1
|
Matsumoto A, Kano S, Kobayashi N, Matsuki M, Furukawa R, Yamagishi H, Yoshinari H, Nakata W, Wakabayashi H, Tsuda H, Watanabe K, Takahashi H, Yamagata T, Matsumura T, Osaka H, Mori H, Iwamoto S. Unfavorable switching of skewed X chromosome inactivation leads to Menkes disease in a female infant. Sci Rep 2024; 14:440. [PMID: 38172222 PMCID: PMC10764769 DOI: 10.1038/s41598-023-50668-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
Menkes disease is an X-linked disorder of copper metabolism caused by mutations in the ATP7A gene, and female carriers are usually asymptomatic. We describe a 7-month-old female patient with severe intellectual disability, epilepsy, and low levels of serum copper and ceruloplasmin. While heterozygous deletion of exons 16 and 17 of the ATP7A gene was detected in the proband, her mother, and her grandmother, only the proband suffered from Menkes disease clinically. Intriguingly, X chromosome inactivation (XCI) analysis demonstrated that the grandmother and the mother showed skewing of XCI toward the allele with the ATP7A deletion and that the proband had extremely skewed XCI toward the normal allele, resulting in exclusive expression of the pathogenic ATP7A mRNA transcripts. Expression bias analysis and recombination mapping of the X chromosome by the combination of whole genome and RNA sequencing demonstrated that meiotic recombination occurred at Xp21-p22 and Xq26-q28. Assuming that a genetic factor on the X chromosome enhanced or suppressed XCI of its allele, the factor must be on either of the two distal regions derived from her grandfather. Although we were unable to fully uncover the molecular mechanism, we concluded that unfavorable switching of skewed XCI caused Menkes disease in the proband.
Collapse
Affiliation(s)
- Ayumi Matsumoto
- Division of Human Genetics, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Shintaro Kano
- Department of Radiology, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Natsumi Kobayashi
- Division of Human Genetics, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Mitsuru Matsuki
- Department of Radiology, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Rieko Furukawa
- Department of Radiology, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hirokazu Yamagishi
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hiroki Yoshinari
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Waka Nakata
- Department of Radiology, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hiroko Wakabayashi
- Division of Human Genetics, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hidetoshi Tsuda
- Division of Human Genetics, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Kazuhisa Watanabe
- Division of Human Genetics, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hironori Takahashi
- Department of Obstetrics and Gynecology, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Takanori Yamagata
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Takayoshi Matsumura
- Division of Human Genetics, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hitoshi Osaka
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Harushi Mori
- Department of Radiology, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Sadahiko Iwamoto
- Division of Human Genetics, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan.
| |
Collapse
|
2
|
Tsygankova P, Bychkov I, Minzhenkova M, Pechatnikova N, Bessonova L, Buyanova G, Naumchik I, Beskorovainiy N, Tabakov V, Itkis Y, Shilova N, Zakharova E. Expanding the genetic spectrum of the pyruvate carboxylase deficiency with novel missense, deep intronic and structural variants. Mol Genet Metab Rep 2022; 32:100889. [PMID: 35782291 PMCID: PMC9240867 DOI: 10.1016/j.ymgmr.2022.100889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Pathogenic variants in the pyruvate carboxylase (PC) gene cause a wide spectrum of recessive phenotypes, ranging from the early-onset fatal encephalopathy to the adult-onset benign form. Results Patient 1 is a 6 y.o. boy with ataxia, hypoglycemia and episodes of lactic acidosis. WGS revealed the novel heterozygous missense variant c.1372A > G (p.Asn458Asp) in the PC gene. Additional analysis revealed discordant reads mapped to chromosomes 11 and 1, so a reciprocal translocation disrupted the PC gene was suspected. The translocation was validated via FISH-analysis and Sanger sequencing of its boundaries. Patient 2 is a 13 y.o. girl with psychomotor delay, episodes of lactic acidosis and ketonuria. WES revealed the novel homozygous intronic variant c.1983-116C > T. The PC's mRNA analysis demonstrated the exonization of several intron 16 sequences and some residual amount of WT mRNA isoform. Two other patients had more severe course of the disease. Their genotype represents missense variants in compound heterozygous and homozygous state (c.1876C > T (p.Arg626Trp), c.2606G > C (p.Gly869Ala), c.2435C > A (p.Ala812Asp). Conclusion In patients with metabolic crises, lactic acidosis and hypoglycemia analysis of PC gene is recommended. WGS with deep bioinformatic analysis should be taken into consideration when none or the only one pathogenic variant in the PC gene is found. In patients with metabolic crises with lactic acidosis and hypoglycemia WGS with deep bioinformatic analysis should be taken when none or the only one heterozygous pathogenic variant in the PC gene is found. PC gene may have more deep intronic pathogenic variants than included in known mutation databases.
Collapse
|
3
|
Postrigan AE, Zhalsanova IZ, Fonova EA, Skryabin NA. Modifier Genes as a Cause of Wilson–Konovalov Disease Clinical Polymorphism. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421050094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Abstract
Trace elements are chemical elements needed in minute amounts for normal physiology. Some of the physiologically relevant trace elements include iodine, copper, iron, manganese, zinc, selenium, cobalt and molybdenum. Of these, some are metals, and in particular, transition metals. The different electron shells of an atom carry different energy levels, with those closest to the nucleus being lowest in energy. The number of electrons in the outermost shell determines the reactivity of such an atom. The electron shells are divided in sub-shells, and in particular the third shell has s, p and d sub-shells. Transition metals are strictly defined as elements whose atom has an incomplete d sub-shell. This incomplete d sub-shell makes them prone to chemical reactions, particularly redox reactions. Transition metals of biologic importance include copper, iron, manganese, cobalt and molybdenum. Zinc is not a transition metal, since it has a complete d sub-shell. Selenium, on the other hand, is strictly speaking a nonmetal, although given its chemical properties between those of metals and nonmetals, it is sometimes considered a metalloid. In this review, we summarize the current knowledge on the inborn errors of metal and metalloid metabolism.
Collapse
Affiliation(s)
- Carlos R. Ferreira
- Division of Genetics and Metabolism, Children’s National Health System, Washington, DC, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Section on Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - William A. Gahl
- Section on Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
5
|
Kim JH, Lee BH, Kim YM, Choi JH, Kim GH, Cheon CK, Yoo HW. Novel mutations and clinical outcomes of copper-histidine therapy in Menkes disease patients. Metab Brain Dis 2015; 30:75-81. [PMID: 24919650 DOI: 10.1007/s11011-014-9569-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/19/2014] [Indexed: 01/08/2023]
Abstract
Menkes disease is a very rare X-linked copper metabolism disorder that results from an ATP7A gene mutation. With the advent of subcutaneous copper-histidine therapy, the early diagnosis of Menkes disease becomes of utmost importance for patients' prognosis. In the present study, the clinical characteristics of 12 Korean patients with Menkes disease (11 males and 1 female from 11 unrelated families) were described along with the mutation spectrum. Only 2 male patients were diagnosed in the neonatal period, and the other male patients were diagnosed at age 4.3 ± 1.9 months. The presenting signs included depigmented kinky hair, neurologic deficits, and hypotonia. Serum copper and ceruloplasmin levels were markedly decreased. Intracranial vessels were dilated with tortuosity and accompanied by regional cerebral infarctions, even at an early age. Of note, the female patient was diagnosed at age 18 months, during the evaluation for developmental delay, by characteristic MRA findings, biochemical profiles, and genetic evaluation. A total of 11 ATP7A mutations were identified, including five previously unreported mutations. Most mutations were truncated (except 1 missense mutation), including 3 frameshift, 2 nonsense, 3 large deletion, and 2 splice-site variants. The age at commencement of copper-histidine treatment was variable among patients age 7.3 ± 7.5 (0.5-27) months. Despite the treatment, seven patients died before age 5 years, and the remaining patients were severely retarded in neurodevelopment. The poor outcomes of our patients might be related to delayed therapy, but severe ATP7A mutations should be noted as well.
Collapse
Affiliation(s)
- Ja Hye Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
6
|
Smpokou P, Samanta M, Berry GT, Hecht L, Engle EC, Lichter-Konecki U. Menkes disease in affected females: the clinical disease spectrum. Am J Med Genet A 2014; 167A:417-20. [PMID: 25428120 PMCID: PMC4351723 DOI: 10.1002/ajmg.a.36853] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 10/04/2014] [Indexed: 11/08/2022]
Abstract
Menkes disease (MD; OMIM 309400) is an X-linked, neurodegenerative disorder resulting from deficient activity of copper-dependent enzymes and caused by alterations in the APT7A gene. In its classic form, it manifests in boys with hypotonia, seizures, skin and joint laxity, hair twisting (pili torti), cerebrovascular tortuosity, and bladder diverticulae. Menkes disease phenotypes have been reported in females with X; autosome translocations-disrupting ATP7A gene function- or ATP7A gene alterations. Those females manifest variable clinical findings, some of which, such as pili torti, seizure presence and/or age of onset, cerebrovascular tortuosity, degree of intellectual disability, and bladder divericulae are largely under-reported and under-studied. Here, we report on three females with Menkes disease and variant phenotypes, sharing characteristic features, one with classic Menkes disease and two with Menkes disease variants. We conclude that Menkes disease in females manifests with a variable spectrum of clinical findings but a few are uniformly present such as neurodevelopmental disability, hypotonia, and connective tissue findings. Others, such as seizures, cerebral atrophy, and cerebrovascular tortuosity may be present but are under-reported and under- studied. We propose that the diagnosis of Menkes disease or variants in females with suspicious clinical findings is an important one to consider as early treatment with parenteral copper may be considered. The effect of this treatment on the disease course in females with MD is unknown and remains to be seen.
Collapse
Affiliation(s)
- Patroula Smpokou
- Division of Genetics & Metabolism, Children's National Health System, Washington, District of Columbia; The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | | | | | | | | | | |
Collapse
|
7
|
Tümer Z. An overview and update of ATP7A mutations leading to Menkes disease and occipital horn syndrome. Hum Mutat 2013; 34:417-29. [PMID: 23281160 DOI: 10.1002/humu.22266] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/11/2012] [Indexed: 01/28/2023]
Abstract
Menkes disease (MD) is a lethal multisystemic disorder of copper metabolism. Progressive neurodegeneration and connective tissue disturbances, together with the peculiar "kinky" hair, are the main manifestations. MD is inherited as an X-linked recessive trait, and as expected the vast majority of patients are males. MD occurs because of mutations in the ATP7A gene and the vast majority of ATP7A mutations are intragenic mutations or partial gene deletions. ATP7A is an energy-dependent transmembrane protein, which is involved in the delivery of copper to the secreted copper enzymes and in the export of surplus copper from cells. Severely affected MD patients die usually before the third year of life. A cure for the disease does not exist, but very early copper-histidine treatment may correct some of the neurological symptoms. This study reviews 274 published and 18 novel disease causing mutations identified in 370 unrelated MD patients, nonpathogenic variants of ATP7A, functional studies of the ATP7A mutations, and animal models of MD.
Collapse
Affiliation(s)
- Zeynep Tümer
- Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark.
| |
Collapse
|
8
|
Møller LB, Lenartowicz M, Zabot MT, Josiane A, Burglen L, Bennett C, Riconda D, Fisher R, Janssens S, Mohammed S, Ausems M, Tümer Z, Horn N, Jensen TG. Clinical expression of Menkes disease in females with normal karyotype. Orphanet J Rare Dis 2012; 7:6. [PMID: 22264391 PMCID: PMC3298521 DOI: 10.1186/1750-1172-7-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Accepted: 01/22/2012] [Indexed: 11/10/2022] Open
Abstract
Background Menkes Disease (MD) is a rare X-linked recessive fatal neurodegenerative disorder caused by mutations in the ATP7A gene, and most patients are males. Female carriers are mosaics of wild-type and mutant cells due to the random X inactivation, and they are rarely affected. In the largest cohort of MD patients reported so far which consists of 517 families we identified 9 neurologically affected carriers with normal karyotypes. Methods We investigated at-risk females for mutations in the ATP7A gene by sequencing or by multiplex ligation-dependent probe amplification (MLPA). We analyzed the X-inactivation pattern in affected female carriers, unaffected female carriers and non-carrier females as controls, using the human androgen-receptor gene methylation assay (HUMAR). Results The clinical symptoms of affected females are generally milder than those of affected boys with the same mutations. While a skewed inactivation of the X-chromosome which harbours the mutation was observed in 94% of 49 investigated unaffected carriers, a more varied pattern was observed in the affected carriers. Of 9 investigated affected females, preferential silencing of the normal X-chromosome was observed in 4, preferential X-inactivation of the mutant X chromosome in 2, an even X-inactivation pattern in 1, and an inconclusive pattern in 2. The X-inactivation pattern correlates with the degree of mental retardation in the affected females. Eighty-one percent of 32 investigated females in the control group had moderately skewed or an even X-inactivation pattern. Conclusion The X- inactivation pattern alone cannot be used to predict the phenotypic outcome in female carriers, as even those with skewed X-inactivation of the X-chromosome harbouring the mutation might have neurological symptoms.
Collapse
Affiliation(s)
- Lisbeth Birk Møller
- Center of Applied Human Genetics, Kennedy Center, Gl, Landevej 7, Glostrup, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Bazzocchi A, Femia R, Feraco P, Battista G, Canini R, Guglielmi G. Occipital horn syndrome in a woman: skeletal radiological findings. Skeletal Radiol 2011; 40:1491-4. [PMID: 21553336 DOI: 10.1007/s00256-011-1175-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 04/05/2011] [Accepted: 04/07/2011] [Indexed: 02/02/2023]
Abstract
Ehlers-Danlos type IX syndrome, also called occipital horn syndrome (OHS), is a milder and rare form of Menkes disease where the patient reaches adulthood. As an X-linked disease, it typically occurs in male subjects, while female subjects are usually healthy carriers. OHS is mainly characterized by connective tissue disorders and slightly subnormal intelligence or signs of autonomic dysfunction are the only apparent neurological abnormalities, in connection with molecular defects in copper metabolism. Our purpose is to report on radiological skeletal findings that may be incidental or investigated when OHS is suspected and to underline the possible involvement and expression in the female. Moreover, the impact of skeletal findings is also highlighted in the prevention of serious complications of the disease.
Collapse
Affiliation(s)
- Alberto Bazzocchi
- Imaging Division, Clinical Department of Radiological and Histocytopathological Sciences, University of Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | | | | | | | | | | |
Collapse
|
10
|
Sirleto P, Surace C, Santos H, Bertini E, Tomaiuolo AC, Lombardo A, Boenzi S, Bevivino E, Dionisi-Vici C, Angioni A. Lyonization effects of the t(X;16) translocation on the phenotypic expression in a rare female with Menkes disease. Pediatr Res 2009; 65:347-51. [PMID: 19092723 DOI: 10.1203/pdr.0b013e3181973b4e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Menkes disease (MD) is a rare and severe X-linked recessive disorder of copper metabolism. The MD gene, ATP7A (ATPase Cu++ transporting alpha polypeptide), encodes an ATP-dependent copper-binding membrane protein. In this report, we describe a girl with typical clinical features of MD, carrying a balanced translocation between the chromosomes X and 16 producing the disruption of one copy of ATP7A gene and the silencing of the other copy because of the chromosome X inactivation. Fluorescence in situ hybridization experiments with bacterial derived artificial chromosome probes revealed that the breakpoints were located within Xq13.3 and 16p11.2. Replication pattern analysis demonstrated that the normal X chromosome was late replicating and consequently inactivated, whereas the der(X)t(X;16), bearing the disrupted ATP7A gene, was active. An innovative approach, based on FMR1 (fragile X mental retardation 1) gene polymorphism, has been used to disclose the paternal origin of the rearrangement providing a new diagnostic tool for determining the parental origin of defects involving the X chromosome and clarifying the mechanism leading to the cytogenetic rearrangement that occurred in our patient.
Collapse
Affiliation(s)
- Pietro Sirleto
- Cytogenetics and Molecular Genetics, Bambino Gesù Children's Hospital, Roma 00165, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
The genetics of hair shaft disorders. J Am Acad Dermatol 2008; 59:1-22; quiz 23-6. [DOI: 10.1016/j.jaad.2008.04.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 04/03/2008] [Accepted: 04/07/2008] [Indexed: 11/23/2022]
|
12
|
Tümer Z, Birk Møller L, Horn N. Screening of 383 unrelated patients affected with Menkes disease and finding of 57 gross deletions inATP7A. Hum Mutat 2003; 22:457-64. [PMID: 14635105 DOI: 10.1002/humu.10287] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Menkes disease (MD) is an X-linked multisystemic lethal disorder of copper metabolism dominated by neurodegenerative symptoms and connective tissue disturbances. MD results from mutations in the ATP7A gene, which encodes a membrane-bound copper transporting P-type ATPase located in the trans-Golgi network. In this study we describe screening of 383 unrelated patients affected with Menkes disease for gross deletions in ATP7A gene and finding of 57 patients. The present data suggests that gross deletion of ATP7A is the disease-causing mutation in 14.9% of the Menkes disease patients. Except for a few cases, gross gene deletions result in the classical form of Menkes disease with death in early childhood.
Collapse
Affiliation(s)
- Zeynep Tümer
- Wilhelm Johannsen Center for Functional Genome Research, Department of Medical Genetics, IMBG, The Panum Institute, University of Copenhagen, Denmark.
| | | | | |
Collapse
|
13
|
Liu PC, McAndrew PE, Kaler SG. Rapid and robust screening of the Menkes disease/occipital horn syndrome gene. GENETIC TESTING 2003; 6:255-60. [PMID: 12537648 DOI: 10.1089/10906570260471778] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Menkes disease and occipital horn syndrome (OHS) are allelic neurogenetic disorders of copper transport associated with mutations in an X-linked gene, ATP7A. This gene encodes a copper-transporting P-type ATPase. The spectrum of mutations at the Menkes/OHS locus is estimated to include 1% chromosomal rearrangements and 15-20% large deletions, with the remaining defects involving small alterations. There is a compelling need for a rapid and reliable molecular diagnostic approach for patients and families impacted by these conditions. In addition to testing suspected affected males, carrier screening of females in Menkes/OHS families and prenatal evaluation of at-risk pregnancies will be enhanced by the wider availability of robust mutation analysis for this large (23-exon) locus. Here we describe a stepwise approach to mutation screening for these disorders that successfully identified molecular alterations in over 95% of our patient population (n = 49). This genomic DNA-based technique employs multiplex PCR, heteroduplex analysis, and direct sequencing, in a serial fashion. This approach should find application in molecular diagnostic laboratories in the United States and other countries. Currently, only a single European center provides commercial testing for unknown mutations in Menkes/OHS patients, even though these disorders occur worldwide.
Collapse
Affiliation(s)
- Po-Ching Liu
- Unit on Pediatric Genetics, Laboratory of Clinical Genomics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|