Jiao
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
- Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Pan Gong
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yue Niu
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
- Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Zhao Xu
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
- Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Genfu Zhang
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
- Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Yuehua Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jiong Qin
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
- Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Zhixian Yang
- Department of Pediatrics, Peking University People's Hospital, Beijing, China.
- Epilepsy Center, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
11
|
Li Y. Out of Sight, Not Yet Out of Reach: Surgical Outcomes in MRI-Negative and Pathology-Negative Epilepsy Patients. Epilepsy Curr 2024; 24:251-253. [PMID: 39309064 PMCID: PMC11412405 DOI: 10.1177/15357597241253413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 09/25/2024] Open
Abstract
Outcome of Epilepsy Surgery in MRI-Negative Patients Without Histopathologic Abnormalities in the Resected Tissue Sanders MW, Van der Wolf I, Jansen FE, Aronica E, Helmstaedter C, Racz A, Surges R, Grote A, Becker AJ, Rheims S, Catenoix H, Duncan JS, De Tisi J, Jacques TS, Cross JH, Kalviainen R, Rauramaa T, Chassoux F, Devaux BC, Di Gennaro G, Esposito V, Bodi I, Honavar M, Bien CG, Cloppenborg T, Coras R, Hamer HM, Marusic P, Kalina A, Pieper T, Kudernatsch M, Hartlieb TS, Von Oertzen TJ, Aichholzer M, Dorfmuller G, Chipaux M, Noachtar S, Kaufmann E, Schulze-Bonhage A, Scheiwe CF, Özkara C, Grunwald T, Koenig K, Guerrini R, Barba C, Buccoliero AM, Giordano F, Rosenow F, Menzler K, Garbelli R, Deleo F, Krsek P, Straka B, Arzimanoglou AA, Toulouse J, Van Paesschen W, Theys T, Pimentel J, Loução De Amorim IM, Specchio N, De Palma L, Feucht M, Scholl T, Roessler K, Toledano Delgado R, Gil-Nagel A, Raicevic S, Ristic AJ, Schijns O, Beckervordersandforth J, San Antonio-Arce V, Rumia J, Blumcke I, Braun KP; as the European Epilepsy Brain Bank Consortium (EEBB). Neurology . 2024;102(4): e208007. doi:10.1212/WNL.0000000000208007 . PMID: 38290094 Background and Objectives: Patients with presumed nonlesional focal epilepsy—based on either MRI or histopathologic findings—have a lower success rate of epilepsy surgery compared with lesional patients. In this study, we aimed to characterize a large group of patients with focal epilepsy who underwent epilepsy surgery despite a normal MRI and had no lesion on histopathology. Determinants of their postoperative seizure outcomes were further studied. Methods: We designed an observational multicenter cohort study of MRI-negative and histopathology-negative patients who were derived from the European Epilepsy Brain Bank and underwent epilepsy surgery between 2000 and 2012 in 34 epilepsy surgery centers within Europe. We collected data on clinical characteristics, presurgical assessment, including genetic testing, surgery characteristics, postoperative outcome, and treatment regimen. Results: Of the 217 included patients, 40% were seizure-free (Engel I) 2 years after surgery and one-third of patients remained seizure-free after 5 years. Temporal lobe surgery (adjusted odds ratio [AOR]: 2.62; 95% CI 1.19-5.76), shorter epilepsy duration (AOR for duration: 0.94; 95% CI 0.89-0.99), and completely normal histopathologic findings—versus nonspecific reactive gliosis—(AOR: 4.69; 95% CI 1.79-11.27) were significantly associated with favorable seizure outcome at 2 years after surgery. Of patients who underwent invasive monitoring, only 35% reached seizure freedom at 2 years. Patients with parietal lobe resections had lowest seizure freedom rates (12.5%). Among temporal lobe surgery patients, there was a trend toward favorable outcome if hippocampectomy was part of the resection strategy (OR: 2.94; 95% CI 0.98-8.80). Genetic testing was only sporadically performed. Discussion: This study shows that seizure freedom can be reached in 40% of nonlesional patients with both normal MRI and histopathology findings. In particular, nonlesional temporal lobe epilepsy should be regarded as a relatively favorable group, with almost half of patients achieving seizure freedom at 2 years after surgery-even more if the hippocampus is resected-compared with only 1 in 5 nonlesional patients who underwent extratemporal surgery. Patients with an electroclinically identified focus, who are nonlesional, will be a promising group for advanced molecular-genetic analysis of brain tissue specimens to identify new brain somatic epilepsy genes or epilepsy-associated molecular pathways.
Collapse
Affiliation(s)
- Yi Li
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine
| |
Collapse
|
12
|
Karakis I. Genetic Testing in the Presurgical Evaluation of Drug-Resistant Epilepsy: Bells and Whistles or Nuts and Bolts? Epilepsy Curr 2024; 24:248-250. [PMID: 39309044 PMCID: PMC11412404 DOI: 10.1177/15357597241250161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
Genetic Testing in Children Enrolled in Epilepsy Surgery Program. A Real-Life Study Straka B, Splitkova B, Vlckova M, Tesner P, Rezacova H, Krskova L, Koblizek M, Kyncl M, Maulisova A, Bukacova K, Uhrova-Meszarosova A, Musilova A, Kudr M, Ebel M, Belohlavkova A, Jahodova A, Liby P, Tichy M, Jezdik P, Zamecnik J, Aronica E, Krsek P. Eur J Paediatr Neurol . 2023;47:80-87. doi:10.1016/j.ejpn.2023.09.009 . PMID: 37812946 Objective: Although genetic causes of drug-resistant focal epilepsy and selected focal malformations of cortical development (MCD) have been described, a limited number of studies comprehensively analysed genetic diagnoses in patients undergoing pre-surgical evaluation, their outcomes and the effect of genetic diagnosis on surgical strategy. Methods: We analysed a prospective cohort of children enrolled in epilepsy surgery program over January 2018-July 2022. The majority of patients underwent germline and/or somatic genetic testing. We searched for predictors of surgical outcome and positive result of germline genetic testing. Results: Ninety-five patients were enrolled in epilepsy surgery program and 64 underwent resective epilepsy surgery. We ascertained germline genetic diagnosis in 13/74 patients having underwent germline gene testing (pathogenic or likely pathogenic variants in CHRNA4, NPRL3, DEPDC5, FGF12, GRIA2, SZT2, STXBP1) and identified three copy number variants. Thirty-five patients underwent somatic gene testing; we detected 10 pathogenic or likely pathogenic variants in genes SLC35A2, PTEN, MTOR, DEPDC5, NPRL3. Germline genetic diagnosis was significantly associated with the diagnosis of focal epilepsy with unknown seizure onset. Significance: Germline and somatic gene testing can ascertain a definite genetic diagnosis in a significant subgroup of patients in epilepsy surgery programs. Diagnosis of focal genetic epilepsy may tip the scales against the decision to proceed with invasive EEG study or surgical resection; however, selected patients with genetic focal epilepsies associated with MCD may benefit from resective epilepsy surgery and therefore, a genetic diagnosis does not disqualify patients from presurgical evaluation and epilepsy surgery. Utility of Genetic Testing in the Pre-Surgical Evaluation of Children With Drug-Resistant Epilepsy Alsubhi S, Berrahmoune S, Dudley RWR, Dufresne D, Simard Tremblay E, Srour M, Myers KA. J Neurol . 2024. doi:10.1007/s00415-023-12174-3 . PMID: 38261030 We evaluated the utility of genetic testing in the pre-surgical evaluation of pediatric patients with drug-resistant focal epilepsy. This single-center retrospective study reviewed the charts of all pediatric patients referred for epilepsy surgery evaluation over a 5-year period. We extracted and analyzed results of genetic testing as well as clinical, EEG, and neuroimaging data. Of 125 patients referred for epilepsy surgical evaluation, 86 (69%) had some form of genetic testing. Of these, 18 (21%) had a pathogenic or likely pathogenic variant identified. Genes affected included NPRL3 (3 patients, all related), TSC2 (3 patients), KCNH1, CHRNA4, SPTAN1, DEPDC5, SCN2A, ARX, SCN1A, DLG4, and ST5. One patient had ring chromosome 20, one a 7.17p12 duplication, and one a 15q13 deletion. In six patients, suspected epileptogenic lesions were identified on brain MRI that were thought to be unrelated to the genetic finding. A specific medical therapy choice was allowed due to genetic diagnosis in three patients who did not undergo surgery. Obtaining a molecular diagnosis may dramatically alter management in pediatric patients with drug-resistant focal epilepsy. Genetic testing should be incorporated as part of standard investigations in the pre-surgical work-up of pediatric patients with drug-resistant focal epilepsy.
Collapse
Affiliation(s)
- Ioannis Karakis
- Department of Neurology, Emory University School of Medicine; University of Crete School of Medicine
| |
Collapse
|
13
|
Papadopoulou MT, Muccioli L, Bisulli F, Klotz KA, Fons C, Trivisano M, Kabulashvili T, Specchio N, Lesca G, Arzimanoglou A. Accessibility, availability and common practices regarding genetic testing for epilepsy across Europe: A survey of the European Reference Network EpiCARE. Epilepsia Open 2024; 9:996-1006. [PMID: 38517305 PMCID: PMC11145613 DOI: 10.1002/epi4.12930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/19/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
OBJECTIVE The increasingly rapid pace of advancement in genetic testing may lead to inequalities in technical and human resources with a negative impact on optimal epilepsy clinical practice. In this view, the European Reference Network (ERN) for Rare and Complex Epilepsies EpiCARE conducted a survey addressing several aspects of accessibility, availability, costs, and standard practices on genetic testing across ERN EpiCARE centers. METHODS An online Google form was sent to 70 representatives of ERN EpiCARE centers. Descriptive statistics and qualitative analysis were used for data presentation. RESULTS We received 45 responses (1/center) representing 23 European countries with a better representation of Western Europe. Forty-five percent of the centers did not have access to all available types of genetic testing, mainly reflecting the limited availability of whole-genome sequencing (WGS). Thirty-five percent of centers report cost coverage only for some of the available tests, while costs per test varied significantly (interquartile range IQR ranging from 150 to 1173 euros per test across centers). Urgent genetic testing is available in 71.7% of countries (time-to-urgent result: 2 day to 2 months). The average time-to-result of specific tests in case of non-urgent prescription has a significant variance across centers, with the biggest range observed for whole-exome sequencing (6-128 weeks, IQR: 27 weeks). The percentage of agreement among the experts regarding the choice of genetic test at first intention in specific clinical situations was in all cases less than 50 percent (34.9% to 47% according to the proposed scenarios). SIGNIFICANCE Costs, time to deliver the results to the clinician, and type of first-line genetic testing vary widely across Europe, even in countries where ERN EpiCARE centers are present. Increased availability of genetic tests and guidance for optimal test choices in epilepsy remains essential to avoid diagnostic delays and excess health costs. PLAIN LANGUAGE SUMMARY The survey of the ERN EpiCARE highlights disparities in genetic testing for epilepsy across 45 ERN EpiCARE centers in 23 European countries. The findings reveal variable access to certain genetic tests, with lowest access to WGS. Costs and time-to-results vary widely. Urgent genetic testing is available in 71.7% of countries. Agreement among experts on first-line genetic tests for specific patient scenarios is below 50%. The study emphasizes the need for improved test availability and guidance to avoid diagnostic delays and unnecessary costs. EpiCARE has the mission to contribute in homogenizing best practices across Europe.
Collapse
Affiliation(s)
- Maria T. Papadopoulou
- Department of Paediatric Clinical Epileptology, Sleep Disorders and Functional NeurologyUniversity Hospitals of Lyon (HCL), Member of the European Reference Network (ERN) EpiCARELyonFrance
| | - Lorenzo Muccioli
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Member of the ERN EpiCAREBolognaItaly
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
| | - Francesca Bisulli
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Member of the ERN EpiCAREBolognaItaly
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
| | - Kerstin Alexandra Klotz
- Department of NeuropediatricsUniversity Hospital of Bonn, Member of the ERN EpiCAREBonnGermany
| | - Carmen Fons
- Unit for Epilepsy and NeurophysiologyDepartment of Pediatric Neurology, Sant Joan De Déu Children's Hospital, Member of the ERN EpiCARE, Institut de Recerca Sant Joan de DéuUniversity of BarcelonaBarcelonaSpain
| | - Marina Trivisano
- Rare and Complex Epilepsy Unit, Department of NeuroscienceBambino Gesù Children's Hospital, IRCCS, Member of the ERN EpiCARERomeItaly
| | - Teia Kabulashvili
- Department of Neurology, Christian Doppler University HospitalParacelsus Medical University, Member of the ERN EpiCARESalzburgAustria
| | - Nicola Specchio
- Rare and Complex Epilepsy Unit, Department of NeuroscienceBambino Gesù Children's Hospital, IRCCS, Member of the ERN EpiCARERomeItaly
| | - Gaetan Lesca
- Department of Medical GeneticsUniversity Hospitals of Lyon (HCL), Member of the ERN EpiCARELyonFrance
| | - Alexis Arzimanoglou
- Department of Paediatric Clinical Epileptology, Sleep Disorders and Functional NeurologyUniversity Hospitals of Lyon (HCL), Member of the European Reference Network (ERN) EpiCARELyonFrance
- Unit for Epilepsy and NeurophysiologyDepartment of Pediatric Neurology, Sant Joan De Déu Children's Hospital, Member of the ERN EpiCARE, Institut de Recerca Sant Joan de DéuUniversity of BarcelonaBarcelonaSpain
| |
Collapse
|
14
|
Sabnis G, Hession L, Mahoney JM, Mobley A, Santos M, Kumar V. Visual detection of seizures in mice using supervised machine learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596520. [PMID: 38868170 PMCID: PMC11167691 DOI: 10.1101/2024.05.29.596520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Seizures are caused by abnormally synchronous brain activity that can result in changes in muscle tone, such as twitching, stiffness, limpness, or rhythmic jerking. These behavioral manifestations are clear on visual inspection and the most widely used seizure scoring systems in preclinical models, such as the Racine scale in rodents, use these behavioral patterns in semiquantitative seizure intensity scores. However, visual inspection is time-consuming, low-throughput, and partially subjective, and there is a need for rigorously quantitative approaches that are scalable. In this study, we used supervised machine learning approaches to develop automated classifiers to predict seizure severity directly from noninvasive video data. Using the PTZ-induced seizure model in mice, we trained video-only classifiers to predict ictal events, combined these events to predict an univariate seizure intensity for a recording session, as well as time-varying seizure intensity scores. Our results show, for the first time, that seizure events and overall intensity can be rigorously quantified directly from overhead video of mice in a standard open field using supervised approaches. These results enable high-throughput, noninvasive, and standardized seizure scoring for downstream applications such as neurogenetics and therapeutic discovery.
Collapse
Affiliation(s)
| | | | | | | | | | - Vivek Kumar
- The Jackson Laboratory, Bar Harbor, ME USA
- School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME USA
| |
Collapse
|
15
|
Ziobro J, Pilon B, Wusthoff CJ, Benedetti GM, Massey SL, Yozawitz E, Numis AL, Pressler R, Shellhaas RA. Neonatal Seizures: New Evidence, Classification, and Guidelines. Epilepsy Curr 2024:15357597241253382. [PMID: 39554267 PMCID: PMC11562284 DOI: 10.1177/15357597241253382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/12/2024] [Accepted: 04/22/2024] [Indexed: 11/19/2024] Open
Abstract
Neonates are susceptible to seizures due to their unique physiology and combination of risks associated with gestation, delivery, and the immediate postnatal period. Advances in neonatal care have improved outcomes for some of our most fragile patients, but there are persistent challenges for epileptologists in identifying neonatal seizures, diagnosing etiologies, and providing the most appropriate care, with an ultimate goal to maximize patient outcomes. In just the last few years, there have been critical advances in the state of the science, as well as new evidence-based guidelines for diagnosis, classification, and treatment of neonatal seizures. This review will provide updated knowledge about the pathophysiology of neonatal seizures, classification of the provoked seizures and neonatal epilepsies, state of the art guidance on EEG monitoring in the neonatal ICU, current treatment guidelines for neonatal seizures, and potential for future advancement in treatment.
Collapse
Affiliation(s)
- Julie Ziobro
- Division of Pediatric Neurology, Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | | - Courtney J. Wusthoff
- Department of Neurology, Stanford University, Palo Alto, CA, USA
- Department of Pediatrics, Stanford University, Palo Alto, CA, USA
| | - Giulia M. Benedetti
- Division of Pediatric Neurology, Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Shavonne L. Massey
- Department of Neurology, Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Elissa Yozawitz
- Isabelle Rapin Division of Child Neurology, Saul R. Korey Department of Neurology, Montefiore Medical Center, Bronx, NY, USA
| | - Adam L. Numis
- Department of Neurology and Weill Institute for Neuroscience, University of California San Francisco, San Francisco, CA, USA
- Department of Pediatrics, UCSF Benioff Children’s Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Ronit Pressler
- Department of Clinical Neurophysiology, Great Ormond Street Hospital for Children NHS Trust, London, United Kingdom
| | - Renée A. Shellhaas
- Division of Pediatric Neurology, Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
16
|
Almuqbil MA, Tabassum S, Muthaffar OY, Ghamdi F, Al Masseri Z, Alsaman A, Alkhater RA. Parkinsonism-dystonia-2: Case-series study from Saudi Arabia. Ann Clin Transl Neurol 2024; 11:1063-1066. [PMID: 38389300 PMCID: PMC11021621 DOI: 10.1002/acn3.52020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/11/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Parkinsonism-dystonia-2 PKDYS2 is an autosomal-recessive disorder, caused by pathogenic biallelic variants in SLC18A2 which encodes the vesicular monoamine transporter (VMAT2) protein. PKDYS2 is a treatable neurotransmitter disease, and the rate of diagnosis of this disorder has increased significantly with the advance of genomic technologies. Our report highlights a novel pathologic variant in one case and a novel finding on MRI Brain, consisting of a normal symmetrical signal intensity in the dorsal brainstem and pons, and it substantiates the significance of genetic testing in the evaluation of children with developmental delays, which influences clinical decisions to enhance patient outcomes.
Collapse
Affiliation(s)
- Mohammed A. Almuqbil
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU‐HS)RiyadhSaudi Arabia
- Division of Pediatric NeurologyKing Abdullah Specialist Children's Hospital (KASCH), National Guard Health Affairs (NGHA)RiyadhSaudi Arabia
- King Abdullah International Medical Center (KAIMRC), Ministry of National GuardRiyadhSaudi Arabia
| | - Sadia Tabassum
- Department of PediatricsKing Fahad Medical City (KFMC)RiyadhSaudi Arabia
| | - Osama Y. Muthaffar
- Department of Pediatrics, Faculty of MedicineKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Fouad Ghamdi
- Department of Pediatric Neurology, Neuroscience CenterKing Fahad Specialist HospitalDammamSaudi Arabia
| | - Zainab Al Masseri
- Department of Pediatric, Medical Genetics UnitQatif Central Hospital, Eastern Health Cluster, Ministry of HealthQatifSaudi Arabia
| | - Abdulaziz Alsaman
- Department of Pediatric NeurologyNational Neuroscience Institute, King Fahad Medical City (KFMC)RiyadhSaudi Arabia
| | - Reem A. Alkhater
- Women and Child Institute, John's Hopkins Aramco Healthcare (Jhah)DhahranSaudi Arabia
- John's Hopkins School of MedicineBaltimoreUSA
- King Abdullah University for Science and Technology (KAUST)ThuwalSaudi Arabia
| |
Collapse
|
17
|
Habela CW, Schatz K, Kelley SA. Genetic Testing in Epilepsy: Improving Outcomes and Informing Gaps in Research. Epilepsy Curr 2024:15357597241232881. [PMID: 39554273 PMCID: PMC11562134 DOI: 10.1177/15357597241232881] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
While the diagnosis of epilepsy relies on the presence of seizures, it encompasses a group of phenotypically and etiologically diverse disorders in which seizures may only be one of a constellation of symptoms. There are genetic, structural, and metabolic causes, but most epilepsy syndromes have some genetic predisposition. The importance of genetics in the diagnosis and management of epilepsy has been increasingly recognized over the past 2 decades. With increased access to testing tools and new recommendations that all patients with unexplained epilepsy get genetic testing, it is becoming part of routine clinical care. Increased testing has resulted in an explosion in the number of genes and genetic changes identified and it is changing our understanding of the mechanisms of epileptogenesis. Advances in both clinical genetics and scientific discovery are expanding our potential to impact patient care as well as creating dilemmas. This brief review will highlight where we are regarding our ability to obtain a genetic diagnosis, how diagnoses impact patient care, and the next likely frontiers in diagnosis and management.
Collapse
Affiliation(s)
- Christa W. Habela
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Krista Schatz
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah A. Kelley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
18
|
Boßelmann CM, Ivaniuk A, St John M, Taylor SC, Krishnaswamy G, Milinovich A, Leu C, Gupta A, Pestana-Knight EM, Najm I, Lal D. Healthcare utilization and clinical characteristics of genetic epilepsy in electronic health records. Brain Commun 2024; 6:fcae090. [PMID: 38524155 PMCID: PMC10959483 DOI: 10.1093/braincomms/fcae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/05/2024] [Accepted: 03/12/2024] [Indexed: 03/26/2024] Open
Abstract
Understanding the clinical characteristics and medical treatment of individuals affected by genetic epilepsies is instrumental in guiding selection for genetic testing, defining the phenotype range of these rare disorders, optimizing patient care pathways and pinpointing unaddressed medical need by quantifying healthcare resource utilization. To date, a matched longitudinal cohort study encompassing the entire spectrum of clinical characteristics and medical treatment from childhood through adolescence has not been performed. We identified individuals with genetic and non-genetic epilepsies and onset at ages 0-5 years by linkage across the Cleveland Clinic Health System. We used natural language processing to extract medical terms and procedures from longitudinal electronic health records and tested for cross-sectional and temporal associations with genetic epilepsy. We implemented a two-stage design: in the discovery cohort, individuals were stratified as being 'likely genetic' or 'non-genetic' by a natural language processing algorithm, and controls did not receive genetic testing. The validation cohort consisted of cases with genetic epilepsy confirmed by manual chart review and an independent set of controls who received negative genetic testing. The discovery and validation cohorts consisted of 503 and 344 individuals with genetic epilepsy and matched controls, respectively. The median age at the first encounter was 0.1 years and 7.9 years at the last encounter, and the mean duration of follow-up was 8.2 years. We extracted 188,295 Unified Medical Language System annotations for statistical analysis across 9659 encounters. Individuals with genetic epilepsy received an earlier epilepsy diagnosis and had more frequent and complex encounters with the healthcare system. Notably, the highest enrichment of encounters compared with the non-genetic groups was found during the transition from paediatric to adult care. Our computational approach could validate established comorbidities of genetic epilepsies, such as behavioural abnormality and intellectual disability. We also revealed novel associations for genitourinary abnormalities (odds ratio 1.91, 95% confidence interval: 1.66-2.20, P = 6.16 × 10-19) linked to a spectrum of underrecognized epilepsy-associated genetic disorders. This case-control study leveraged real-world data to identify novel features associated with the likelihood of a genetic aetiology and quantified the healthcare utilization of genetic epilepsies compared with matched controls. Our results strongly recommend early genetic testing to stratify individuals into specialized care paths, thus improving the clinical management of people with genetic epilepsies.
Collapse
Affiliation(s)
- Christian M Boßelmann
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Alina Ivaniuk
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Mark St John
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Sara C Taylor
- Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | - Alex Milinovich
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Costin Leu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, WC1N 3BG, UK
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Center for Neurogenetics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ajay Gupta
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | - Imad Najm
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Dennis Lal
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Center for Neurogenetics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T., Cambridge, MA 02142, USA
- Cologne Center for Genomics (CCG), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
19
|
Riess O, Sturm M, Menden B, Liebmann A, Demidov G, Witt D, Casadei N, Admard J, Schütz L, Ossowski S, Taylor S, Schaffer S, Schroeder C, Dufke A, Haack T. Genomes in clinical care. NPJ Genom Med 2024; 9:20. [PMID: 38485733 PMCID: PMC10940576 DOI: 10.1038/s41525-024-00402-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/07/2024] [Indexed: 03/18/2024] Open
Abstract
In the era of precision medicine, genome sequencing (GS) has become more affordable and the importance of genomics and multi-omics in clinical care is increasingly being recognized. However, how to scale and effectively implement GS on an institutional level remains a challenge for many. Here, we present Genome First and Ge-Med, two clinical implementation studies focused on identifying the key pillars and processes that are required to make routine GS and predictive genomics a reality in the clinical setting. We describe our experience and lessons learned for a variety of topics including test logistics, patient care processes, data reporting, and infrastructure. Our model of providing clinical care and comprehensive genomic analysis from a single source may be used by other centers with a similar structure to facilitate the implementation of omics-based personalized health concepts in medicine.
Collapse
Affiliation(s)
- Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.
- NGS Competence Center Tübingen, University of Tübingen, Tübingen, Germany.
- Center for Rare Diseases Tübingen, University of Tübingen, Tübingen, Germany.
| | - Marc Sturm
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Benita Menden
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Alexandra Liebmann
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - German Demidov
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Dennis Witt
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen, University of Tübingen, Tübingen, Germany
| | - Jakob Admard
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Leon Schütz
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Stephan Ossowski
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen, University of Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany
| | | | | | - Christopher Schroeder
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Center for Rare Diseases Tübingen, University of Tübingen, Tübingen, Germany
| | - Andreas Dufke
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Center for Rare Diseases Tübingen, University of Tübingen, Tübingen, Germany
| | - Tobias Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Center for Rare Diseases Tübingen, University of Tübingen, Tübingen, Germany
| |
Collapse
|
20
|
Zuo RR, Jin M, Sun SZ. Etiological analysis of 167 cases of drug-resistant epilepsy in children. Ital J Pediatr 2024; 50:50. [PMID: 38481309 PMCID: PMC10938754 DOI: 10.1186/s13052-024-01619-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/24/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND To analyze the etiological distribution characteristics of drug-resistant epilepsy (DRE) in children, with the aim of providing valuable perspectives to enhance clinical practice. METHODS In this retrospective study, clinical data were collected on 167 children with DRE who were hospitalized between January 2020 and December 2022, including gender, age of onset, seizure types, video electroencephalogram(VEEG) recordings, neuroimaging, and genetic testing results. Based on the etiology of epilepsy, the enrolled children were categorized into different groups. The rank-sum test was conducted to compare the age of onset for different etiologies. RESULTS Of the 167 cases, 89 (53.3%) had a clear etiology. Among them, structural factors account for 23.4%, genetic factors for 19.2%, multiple factors for 7.2%, and immunological factors for 3.6%. The age of onset was significantly earlier in children with genetic causes than those with structural (P < 0.001) or immunological (P = 0.001) causes. CONCLUSIONS More than half of children with DRE have a distinct underlying cause, predominantly attributed to structural factors, followed by genetic factors. Genetic etiology primarily manifests at an early age, especially among children aged less than one year. This underscores the need for proactive enhancements in genetic testing to unveil the underlying causes and subsequently guide treatment protocols.
Collapse
Affiliation(s)
- Ran-Ran Zuo
- Department of Neurology, Hebei Childrens Hospital, 133, Jianhua South Street, 050000, Shijiazhuang, Hebei Province, China
| | - Mei Jin
- Department of Neurology, Hebei Childrens Hospital, 133, Jianhua South Street, 050000, Shijiazhuang, Hebei Province, China
- The Key Laboratory of Pediatric Epilepsy and Neurological Disorders of Hebei Province, 050000, Shijiazhuang, Hebei, China
| | - Su-Zhen Sun
- Department of Neurology, Hebei Childrens Hospital, 133, Jianhua South Street, 050000, Shijiazhuang, Hebei Province, China.
- The Key Laboratory of Pediatric Epilepsy and Neurological Disorders of Hebei Province, 050000, Shijiazhuang, Hebei, China.
| |
Collapse
|
21
|
Grew E, Reddy M, Reichner H, Kim J, Salam M, Hashim A. Yield and Utility of Routine Epilepsy Panel Genetic Testing Among Young Patients With Seizures. J Child Neurol 2024; 39:138-146. [PMID: 38528770 DOI: 10.1177/08830738241240516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Objective: We examined the yield of routine epilepsy panel genetic testing in pediatric patients. Methods: We retrospectively reviewed epilepsy genetic panel results routinely performed in the hospital or clinic on patients <8 years old from July 2021 to July 2023. We evaluated demographics, family history, seizure type, severity, and frequency, development, tone and movement abnormalities, dysmorphism, and electroencephalography (EEG) or magnetic resonance imaging (MRI) results as predictors of results. Results: 65 patients were included with mean age 4.5 years. Sixty percent of patients were male; 11 patients had pathogenic variants (16.9%), 7 were carriers for autosomal recessive conditions (10.8%), 36 had variants of uncertain significance (55.4%), and 11 tested negative (16.9%). Pathogenic variants and variants of uncertain significance were unassociated with demographics, clinical features, imaging, or family history. Conclusion: Variants identified have potential implications for treatment (SCN1), comorbidity screening (TSC1), reproduction (ATAD1, PSAT1, and CLN8), and prognostication (FOXG1). Patients not routinely screened for a genetic cause of epilepsy by our standard practices had clinically relevant results.
Collapse
Affiliation(s)
- Emily Grew
- Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Mayuri Reddy
- Rutgers New Jersey Medical School, Newark, NJ, USA
| | | | - Jinsoo Kim
- Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Misbah Salam
- Department of Pediatric Neurology, Children's Hospital of New Jersey at Newark Beth Israel Medical Center, Newark, NJ, USA
| | - Anjum Hashim
- Department of Pediatric Neurology, Children's Hospital of New Jersey at Newark Beth Israel Medical Center, Newark, NJ, USA
| |
Collapse
|
22
|
Fasaludeen A, McTague A, Jose M, Banerjee M, Sundaram S, Madhusoodanan UK, Radhakrishnan A, Menon RN. Genetic variant interpretation for the neurologist - A pragmatic approach in the next-generation sequencing era in childhood epilepsy. Epilepsy Res 2024; 201:107341. [PMID: 38447235 DOI: 10.1016/j.eplepsyres.2024.107341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/14/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
Genetic advances over the past decade have enhanced our understanding of the genetic landscape of childhood epilepsy. However a major challenge for clinicians ha been understanding the rationale and systematic approach towards interpretation of the clinical significance of variant(s) detected in their patients. As the clinical paradigm evolves from gene panels to whole exome or whole genome testing including rapid genome sequencing, the number of patients tested and variants identified per patient will only increase. Each step in the process of variant interpretation has limitations and there is no single criterion which enables the clinician to draw reliable conclusions on a causal relationship between the variant and disease without robust clinical phenotyping. Although many automated online analysis software tools are available, these carry a risk of misinterpretation. This guideline provides a pragmatic, real-world approach to variant interpretation for the child neurologist. The focus will be on ascertaining aspects such as variant frequency, subtype, inheritance pattern, structural and functional consequence with regard to genotype-phenotype correlations, while refraining from mere interpretation of the classification provided in a genetic test report. It will not replace the expert advice of colleagues in clinical genetics, however as genomic investigations become a first-line test for epilepsy, it is vital that neurologists and epileptologists are equipped to navigate this landscape.
Collapse
Affiliation(s)
- Alfiya Fasaludeen
- Dept of Neurology, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST), Thiruvananthapuram, Kerala, India
| | - Amy McTague
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, United Kingdom; Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| | - Manna Jose
- Dept of Neurology, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST), Thiruvananthapuram, Kerala, India
| | - Moinak Banerjee
- Human Molecular Genetics Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Soumya Sundaram
- Dept of Neurology, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST), Thiruvananthapuram, Kerala, India
| | - U K Madhusoodanan
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST), Thiruvananthapuram, Kerala, India
| | - Ashalatha Radhakrishnan
- Dept of Neurology, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST), Thiruvananthapuram, Kerala, India
| | - Ramshekhar N Menon
- Dept of Neurology, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST), Thiruvananthapuram, Kerala, India.
| |
Collapse
|
23
|
Swartwood SM, Morales A, Hatchell KE, Moretz C, McKnight D, Demmer L, Chagnon S, Aradhya S, Esplin ED, Bonkowsky JL. Early genetic testing in pediatric epilepsy: Diagnostic and cost implications. Epilepsia Open 2024; 9:439-444. [PMID: 38071479 PMCID: PMC10839360 DOI: 10.1002/epi4.12878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
The identification of numerous genetically based epilepsies has resulted in the widespread use of genetic testing to inform epilepsy etiology. Our study aims to investigate whether a difference exists in the diagnostic evaluation and healthcare-related cost expenditures of pediatric patients with epilepsy of unknown etiology who receive a genetic diagnosis through multigene epilepsy panel (MEP) testing and comparing those who underwent early (EGT) versus late genetic testing (LGT). Testing was defined as early (less than 1 year), or late (more than 1 year), following clinical epilepsy diagnosis. A retrospective chart review of pediatric individuals (1-17 years) with epilepsy of unknown etiology who underwent multigene epilepsy panel (MEP) testing identified 28 of 226 (12%) individuals with a pathogenic epilepsy variant [EGT n = 8 (29%); LGT n = 20 (71%)]. The average time from clinical epilepsy diagnosis to genetic diagnosis was 0.25 years (EGT), compared with 7.1 years (LGT). The EGT cohort underwent fewer metabolic tests [EGT n = 0 (0%); LGT n = 16 (80%) (P < 0.01)] and invasive procedures [EGT n = 0 (0%); LGT n = 5 (25%) (P = 0.06)]. Clinical management changes implemented due to genetic diagnosis occurred in 10 (36%) patients [EGT n = 2 (25%); LGT n = 8 (40%) (P = 0.76)]. Early genetic testing with a MEP in pediatric patients with epilepsy of unknown etiology who receive a genetic diagnosis is associated with fewer non-diagnostic tests and invasive procedures and reduced estimated overall healthcare-related costs. PLAIN LANGUAGE SUMMARY: This study aims to investigate whether a difference exists in the diagnostic evaluation and cost expenditures of pediatric patients (1-17 years) with epilepsy of unknown cause who are ultimately diagnosed with a genetic cause of epilepsy through multigene epilepsy panel testing and comparing those who underwent early testing (less than 1 year) versus late testing (more than 1 year) after clinical epilepsy diagnosis. Of the 28 of 226 individuals with a confirmed genetic cause of epilepsy on multigene epilepsy panel testing, performing early testing was associated with fewer non-diagnostic tests, fewer invasive procedures and reduced estimated overall healthcare-related costs.
Collapse
Affiliation(s)
- Shanna M. Swartwood
- Division of Pediatric Neurology, Department of PediatricsUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Ana Morales
- Invitae CorporationSan FranciscoCaliforniaUSA
| | | | - Chad Moretz
- Invitae CorporationSan FranciscoCaliforniaUSA
| | | | - Laurie Demmer
- Division of Medical Genetics, Department of Pediatrics, Atrium Health's Levine Children's HospitalCharlotteNorth CarolinaUSA
| | - Sarah Chagnon
- Division of Child and Adolescent Neurology, Children's Hospital of the Kings DaughtersVirginia
| | | | | | - Joshua L. Bonkowsky
- Division of Pediatric Neurology, Department of PediatricsUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- Center for Personalized Medicine, Primary Children's HospitalSalt Lake CityUtahUSA
| |
Collapse
|
24
|
Santana Almansa A, Gable DL, Frazier Z, Sveden A, Quinlan A, Chopra M, Lewis SA, Kruer M, Poduri A, Srivastava S. Clinical utility of a genetic diagnosis in individuals with cerebral palsy and related motor disorders. Ann Clin Transl Neurol 2024; 11:251-262. [PMID: 38168508 PMCID: PMC10863912 DOI: 10.1002/acn3.51942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/07/2023] [Accepted: 10/19/2023] [Indexed: 01/05/2024] Open
Abstract
OBJECTIVE Evaluation of the clinical utility of a genetic diagnosis in CP remains limited. We aimed to characterize the clinical utility of a genetic diagnosis by exome sequencing (ES) in patients with CP and related motor disorders. METHODS We enrolled participants with CP and "CP masquerading" conditions in an institutional ES initiative. In those with genetic diagnoses who had clinical visits to discuss results, we retrospectively reviewed medical charts, evaluating recommendations based on the genetic diagnosis pertaining to medication intervention, surveillance initiation, variant-specific testing, and patient education. RESULTS We included 30 individuals with a molecular diagnosis and clinical follow-up. Nearly all (28 out of 30) had clinical impact resulting from the genetic diagnosis. Medication interventions included recommendation of mitochondrial multivitamin supplementation (6.67%, n = 2), ketogenic diet (3.33%, n = 1), and fasting avoidance (3.33%, n = 1). Surveillance-related actions included recommendations for investigating systemic complications (40%, n = 12); referral to new specialists to screen for systemic manifestations (33%, n = 10); continued follow-up with established specialists to focus on specific manifestations (16.67%, n = 5); referral to clinical genetics (16.67%, n = 5) to oversee surveillance recommendations. Variant-specific actions included carrier testing (10%, n = 3) and testing of potentially affected relatives (3.33%, n = 1). Patient education-specific actions included referral to experts in the genetic disorder (30%, n = 9); and counseling about possible changes in prognosis, including recognition of disease progression and early mortality (36.67%, n = 11). INTERPRETATION This study highlights the clinical utility of a genetic diagnosis for CP and "CP masquerading" conditions, evident by medication interventions, surveillance impact, family member testing, and patient education, including possible prognostic changes.
Collapse
Affiliation(s)
- Alexandra Santana Almansa
- Child Neurology Residency Training ProgramBoston Children's HospitalBostonMassachusettsUSA
- Department of NeurologyBoston Children's HospitalBostonMassachusettsUSA
| | - Dustin L. Gable
- Child Neurology Residency Training ProgramBoston Children's HospitalBostonMassachusettsUSA
- Department of NeurologyBoston Children's HospitalBostonMassachusettsUSA
| | - Zoë Frazier
- Rosamund Stone Zander Translational Neuroscience Center, Department of NeurologyBoston Children's HospitalBostonMassachusettsUSA
| | - Abigail Sveden
- Rosamund Stone Zander Translational Neuroscience Center, Department of NeurologyBoston Children's HospitalBostonMassachusettsUSA
| | - Aisling Quinlan
- Rosamund Stone Zander Translational Neuroscience Center, Department of NeurologyBoston Children's HospitalBostonMassachusettsUSA
| | - Maya Chopra
- Rosamund Stone Zander Translational Neuroscience Center, Department of NeurologyBoston Children's HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBoston Children's HospitalBostonMassachusettsUSA
| | - Sara A. Lewis
- Department of Neurology and PediatricsPhoenix Children's HospitalPhoenixArizonaUSA
| | - Michael Kruer
- Department of Neurology and PediatricsPhoenix Children's HospitalPhoenixArizonaUSA
| | - Annapurna Poduri
- Department of NeurologyBoston Children's HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBoston Children's HospitalBostonMassachusettsUSA
- Neurogenetics Program and Epilepsy Genetics ProgramBoston Children's HospitalBostonMassachusettsUSA
| | - Siddharth Srivastava
- Department of NeurologyBoston Children's HospitalBostonMassachusettsUSA
- Rosamund Stone Zander Translational Neuroscience Center, Department of NeurologyBoston Children's HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBoston Children's HospitalBostonMassachusettsUSA
- Cerebral Palsy and Spasticity CenterBoston Children's HospitalBostonMassachusettsUSA
| |
Collapse
|
25
|
Badura-Stronka M, Wołyńska K, Winczewska-Wiktor A, Marcinkowska J, Karolewska D, Tomkowiak-Kędzia D, Piechota M, Przyborska M, Kochalska N, Steinborn B. Validation of targeted next-generation sequencing panels in a cohort of Polish patients with epilepsy: assessing variable performance across clinical endophenotypes and uncovering novel genetic variants. Front Neurol 2024; 14:1316933. [PMID: 38328757 PMCID: PMC10849089 DOI: 10.3389/fneur.2023.1316933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/26/2023] [Indexed: 02/09/2024] Open
Abstract
Introduction Targeted Next-Generation Sequencing Panels (TNGSP) have become a standard in global clinical practice. Instead of questioning the necessity of next-generation sequencing in epilepsy patients, contemporary large-scale research focuses on factors such as the size of TNGSP, the comparative advantages of exome or genome-wide sequencing over TNGSP, and the impact of clinical, electrophysiological, and demographic variables on genetic test performance. This study aims to elucidate the demographic and clinical factors influencing the performance of TNGSP in 138 Polish patients with epilepsy, recognizing the pivotal role of genetic testing in guiding patient management and therapy. Methods A retrospective analysis was conducted on patients from a genetic clinic in Poznań, Poland, who underwent commercial gene panel studies at Invitae Corporation (USA) between 2020 and 2022. Patient groups were defined based on the age of onset of the first epileptic seizures, seizure type, gender, fever dependence of seizures, presence of intellectual disability or developmental delay, abnormalities in MRI, and the presence of dysmorphic features or congenital malformations. Seizure classification followed the 2017 ILAE criteria. Results Among the 138 patients, 30 (21.7%) exhibited a pathogenic or likely pathogenic variant, with a distribution of 20.7% in males and 22.5% in females. Diagnostic performance correlated with the patient's age at the onset of the first seizure and the type of seizure. Predominant variants were identified in the SCN1A, PRRT2, CDKL5, DEPDC5, TSC2, and SLC2A1 genes. Additionally, 12 genes (CACNA1A, SCN2A, GRIN2A, KCNQ2, CHD2, DYNC1H1, NEXMIF, SCN1B, DDX3X, EEF1A2, NPRL3, UBE3A) exhibited single instances of damage. Notably, novel variants were discovered in DEPDC5, SCN1A, TSC2, CDKL5, NPRL3, DYNC1H1, CHD2, and DDX3X. Discussion Identified variants were present in genes previously recognized in both European and non-European populations. A thorough examination of Variants of Uncertain Significance (VUSs), specifically focusing on gene copy number changes, may unveil more extensive chromosomal aberrations. The relatively frequent occurrence of pathological variants in X chromosome-linked genes in girls warrants further investigation, challenging the prevailing notion of male predominance in X-linked epilepsy.
Collapse
Affiliation(s)
- Magdalena Badura-Stronka
- Chair and Department of Medical Genetics, Poznan University of Medical Sciences, Poznań, Poland
- Centers for Medical Genetics GENESIS, Poznań, Poland
| | - Katarzyna Wołyńska
- Chair and Department of Medical Genetics, Poznan University of Medical Sciences, Poznań, Poland
| | - Anna Winczewska-Wiktor
- Chair and Department of Developmental Neurology, Poznan University of Medical Sciences, Poznań, Poland
| | - Justyna Marcinkowska
- Chair and Department of Informatics and Statistics, Poznan University of Medical Sciences, Poznań, Poland
| | | | | | | | | | | | - Barbara Steinborn
- Chair and Department of Developmental Neurology, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
26
|
Witzel MGW, Gebhard C, Wenzel S, Kleier S, Eichhorn B, Lorenz P, von der Heyden L, Kuhn M, Luedeke M, Döcker M, Jüngling J, Schulte B, Hörtnagel K, Glaubitz R, Knippenberger S, Teubert A, Abicht A, Neuhann TM. Prospective evaluation of NGS-based sequencing in epilepsy patients: results of seven NASGE-associated diagnostic laboratories. Front Neurol 2023; 14:1276238. [PMID: 38125836 PMCID: PMC10731269 DOI: 10.3389/fneur.2023.1276238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/03/2023] [Indexed: 12/23/2023] Open
Abstract
Background Epilepsy is one of the most common and disabling neurological disorders. It is highly prevalent in children with neurodevelopmental delay and syndromic diseases. However, epilepsy can also be the only disease-determining symptom. The exact molecular diagnosis is essential to determine prognosis, comorbidity, and probability of recurrence, and to inform therapeutic decisions. Methods and materials Here, we describe a prospective cohort study of patients with epilepsy evaluated in seven diagnostic outpatient centers in Germany. Over a period of 2 months, 07/2022 through 08/2022, 304 patients (317 returned result) with seizure-related human phenotype ontology (HPO) were analyzed. Evaluated data included molecular results, phenotype (syndromic and non-syndromic), and sequencing methods. Results Single exome sequencing (SE) was applied in half of all patients, followed by panel (P) testing (36%) and trio exome sequencing (TE) (14%). Overall, a pathogenic variant (PV) (ACMG cl. 4/5) was identified in 22%; furthermore, a significant number of patients (12%) carried a reported clinically meaningful variant of unknown significance (VUS). The average diagnostic yield in patients ≤ 12 y was higher compared to patients >12 y cf. Figure 2B vs. Figure 3B. This effect was more pronounced in cases, where TE was applied in patients ≤ 12 vs. >12 y [PV (PV + VUS): patients ≤ 12 y: 35% (47%), patients > 12 y: 20% (40%)]. The highest diagnostic yield was achieved by TE in syndromic patients within the age group ≤ 12 y (ACMG classes 4/5 40%). In addition, TE vs. SE had a tendency to result in less VUS in patients ≤ 12 y [SE: 19% (22/117) VUS; TE: 17% (6/36) VUS] but not in patients >12 y [SE: 19% (8/42) VUS; TE: 20% (2/10) VUS]. Finally, diagnostic findings in patients with syndromic vs. non-syndromic symptoms revealed a significant overlap of frequent causes of monogenic epilepsies, including SCN1A, CACNA1A, and SETD1B, confirming the heterogeneity of the associated conditions. Conclusion In patients with seizures-regardless of the detailed phenotype-a monogenic cause can be frequently identified, often implying a possible change in therapeutic action (36.7% (37/109) of PV/VUS variants); this justifies early and broad application of genetic testing. Our data suggest that the diagnostic yield is highest in exome or trio-exome-based testing, resulting in a molecular diagnosis within 3 weeks, with profound implications for therapeutic strategies and for counseling families and patients regarding prognosis and recurrence risk.
Collapse
Affiliation(s)
| | | | - Sören Wenzel
- Gemeinschaftspraxis für Humangenetik and Genetische Labore Hamburg, Hamburg, Germany
| | - Saskia Kleier
- Gemeinschaftspraxis für Humangenetik and Genetische Labore Hamburg, Hamburg, Germany
| | - Birgit Eichhorn
- MVZ Mitteldeutscher Praxisverbund Humangenetik GmbH, Dresden, Germany
| | - Peter Lorenz
- MVZ Mitteldeutscher Praxisverbund Humangenetik GmbH, Dresden, Germany
| | | | | | | | | | | | | | - Konstanze Hörtnagel
- Zentrum für Humangenetik und Laboratoriumsdiagnostik (MVZ), Martinsried, Germany
| | | | | | | | - Angela Abicht
- MGZ Medizinisch Genetisches Zentrum, München, Germany
| | | |
Collapse
|
27
|
Brunklaus A, George AL, Lal D, Heinzen EL, Goldman AM. Prophecy or empiricism? Clinical value of predicting versus determining genetic variant functions. Epilepsia 2023; 64:2909-2913. [PMID: 37562820 DOI: 10.1111/epi.17743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/12/2023]
Abstract
The recent explosion of epilepsy genetic testing has created challenges for interpretation of gene variants. Assessments of the functional consequences of genetic variants either by predictive or experimental strategies can contribute to estimating pathogenicity, but there is no consensus on which approach is best. The Special Interest Group on Epilepsy Genetics hosted a session during the Annual American Epilepsy Society Meeting in December 2022 to discuss this topic. The session featured a debate of the relative advantages and limitations of predicting (prophecy) versus experimentally determining (empiricism) variant function using ion channel gene variants as examples. This commentary summarizes these discussions.
Collapse
Affiliation(s)
- Andreas Brunklaus
- Royal Hospital for Children, Glasgow, UK
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Alfred L George
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Dennis Lal
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Erin L Heinzen
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Alica M Goldman
- Department of Neurology, Peter Kellaway Neurophysiology Section, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
28
|
Li X, Wei S, Wu H, Zhang Q, Zhao Z, Mei S, Feng W, Wu Y. Population pharmacokinetics of oxcarbazepine active metabolite in Chinese children with epilepsy. Eur J Pediatr 2023; 182:4509-4521. [PMID: 37493972 DOI: 10.1007/s00431-023-05092-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023]
Abstract
Oxcarbazepine (OXC) is an antiepileptic drug whose efficacy is largely attributed to its monohydroxy derivative metabolite (MHD). Nevertheless, there exists significant inter-individual variability in both the pharmacokinetics and therapeutic response of this drug. The objective of this study is to explore the impact of patients' characteristics and genetic variants on MHD clearance in a population pharmacokinetic (PPK) model of Chinese pediatric patients with epilepsy. The PPK model was developed using a nonlinear mixed effects modeling method based on 231 MHD plasma concentrations obtained from 185 children with epilepsy. The one-compartment model and combined residual model were established to describe the pharmacokinetics of MHD. Forward addition and backward elimination were employed to evaluate the impact of covariates on the model parameters. The model was evaluated using goodness-of-fit, bootstrap, visual predictive checks, and normalized prediction distribution errors. In the two final PPK models, age, estimated glomerular filtration rate (eGFR), and a combined genotype of six variants (rs1045642, rs2032582, rs7668282, rs2396185, rs2304016, rs1128503) were found to significantly reduce inter-individual variability for MHD clearance. The inter-individual clearance equals to 1.38 × (Age/4.74)0.29 × (eGFR/128.66)0.25 × eθABCB-UGT-SCN-INSR for genetic variants included model and 1.30 × (Age/4.74)0.30 × (eGFR/128.66)0.23 for model without genetic variants. The precision of all parameters was deemed acceptable, and the model exhibited good predictability while remaining stable and effective. Conclusion: Age, eGFR, and genotype may play a significant role in MHD clearance in children with epilepsy. The developed PPK models hold potential utility in facilitating oxcarbazepine dose adjustment in pediatric patients. What is Known: • The adjustment of the oxcarbazepine regimen remains difficult due to the considerable inter- and intra-individual variability of oxcarbazepine pharmacokinetics. • Body weight and co-administration with enzyme-inducing antiepileptic drugs emerge as the most influential factors contributing to the pharmacokinetics of MHD. What is New: • A positive correlation was observed between eGFR and the clearance of MHD in pediatric patients with epilepsy. • We explored the influence of genetic polymorphisms on MHD clearance and identified a combined genotype (ABCB-UGT-SCN-INSR) that exhibited a significant association with MHD concentration.
Collapse
Affiliation(s)
- Xingmeng Li
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Xicheng District, Beijing, 100045, People's Republic of China
| | - Shifeng Wei
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 119 Nansihuan West Road, Fengtai District, Beijing, 100070, People's Republic of China
- Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Han Wu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 119 Nansihuan West Road, Fengtai District, Beijing, 100070, People's Republic of China
- Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Qiang Zhang
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 119 Nansihuan West Road, Fengtai District, Beijing, 100070, People's Republic of China
- Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 119 Nansihuan West Road, Fengtai District, Beijing, 100070, People's Republic of China
- Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Shenghui Mei
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 119 Nansihuan West Road, Fengtai District, Beijing, 100070, People's Republic of China.
- Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China.
| | - Weixing Feng
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Xicheng District, Beijing, 100045, People's Republic of China.
| | - Yun Wu
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Xicheng District, Beijing, 100045, People's Republic of China.
| |
Collapse
|
29
|
Wei S, Li X, Zhang Q, Wu H, Wu Y, Zhao Z, Mei S, Feng W. Population pharmacokinetics of topiramate in Chinese children with epilepsy. Eur J Clin Pharmacol 2023; 79:1401-1415. [PMID: 37597080 DOI: 10.1007/s00228-023-03549-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/05/2023] [Indexed: 08/21/2023]
Abstract
OBJECTIVE Topiramate, a broad-spectrum antiepileptic drug, exhibits substantial inter-individual variability in both its pharmacokinetics and therapeutic response. The aim of this study was to investigate the influence of patient characteristics and genetic variants on topiramate clearance using population pharmacokinetic (PPK) models in a cohort of Chinese pediatric patients with epilepsy. METHOD The PPK model was constructed using a nonlinear mixed-effects modeling approach, utilizing a dataset comprising 236 plasma concentrations of topiramate obtained from 181 pediatric patients with epilepsy. A one-compartment model combined with a proportional residual model was employed to characterize the pharmacokinetics of topiramate. Covariate analysis was performed using forward addition and backward elimination to assess the influence of covariates on the model parameters. The model was thoroughly evaluated through goodness-of-fit analysis, bootstrap, visual predictive checks, and normalized prediction distribution errors. Monte Carlo simulations were utilized to devise topiramate dosing strategies. RESULT In the final PPK models of topiramate, body weight, co-administration with oxcarbazepine, and a combined genotype of GKIR1-UGT (GRIK1 rs2832407, UGT2B7 rs7439366, and UGT1A1 rs4148324) were identified as significant covariates affecting the clearance (CL). The clearance was estimated using the formulas CL (L/h) = 0.44 × (BW⁄11.7)0.82 × eOXC for the model without genetic variants and CL (L/h) = 0.49 × (BW⁄11.7)0.81 × eOXC × eGRIK1-UGT for the model incorporating genetic variants. The volume of distribution (Vd) was estimated using the formulas Vd (L) = 6.6 × (BW⁄11.7). The precision of all estimated parameters was acceptable. Furthermore, the model demonstrated good predictability, exhibiting stability and effectiveness in describing the pharmacokinetics of topiramate. CONCLUSION The clearance of topiramate in pediatric patients with epilepsy may be subject to the influence of factors such as body weight, co-administration with oxcarbazepine, and genetic polymorphism. In this study, PPK models were developed to better understand and account for these factors, thereby improving the precision and individualization of topiramate therapy in children with epilepsy.
Collapse
Affiliation(s)
- Shifeng Wei
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 119 Nansihuan West Road, Fengtai District, Beijing, 100070, People's Republic of China
- Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Xingmeng Li
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Xicheng District, Beijing, 100045, People's Republic of China
| | - Qiang Zhang
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 119 Nansihuan West Road, Fengtai District, Beijing, 100070, People's Republic of China
- Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Han Wu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 119 Nansihuan West Road, Fengtai District, Beijing, 100070, People's Republic of China
- Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Yun Wu
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Xicheng District, Beijing, 100045, People's Republic of China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 119 Nansihuan West Road, Fengtai District, Beijing, 100070, People's Republic of China.
- Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China.
| | - Shenghui Mei
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 119 Nansihuan West Road, Fengtai District, Beijing, 100070, People's Republic of China.
- Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China.
| | - Weixing Feng
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Xicheng District, Beijing, 100045, People's Republic of China.
| |
Collapse
|
30
|
Cole JJ, Sellitto AD, Baratta LR, Huecker JB, Balls-Berry JE, Gurnett CA. Social Determinants of Genetics Referral and Completion Rates Among Child Neurology Patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.12.23295450. [PMID: 37745339 PMCID: PMC10516043 DOI: 10.1101/2023.09.12.23295450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Objective To investigate clinical, social, and systems-level determinants predictive of genetics clinic referral and completion of genetics clinic visits among child neurology patients. Methods Electronic health record data were extracted from patients 0-18 years old who were evaluated in child neurology clinics at a single tertiary care institution between July 2018 to January 2020. Variables aligned with the Health Equity Implementation Framework. Referral and referral completion rates to genetics and cardiology clinics were compared among Black vs White patients using bivariate analysis. Demographic variables associated with genetics clinic referral and visit completion were identified using logistic regressions. Results In a cohort of 11,371 child neurology patients, 304 genetics clinic referrals and 82 cardiology clinic referrals were placed. In multivariate analysis of patients with Black or White ethnoracial identity (n=10,601), genetics clinic referral rates did not differ by race, but were significantly associated with younger age, rural address, neurodevelopmental disorder diagnosis, number of neurology clinic visits, and provider type. The only predictors of genetics clinic visit completion number of neurology clinic visits and race/ethnicity, with White patients being twice as likely as Black patients to complete the visit. Cardiology clinic referrals and visit completion did not differ by race/ethnicity. Interpretation Although race/ethnicity was not associated with differences in genetics clinic referral rates, White patients were twice as likely as Black patients to complete a genetics clinic visit after referral. Further work is needed to determine whether this is due to systemic/structural racism, differences in attitudes toward genetic testing, or other factors.
Collapse
Affiliation(s)
- Jordan J Cole
- Washington University in St. Louis, Department of Neurology
- University of Colorado, Department of Pediatrics
| | | | | | - Julia B Huecker
- Washington University in St. Louis, Center for Biostatistics & Data Science
| | | | | |
Collapse
|
31
|
Moos WH, Faller DV, Glavas IP, Kanara I, Kodukula K, Pernokas J, Pernokas M, Pinkert CA, Powers WR, Sampani K, Steliou K, Vavvas DG. Epilepsy: Mitochondrial connections to the 'Sacred' disease. Mitochondrion 2023; 72:84-101. [PMID: 37582467 DOI: 10.1016/j.mito.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/03/2023] [Accepted: 08/12/2023] [Indexed: 08/17/2023]
Abstract
Over 65 million people suffer from recurrent, unprovoked seizures. The lack of validated biomarkers specific for myriad forms of epilepsy makes diagnosis challenging. Diagnosis and monitoring of childhood epilepsy add to the need for non-invasive biomarkers, especially when evaluating antiseizure medications. Although underlying mechanisms of epileptogenesis are not fully understood, evidence for mitochondrial involvement is substantial. Seizures affect 35%-60% of patients diagnosed with mitochondrial diseases. Mitochondrial dysfunction is pathophysiological in various epilepsies, including those of non-mitochondrial origin. Decreased ATP production caused by malfunctioning brain cell mitochondria leads to altered neuronal bioenergetics, metabolism and neurological complications, including seizures. Iron-dependent lipid peroxidation initiates ferroptosis, a cell death pathway that aligns with altered mitochondrial bioenergetics, metabolism and morphology found in neurodegenerative diseases (NDDs). Studies in mouse genetic models with seizure phenotypes where the function of an essential selenoprotein (GPX4) is targeted suggest roles for ferroptosis in epilepsy. GPX4 is pivotal in NDDs, where selenium protects interneurons from ferroptosis. Selenium is an essential central nervous system micronutrient and trace element. Low serum concentrations of selenium and other trace elements and minerals, including iron, are noted in diagnosing childhood epilepsy. Selenium supplements alleviate intractable seizures in children with reduced GPX activity. Copper and cuproptosis, like iron and ferroptosis, link to mitochondria and NDDs. Connecting these mechanistic pathways to selenoproteins provides new insights into treating seizures, pointing to using medicines including prodrugs of lipoic acid to treat epilepsy and to potential alternative therapeutic approaches including transcranial magnetic stimulation (transcranial), photobiomodulation and vagus nerve stimulation.
Collapse
Affiliation(s)
- Walter H Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA, USA.
| | - Douglas V Faller
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Cancer Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Ioannis P Glavas
- Department of Ophthalmology, New York University School of Medicine, New York, NY, USA
| | | | | | - Julie Pernokas
- Advanced Dental Associates of New England, Woburn, MA, USA
| | - Mark Pernokas
- Advanced Dental Associates of New England, Woburn, MA, USA
| | - Carl A Pinkert
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Whitney R Powers
- Department of Health Sciences, Boston University, Boston, MA, USA; Department of Anatomy, Boston University School of Medicine, Boston, MA, USA
| | - Konstantina Sampani
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA; PhenoMatriX, Inc., Natick, MA, USA
| | - Demetrios G Vavvas
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| |
Collapse
|
32
|
Lenahan A, Mietzsch U, Wood TR, Callahan KP, Weiss EM, Miller DE, German K, Natarajan N, Puia-Dumitrescu M, Esposito V, Kolnik S, Law JB. Characteristics, Genetic Testing, and Diagnoses of Infants with Neonatal Encephalopathy Not Due to Hypoxic Ischemic Encephalopathy: A Cohort Study. J Pediatr 2023; 260:113533. [PMID: 37269901 DOI: 10.1016/j.jpeds.2023.113533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/29/2023] [Accepted: 05/30/2023] [Indexed: 06/05/2023]
Abstract
OBJECTIVE To characterize the presentation and evaluation of infants with neonatal encephalopathy (NE) not due to hypoxic-ischemic encephalopathy (non-HIE NE) and to describe the genetic abnormalities identified. STUDY DESIGN Retrospective cohort study of 193 non-HIE NE neonates admitted to a level IV NICU from 2015 through 2019. For changes in testing over time, Cochrane-Armitage test for trend was used with a Bonferroni-corrected P-value, and comparison between groups was performed using Fisher exact test. RESULT The most common symptom of non-HIE NE was abnormal tone in 47% (90/193). Ten percent (19/193) died prior to discharge, and 48% of survivors (83/174) required medical equipment at discharge. Forty percent (77/193) underwent genetic testing as an inpatient. Of 52 chromosomal studies, 54 targeted tests, and 16 exome sequences, 10%, 41%, and 69% were diagnostic, respectively, with no difference in diagnostic rates between infants with and without an associated congenital anomaly and/or dysmorphic feature. Twenty-eight genetic diagnoses were identified. CONCLUSIONS Neonates with non-HIE NE have high rates of morbidity and mortality and may benefit from early genetic testing, even in the absence of other exam findings. This study broadens our knowledge of genetic conditions underlying non-HIE NE, which may enable families and care teams to anticipate the needs of the individual, allow early initiation of targeted therapies, and facilitate decisions surrounding goals of care.
Collapse
Affiliation(s)
- Arthur Lenahan
- Department of Pediatrics, University of Washington School of Medicine and Seattle Children's Hospital, Seattle, WA
| | - Ulrike Mietzsch
- Department of Pediatrics, University of Washington School of Medicine and Seattle Children's Hospital, Seattle, WA
| | - Thomas R Wood
- Department of Pediatrics, University of Washington School of Medicine and Seattle Children's Hospital, Seattle, WA
| | - Katharine Press Callahan
- Department of Pediatrics, Children's Hospital of Philadelphia, PA; Department of Medical Ethics and Health Policy, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Elliott M Weiss
- Department of Pediatrics, University of Washington School of Medicine and Seattle Children's Hospital, Seattle, WA
| | - Danny E Miller
- Department of Pediatrics, University of Washington School of Medicine and Seattle Children's Hospital, Seattle, WA; Department of Laboratory Medicine and Pathology, University of Washington School of Medicine and Seattle Children's Hospital, Seattle, WA
| | - Kendell German
- Department of Pediatrics, University of Washington School of Medicine and Seattle Children's Hospital, Seattle, WA
| | - Niranjana Natarajan
- Department of Pediatrics, University of Washington School of Medicine and Seattle Children's Hospital, Seattle, WA; Division of Pediatric Neurology, Department of Neurology, University of Washington School of Medicine and Seattle Children's Hospital, Seattle, WA
| | - Mihai Puia-Dumitrescu
- Department of Pediatrics, University of Washington School of Medicine and Seattle Children's Hospital, Seattle, WA
| | - Valentine Esposito
- Department of Pediatrics, University of Washington School of Medicine and Seattle Children's Hospital, Seattle, WA
| | - Sarah Kolnik
- Department of Pediatrics, University of Washington School of Medicine and Seattle Children's Hospital, Seattle, WA
| | - Janessa B Law
- Department of Pediatrics, University of Washington School of Medicine and Seattle Children's Hospital, Seattle, WA.
| |
Collapse
|
33
|
D'Gama AM, Mulhern S, Sheidley BR, Boodhoo F, Buts S, Chandler NJ, Cobb J, Curtis M, Higginbotham EJ, Holland J, Khan T, Koh J, Liang NSY, McRae L, Nesbitt SE, Oby BT, Paternoster B, Patton A, Rose G, Scotchman E, Valentine R, Wiltrout KN, Hayeems RZ, Jain P, Lunke S, Marshall CR, Rockowitz S, Sebire NJ, Stark Z, White SM, Chitty LS, Cross JH, Scheffer IE, Chau V, Costain G, Poduri A, Howell KB, McTague A. Evaluation of the feasibility, diagnostic yield, and clinical utility of rapid genome sequencing in infantile epilepsy (Gene-STEPS): an international, multicentre, pilot cohort study. Lancet Neurol 2023; 22:812-825. [PMID: 37596007 DOI: 10.1016/s1474-4422(23)00246-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 08/20/2023]
Abstract
BACKGROUND Most neonatal and infantile-onset epilepsies have presumed genetic aetiologies, and early genetic diagnoses have the potential to inform clinical management and improve outcomes. We therefore aimed to determine the feasibility, diagnostic yield, and clinical utility of rapid genome sequencing in this population. METHODS We conducted an international, multicentre, cohort study (Gene-STEPS), which is a pilot study of the International Precision Child Health Partnership (IPCHiP). IPCHiP is a consortium of four paediatric centres with tertiary-level subspecialty services in Australia, Canada, the UK, and the USA. We recruited infants with new-onset epilepsy or complex febrile seizures from IPCHiP centres, who were younger than 12 months at seizure onset. We excluded infants with simple febrile seizures, acute provoked seizures, known acquired cause, or known genetic cause. Blood samples were collected from probands and available biological parents. Clinical data were collected from medical records, treating clinicians, and parents. Trio genome sequencing was done when both parents were available, and duo or singleton genome sequencing was done when one or neither parent was available. Site-specific protocols were used for DNA extraction and library preparation. Rapid genome sequencing and analysis was done at clinically accredited laboratories, and results were returned to families. We analysed summary statistics for cohort demographic and clinical characteristics and the timing, diagnostic yield, and clinical impact of rapid genome sequencing. FINDINGS Between Sept 1, 2021, and Aug 31, 2022, we enrolled 100 infants with new-onset epilepsy, of whom 41 (41%) were girls and 59 (59%) were boys. Median age of seizure onset was 128 days (IQR 46-192). For 43 (43% [binomial distribution 95% CI 33-53]) of 100 infants, we identified genetic diagnoses, with a median time from seizure onset to rapid genome sequencing result of 37 days (IQR 25-59). Genetic diagnosis was associated with neonatal seizure onset versus infantile seizure onset (14 [74%] of 19 vs 29 [36%] of 81; p=0·0027), referral setting (12 [71%] of 17 for intensive care, 19 [44%] of 43 non-intensive care inpatient, and 12 [28%] of 40 outpatient; p=0·0178), and epilepsy syndrome (13 [87%] of 15 for self-limited epilepsies, 18 [35%] of 51 for developmental and epileptic encephalopathies, 12 [35%] of 34 for other syndromes; p=0·001). Rapid genome sequencing revealed genetic heterogeneity, with 34 unique genes or genomic regions implicated. Genetic diagnoses had immediate clinical utility, informing treatment (24 [56%] of 43), additional evaluation (28 [65%]), prognosis (37 [86%]), and recurrence risk counselling (all cases). INTERPRETATION Our findings support the feasibility of implementation of rapid genome sequencing in the clinical care of infants with new-onset epilepsy. Longitudinal follow-up is needed to further assess the role of rapid genetic diagnosis in improving clinical, quality-of-life, and economic outcomes. FUNDING American Academy of Pediatrics, Boston Children's Hospital Children's Rare Disease Cohorts Initiative, Canadian Institutes of Health Research, Epilepsy Canada, Feiga Bresver Academic Foundation, Great Ormond Street Hospital Charity, Medical Research Council, Murdoch Children's Research Institute, National Institute of Child Health and Human Development, National Institute for Health and Care Research Great Ormond Street Hospital Biomedical Research Centre, One8 Foundation, Ontario Brain Institute, Robinson Family Initiative for Transformational Research, The Royal Children's Hospital Foundation, University of Toronto McLaughlin Centre.
Collapse
Affiliation(s)
- Alissa M D'Gama
- Epilepsy Genetics Program, Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Sarah Mulhern
- Victorian Clinical Genetics Service, Melbourne, VIC, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Beth R Sheidley
- Epilepsy Genetics Program, Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Fadil Boodhoo
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Sarah Buts
- Department of Paediatric Neurology, Aachen University Hospital, Germany
| | - Natalie J Chandler
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, UK
| | - Joanna Cobb
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Meredith Curtis
- Division of Genome Diagnostics, Hospital for Sick Children, Toronto, ON, Canada
| | | | - Jonathon Holland
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Tayyaba Khan
- Program in Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
| | - Julia Koh
- Epilepsy Genetics Program, Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Nicole S Y Liang
- Department of Genetic Counselling, Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Lyndsey McRae
- Division of Neurology, Department of Paediatrics, Hospital for Sick Children, Toronto, ON, Canada
| | - Sarah E Nesbitt
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, UK; Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Brandon T Oby
- Epilepsy Genetics Program, Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Ben Paternoster
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, UK
| | - Alistair Patton
- Department of Paediatrics, Frimley Park Hospital, Frimley Health NHS Foundation Trust, Frimley, UK
| | - Graham Rose
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, UK
| | - Elizabeth Scotchman
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, UK
| | - Rozalia Valentine
- Epilepsy Genetics Program, Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Kimberly N Wiltrout
- Epilepsy Genetics Program, Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Robin Z Hayeems
- Program in Child Health Evaluative Sciences, SickKids Research Institute, Toronto, ON, Canada; Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, ON, Canada
| | - Puneet Jain
- Division of Neurology, Department of Paediatrics, Hospital for Sick Children, Toronto, ON, Canada; Department of Paediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sebastian Lunke
- Victorian Clinical Genetics Service, Melbourne, VIC, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Pathology, University of Melbourne, Melbourne, VIC, Australia
| | - Christian R Marshall
- Division of Genome Diagnostics, Hospital for Sick Children, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Shira Rockowitz
- The Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA; Research Computing, Boston Children's Hospital, Boston, MA, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Neil J Sebire
- DRIVE Centre, Great Ormond Street Hospital for Children, London, UK
| | - Zornitza Stark
- Victorian Clinical Genetics Service, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Susan M White
- Victorian Clinical Genetics Service, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Lyn S Chitty
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, UK; Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - J Helen Cross
- Department of Neurology, Great Ormond Street Hospital, London, UK; Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Ingrid E Scheffer
- Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Department of Medicine, University of Melbourne, Melbourne, VIC, Australia; Austin Health, and Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia; Department of Neurology, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Vann Chau
- Division of Neurology, Department of Paediatrics, Hospital for Sick Children, Toronto, ON, Canada; Department of Paediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Gregory Costain
- Program in Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Department of Paediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Division of Clinical and Metabolic Genetics, Department of Paediatrics, Hospital for Sick Children, Toronto, ON, Canada
| | - Annapurna Poduri
- Epilepsy Genetics Program, Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Katherine B Howell
- Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Neurology, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Amy McTague
- Department of Neurology, Great Ormond Street Hospital, London, UK; Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London, UK.
| |
Collapse
|
34
|
Johannesen KM, Nielsen J, Sabers A, Isidor B, Kattentidt-Mouravieva AA, Zieglgänsberger D, Heidlebaugh AR, Oetjens KF, Vidal AA, Christensen J, Tiller J, Freed AN, Møller RS, Rubboli G. The phenotypic presentation of adult individuals with SLC6A1-related neurodevelopmental disorders. Front Neurosci 2023; 17:1216653. [PMID: 37662110 PMCID: PMC10472133 DOI: 10.3389/fnins.2023.1216653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction SLC6A1 is one of the most common monogenic causes of epilepsy and is a well-established cause of neurodevelopmental disorders. SLC6A1-neurodevelopmental disorders have a consistent phenotype of mild to severe intellectual disability (ID), epilepsy, language delay and behavioral disorders. This phenotypic description is mainly based on knowledge from the pediatric population. Method Here, we sought to describe patients with SLC6A1 variants and age above 18 years through the ascertainment of published and unpublished patients. Unpublished patients were ascertained through international collaborations, while previously published patients were collected through a literature search. Results A total of 15 adult patients with SLC6A1 variants were included. 9/13 patients had moderate to severe ID (data not available in two). Epilepsy was prevalent (11/15) with seizure types such as absence, myoclonic, atonic, and tonic-clonic seizures. Epilepsy was refractory in 7/11, while four patients were seizure free with lamotrigine, valproate, or lamotrigine in combination with valproate. Language development was severely impaired in five patients. Behavioral disorders were reported in and mainly consisted of autism spectrum disorders and aggressive behavior. Schizophrenia was not reported in any of the patients. Discussion The phenotype displayed in the adult patients presented here resembled that of the pediatric cohort with ID, epilepsy, and behavioral disturbances, indicating that the phenotype of SLC6A1-NDD is consistent over time. Seizures were refractory in >60% of the patients with epilepsy, indicating the lack of targeted treatment in SLC6A1-NDDs. With increased focus on repurposing drugs and on the development of new treatments, hope is that the outlook reflected here will change over time. ID appeared to be more severe in the adult patients, albeit this might reflect a recruitment bias, where only patients seen in specialized centers were included or it might be a feature of the natural history of SLC6A1-NDDs. This issue warrants to be explored in further studies in larger cohorts.
Collapse
Affiliation(s)
- Katrine M. Johannesen
- Department of Genetics, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
- Department of Epilepsy Genetics and Personalized Treatment, The Danish Epilepsy Centre, Member of the European Reference Network, EpiCARE, Dianalund, Denmark
| | - Jimmi Nielsen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Mental Health Centre Glostrup, Copenhagen University Hospital, Capital Region of Denmark Mental Health Services, Glostrup, Denmark
| | - Anne Sabers
- Epilepsy Clinic, Department of Neurology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU de Nantes, Nantes, France
| | | | | | | | - Kathryn F. Oetjens
- Autism and Developmental Medicine Institute, Danville, VA, United States
| | - Anna Abuli Vidal
- Department of Clinical and Molecular Genetics, University Hospital Vall d’Hebron and Medicine Genetics Group Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Jakob Christensen
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
- National Centre for Register-based Research, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | | - Rikke S. Møller
- Department of Epilepsy Genetics and Personalized Treatment, The Danish Epilepsy Centre, Member of the European Reference Network, EpiCARE, Dianalund, Denmark
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Guido Rubboli
- Department of Epilepsy Genetics and Personalized Treatment, The Danish Epilepsy Centre, Member of the European Reference Network, EpiCARE, Dianalund, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
35
|
Koh HY, Smith L, Wiltrout KN, Podury A, Chourasia N, D’Gama AM, Park M, Knight D, Sexton EL, Koh JJ, Oby B, Pinsky R, Shao DD, French CE, Shao W, Rockowitz S, Sliz P, Zhang B, Mahida S, Moufawad El Achkar C, Yuskaitis CJ, Olson HE, Sheidley BR, Poduri AH. Utility of Exome Sequencing for Diagnosis in Unexplained Pediatric-Onset Epilepsy. JAMA Netw Open 2023; 6:e2324380. [PMID: 37471090 PMCID: PMC10359957 DOI: 10.1001/jamanetworkopen.2023.24380] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/31/2023] [Indexed: 07/21/2023] Open
Abstract
Importance Genomic advances inform our understanding of epilepsy and can be translated to patients as precision diagnoses that influence clinical treatment, prognosis, and counseling. Objective To delineate the genetic landscape of pediatric epilepsy and clinical utility of genetic diagnoses for patients with epilepsy. Design, Setting, and Participants This cohort study used phenotypic data from medical records and treating clinicians at a pediatric hospital to identify patients with unexplained pediatric-onset epilepsy. Exome sequencing was performed for 522 patients and available biological parents, and sequencing data were analyzed for single nucleotide variants (SNVs) and copy number variants (CNVs). Variant pathogenicity was assessed, patients were provided with their diagnostic results, and clinical utility was evaluated. Patients were enrolled from August 2018 to October 2021, and data were analyzed through December 2022. Exposures Phenotypic features associated with diagnostic genetic results. Main Outcomes and Measures Main outcomes included diagnostic yield and clinical utility. Diagnostic findings included variants curated as pathogenic, likely pathogenic (PLP), or diagnostic variants of uncertain significance (VUS) with clinical features consistent with the involved gene's associated phenotype. The proportion of the cohort with diagnostic findings, the genes involved, and their clinical utility, defined as impact on clinical treatment, prognosis, or surveillance, are reported. Results A total of 522 children (269 [51.5%] male; mean [SD] age at seizure onset, 1.2 [1.4] years) were enrolled, including 142 children (27%) with developmental epileptic encephalopathy and 263 children (50.4%) with intellectual disability. Of these, 100 participants (19.2%) had identifiable genetic explanations for their seizures: 89 participants had SNVs (87 germline, 2 somatic mosaic) involving 69 genes, and 11 participants had CNVs. The likelihood of identifying a genetic diagnosis was highest in patients with intellectual disability (adjusted odds ratio [aOR], 2.44; 95% CI, 1.40-4.26), early onset seizures (aOR, 0.93; 95% CI, 0.88-0.98), and motor impairment (aOR, 2.19; 95% CI 1.34-3.58). Among 43 patients with apparently de novo variants, 2 were subsequently determined to have asymptomatic parents harboring mosaic variants. Of 71 patients who received diagnostic results and were followed clinically, 29 (41%) had documented clinical utility resulting from their genetic diagnoses. Conclusions and Relevance These findings suggest that pediatric-onset epilepsy is genetically heterogeneous and that some patients with previously unexplained pediatric-onset epilepsy had genetic diagnoses with direct clinical implications.
Collapse
Affiliation(s)
- Hyun Yong Koh
- Epilepsy Genetics Program, Boston Children’s Hospital, Boston, Massachusetts
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts
| | - Lacey Smith
- Epilepsy Genetics Program, Boston Children’s Hospital, Boston, Massachusetts
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
| | - Kimberly N. Wiltrout
- Epilepsy Genetics Program, Boston Children’s Hospital, Boston, Massachusetts
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
- Department of Neurology, Harvard Medical School, Boston, Massachusetts
| | | | - Nitish Chourasia
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
- Department of Pediatrics and Neurology, University of Tennessee Health Science Center, Memphis
| | - Alissa M. D’Gama
- Epilepsy Genetics Program, Boston Children’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts
| | - Meredith Park
- Epilepsy Genetics Program, Boston Children’s Hospital, Boston, Massachusetts
| | - Devon Knight
- Epilepsy Genetics Program, Boston Children’s Hospital, Boston, Massachusetts
| | - Emma L. Sexton
- Epilepsy Genetics Program, Boston Children’s Hospital, Boston, Massachusetts
| | - Julia J. Koh
- Epilepsy Genetics Program, Boston Children’s Hospital, Boston, Massachusetts
| | - Brandon Oby
- Epilepsy Genetics Program, Boston Children’s Hospital, Boston, Massachusetts
| | - Rebecca Pinsky
- Epilepsy Genetics Program, Boston Children’s Hospital, Boston, Massachusetts
| | - Diane D. Shao
- Epilepsy Genetics Program, Boston Children’s Hospital, Boston, Massachusetts
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
- Department of Neurology, Harvard Medical School, Boston, Massachusetts
| | - Courtney E. French
- Research Computing, Department of Information Technology, Boston Children’s Hospital, Boston, Massachusetts
| | - Wanqing Shao
- Research Computing, Department of Information Technology, Boston Children’s Hospital, Boston, Massachusetts
| | - Shira Rockowitz
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts
- Research Computing, Department of Information Technology, Boston Children’s Hospital, Boston, Massachusetts
| | - Piotr Sliz
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Massachusetts
- Research Computing, Department of Information Technology, Boston Children’s Hospital, Boston, Massachusetts
- Division of Molecular Medicine, Boston Children’s Hospital, Boston, Massachusetts
| | - Bo Zhang
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
- Biostatistics and Research Design Center, Institutional Centers for Clinical and Translational Research, Boston Children’s Hospital, Boston, Massachusetts
| | - Sonal Mahida
- Epilepsy Genetics Program, Boston Children’s Hospital, Boston, Massachusetts
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
| | - Christelle Moufawad El Achkar
- Epilepsy Genetics Program, Boston Children’s Hospital, Boston, Massachusetts
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
- Department of Neurology, Harvard Medical School, Boston, Massachusetts
- Biostatistics and Research Design Center, Institutional Centers for Clinical and Translational Research, Boston Children’s Hospital, Boston, Massachusetts
| | - Christopher J. Yuskaitis
- Epilepsy Genetics Program, Boston Children’s Hospital, Boston, Massachusetts
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Neurology, Harvard Medical School, Boston, Massachusetts
| | - Heather E. Olson
- Epilepsy Genetics Program, Boston Children’s Hospital, Boston, Massachusetts
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Neurology, Harvard Medical School, Boston, Massachusetts
| | - Beth Rosen Sheidley
- Epilepsy Genetics Program, Boston Children’s Hospital, Boston, Massachusetts
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
| | - Annapurna H. Poduri
- Epilepsy Genetics Program, Boston Children’s Hospital, Boston, Massachusetts
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Neurology, Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| |
Collapse
|
36
|
Perucca E, Perucca P, White HS, Wirrell EC. Drug resistance in epilepsy. Lancet Neurol 2023:S1474-4422(23)00151-5. [PMID: 37352888 DOI: 10.1016/s1474-4422(23)00151-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/23/2023] [Accepted: 04/06/2023] [Indexed: 06/25/2023]
Abstract
Drug resistance is estimated to affect about a third of individuals with epilepsy, but its prevalence differs in relation to the epilepsy syndrome, the cause of epilepsy, and other factors such as age of seizure onset and presence of associated neurological deficits. Although drug-resistant epilepsy is not synonymous with unresponsiveness to any drug treatment, the probability of achieving seizure freedom on a newly tried medication decreases with increasing number of previously failed treatments. After two appropriately used antiseizure medications have failed to control seizures, individuals should be referred whenever possible to a comprehensive epilepsy centre for diagnostic re-evaluation and targeted management. The feasibility of epilepsy surgery and other treatments, including those targeting the cause of epilepsy, should be considered early after diagnosis. Substantial evidence indicates that a delay in identifying an effective treatment can adversely affect ultimate outcome and carry an increased risk of cognitive disability, other comorbidities, and premature mortality. Research on mechanisms of drug resistance and novel therapeutics is progressing rapidly, and potentially improved treatments, including those targeting disease modification, are on the horizon.
Collapse
Affiliation(s)
- Emilio Perucca
- Department of Medicine, Austin Health, University of Melbourne, Melbourne, VIC, Australia; Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.
| | - Piero Perucca
- Department of Medicine, Austin Health, University of Melbourne, Melbourne, VIC, Australia; Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Melbourne, VIC, Australia; Department of Neurology, Royal Melbourne Hospital, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - H Steve White
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Elaine C Wirrell
- Divisions of Child and Adolescent Neurology and Epilepsy, Department of Neurology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
37
|
Boßelmann CM, Leu C, Lal D. Technological and computational approaches to detect somatic mosaicism in epilepsy. Neurobiol Dis 2023:106208. [PMID: 37343892 DOI: 10.1016/j.nbd.2023.106208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/03/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023] Open
Abstract
Lesional epilepsy is a common and severe disease commonly associated with malformations of cortical development, including focal cortical dysplasia and hemimegalencephaly. Recent advances in sequencing and variant calling technologies have identified several genetic causes, including both short/single nucleotide and structural somatic variation. In this review, we aim to provide a comprehensive overview of the methodological advancements in this field while highlighting the unresolved technological and computational challenges that persist, including ultra-low variant allele fractions in bulk tissue, low availability of paired control samples, spatial variability of mutational burden within the lesion, and the issue of false-positive calls and validation procedures. Information from genetic testing in focal epilepsy may be integrated into clinical care to inform histopathological diagnosis, postoperative prognosis, and candidate precision therapies.
Collapse
Affiliation(s)
- Christian M Boßelmann
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Costin Leu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK.
| | - Dennis Lal
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T., Cambridge, MA, USA; Cologne Center for Genomics (CCG), University of Cologne, Cologne, DE, USA
| |
Collapse
|
38
|
Gu Y, Mei D, Wang X, Ma A, Kong J, Zhang Y. Clinical and genetic analysis of benign familial infantile epilepsy caused by PRRT2 gene variant. Front Neurol 2023; 14:1135044. [PMID: 37228410 PMCID: PMC10204721 DOI: 10.3389/fneur.2023.1135044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023] Open
Abstract
Objective This study presents the clinical phenotypes and genetic analysis of seven patients with benign familial infantile epilepsy (BFIE) diagnosed by whole-exome sequencing. Methods The clinical data of seven children with BFIE diagnosed at the Department of Neurology, Children's Hospital Affiliated to Zhengzhou University between December 2017 and April 2022 were retrospectively analyzed. Whole-exome sequencing was used to identify the genetic causes, and the variants were verified by Sanger sequencing in other family members. Results The seven patients with BFIE included two males and five females ranging in age between 3 and 7 months old. The main clinical phenotype of the seven affected children was the presence of focal or generalized tonic-clonic seizures, which was well controlled by anti-seizure medication. Cases 1 and 5 exhibited predominantly generalized tonic-clonic seizures accompanied by focal seizures while cases 2, 3, and 7 displayed generalized tonic-clonic seizures, and cases 4 and 6 had focal seizures. The grandmother and father of cases 2, 6, and 7 had histories of seizures. However, there was no family history of seizures in the remaining cases. Case 1 carried a de novo frameshift variant c.397delG (p.E133Nfs*43) in the proline-rich transmembrane protein 2 (PRRT2) gene while case 2 had a nonsense variant c.46G > T (p.Glu16*) inherited from the father, and cases 3-7 carried a heterozygous frameshift variant c.649dup (p.R217Pfs*8) in the same gene. In cases 3 and 4, the frameshift variant was de novo, while in cases 5-7, the variant was paternally inherited. The c.397delG (p.E133Nfs*43) variant is previously unreported. Conclusion This study demonstrated the effectiveness of whole-exome sequencing in the diagnosis of BFIE. Moreover, our findings revealed a novel pathogenic variant c.397delG (p.E133Nfs*43) in the PRRT2 gene that causes BFIE, expanding the mutation spectrum of PRRT2.
Collapse
Affiliation(s)
- Yu Gu
- Department of Pediatrics, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Daoqi Mei
- Department of Neurology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Xiaona Wang
- Zhengzhou Key Laboratory of Pediatric Neurobehavioral, Henan Neural Development Engineering Research Center, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Ang Ma
- Department of Pediatrics, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Jinghui Kong
- Zhengzhou Key Laboratory of Pediatric Neurobehavioral, Henan Neural Development Engineering Research Center, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yaodong Zhang
- Zhengzhou Key Laboratory of Pediatric Neurobehavioral, Henan Neural Development Engineering Research Center, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|
39
|
Ruggiero SM, Xian J, Helbig I. The current landscape of epilepsy genetics: where are we, and where are we going? Curr Opin Neurol 2023; 36:86-94. [PMID: 36762645 PMCID: PMC10088099 DOI: 10.1097/wco.0000000000001141] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
PURPOSE OF REVIEW In this review, we aim to analyse the progress in understanding the genetic basis of the epilepsies, as well as ongoing efforts to define the increasingly diverse and novel presentations, phenotypes and divergences from the expected that have continually characterized the field. RECENT FINDINGS A genetic workup is now considered to be standard of care for individuals with an unexplained epilepsy, due to mounting evidence that genetic diagnoses significantly influence treatment choices, prognostication, community support, and increasingly, access to clinical trials. As more individuals with epilepsy are tested, novel presentations of known epilepsy genes are being discovered, and more individuals with self-limited epilepsy are able to attain genetic diagnoses. In addition, new genes causative of epilepsy are being uncovered through both traditional and novel methods, including large international data-sharing collaborations and massive sequencing efforts as well as computational methods and analyses driven by the Human Phenotype Ontology (HPO). SUMMARY New approaches to gene discovery and characterization are advancing rapidly our understanding of the genetic and phenotypic architecture of the epilepsies. This review highlights relevant and groundbreaking studies published recently that have pushed forward the field of epilepsy genetics.
Collapse
Affiliation(s)
- Sarah M Ruggiero
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, 19146, USA
| | - Julie Xian
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, 19146, USA
| | - Ingo Helbig
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, 19146, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| |
Collapse
|
40
|
D'Gama AM, Poduri A. Brain somatic mosaicism in epilepsy: Bringing results Back to the clinic. Neurobiol Dis 2023; 181:106104. [PMID: 36972791 DOI: 10.1016/j.nbd.2023.106104] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/28/2023] Open
Abstract
Over the past decade, there has been tremendous progress in understanding brain somatic mosaicism in epilepsy in the research setting. Access to resected brain tissue samples from patients with medically refractory epilepsy undergoing epilepsy surgery has been key to making these discoveries. In this review, we discuss the gap between making discoveries in the research setting and bringing results back to the clinical setting. Current clinical genetic testing mainly uses clinically accessible tissue samples, like blood and saliva, and can detect inherited and de novo germline variants and potentially non-brain-limited mosaic variants that have resulted from post-zygotic mutation (also called "somatic mutations"). Methods developed in the research setting to detect brain-limited mosaic variants using brain tissue samples need to be further translated and validated in the clinical setting, which will allow post-resection brain tissue genetic diagnoses. However, obtaining a genetic diagnosis after surgery for refractory focal epilepsy, when brain tissue samples are available, is arguably "too late" to guide precision management. Emerging methods using cerebrospinal fluid (CSF) and subdural electroencephalogram (SEEG) depth electrodes hold promise for establishing genetic diagnoses pre-resection without the need for actual brain tissue. In parallel, development of curation rules for interpreting the pathogenicity of mosaic variants, which have unique considerations compared to germline variants, will assist clinically accredited laboratories and epilepsy geneticists in making genetic diagnoses. Returning results of brain-limited mosaic variants to patients and their families will end their diagnostic odyssey and advance epilepsy precision management.
Collapse
|
41
|
|
42
|
Sullivan JE. Genetic Testing in Patients With Epilepsy May Impact Treatments and Improve Outcomes. JAMA Neurol 2022; 79:1227-1228. [PMID: 36315117 DOI: 10.1001/jamaneurol.2022.3391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|