Ross CC, MacLeod SL, Plaxco JR, Froude JW, Fink LM, Wang J, Stites WE, Hauer-Jensen M. Inactivation of thrombomodulin by ionizing radiation in a cell-free system: possible implications for radiation responses in vascular endothelium.
Radiat Res 2008;
169:408-16. [PMID:
18363428 PMCID:
PMC2568889 DOI:
10.1667/rr1148.1]
[Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Accepted: 01/08/2008] [Indexed: 12/19/2022]
Abstract
Normal tissue radiation injury is associated with loss of vascular thromboresistance, notably because of deficient levels of endothelial thrombomodulin (TM). TM is located on the luminal surface of most endothelial cells and has critical anticoagulant and anti-inflammatory functions. Chemical oxidation of a specific methionine residue (Met388) at the thrombin-binding site in TM reduces its main functional activity, i.e., the ability to activate protein C. We examined whether exposure to ionizing radiation affects TM in a similar manner. Full-length recombinant human TM, a construct of epidermal growth factor-like domains 4-6, which are involved in protein C activation, and a synthetic peptide containing the methionine of interest were exposed to gamma radiation in a cell-free system, i.e., a system not confounded by TM turnover or ectodomain shedding. The influence of radiation on functional activity was assessed with the protein C activation assay; formation of a TM-thrombin complex was assessed with surface plasmon resonance (Biacore), and oxidation of Met388 was assessed by HPLC and confirmed by mass spectroscopy. Exposure to radiation caused a dose-dependent reduction in protein C activation, impaired TM-thrombin complex formation, and oxidation of Met388. These results demonstrate that ionizing radiation adversely affects the TM molecule. Our findings may have relevance to normal tissue toxicity in clinical radiation therapy as well as to the development of radiation syndromes in the non-therapeutic radiation exposure setting.
Collapse