1
|
A Single Mutation in the Cryptic AUG (cAUG) Affects In Vitro Translation and Replication Efficiencies and In Vivo Virulence of Coxsackievirus B3 (CVB3). Curr Microbiol 2022; 79:288. [PMID: 35972696 DOI: 10.1007/s00284-022-02986-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 07/25/2022] [Indexed: 11/03/2022]
Abstract
The 5'UTR of the genomic RNA of CVB3, unusually long and rich on highly structured secondary structure, contains a conserved cis acting RNA element named the cryptic AUG (cAUG), where the cellular 48S complex is formed. In this study, we investigate the role of this cAUG in CVB3 translation, replication, and virulence. Mutant viral sub-genomic replicon RNA was constructed by site-directed mutagenesis. We characterize in vitro translation and replication efficiencies and in vivo virulence of a cAUG mutant in comparison with wild-type strain. UV-cross-linking assay and Real-Time PCR were used, respectively, to detect binding host proteins and to quantify viral production. Secondary structures of domain containing the cAUG site were studied and compared. The results suggest that introduced mutation in the CVB3 5'UTR affects in vitro and ex vivo viral translation which cannot be rescued by compensatory mutations. A reduced interaction of the La and PCBP2 translation initiation factors with cAUG residue of mutant was revealed. Decreasing production of viral mutant RNA was also demonstrated. Furthermore, secondary structure prediction reveals changes in the ribosome binding sites of the cAUG moiety of mutant sense strand RNA and no alterations in the structure of wild type, suggesting that cAUG mutation specifically affects the secondary structure of the sense RNA strand. Taken together, AUG integrity influences the efficiency of ribosome recruitment through IRES element and the capacity of replication.
Collapse
|
2
|
Massilamany C, Gangaplara A, Basavalingappa RH, Rajasekaran RA, Vu H, Riethoven JJ, Steffen D, Pattnaik AK, Reddy J. Mutations in the 5' NTR and the Non-Structural Protein 3A of the Coxsackievirus B3 Selectively Attenuate Myocarditogenicity. PLoS One 2015; 10:e0131052. [PMID: 26098885 PMCID: PMC4476614 DOI: 10.1371/journal.pone.0131052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 05/26/2015] [Indexed: 11/20/2022] Open
Abstract
The 5’ non-translated region (NTR) is an important molecular determinant that controls replication and virulence of coxsackievirus B (CVB)3. Previous studies have reported many nucleotide (nt) sequence differences in the Nancy strain of the virus, including changes in the 5’ NTR with varying degrees of disease severity. In our studies of CVB3-induced myocarditis, we sought to generate an infectious clone of the virus for routine in vivo experimentation. By determining the viral nt sequence, we identified three new nt substitutions in the clone that differed from the parental virus strain: C97U in the 5’ NTR; a silent mutation, A4327G, in non-structural protein 2C; and C5088U (resulting in P1449L amino acid change) in non-structural protein 3A of the virus leading us to evaluate the role of these changes in the virulence properties of the virus. We noted that the disease-inducing ability of the infectious clone-derived virus in three mouse strains was restricted to pancreatitis alone, and the incidence and severity of myocarditis were significantly reduced. We then reversed the mutations by creating three new clones, representing 1) U97C; 2) G4327A and U5088C; and 3) their combination together in the third clone. The viral titers obtained from all the clones were comparable, but the virions derived from the third clone induced myocarditis comparable to that induced by wild type virus; however, the pancreatitis-inducing ability remained unaltered, suggesting that the mutations described above selectively influence myocarditogenicity. Because the accumulation of mutations during passages is a continuous process in RNA viruses, it is possible that CVB3 viruses containing such altered nts may evolve naturally, thus favoring their survival in the environment.
Collapse
Affiliation(s)
- Chandirasegaran Massilamany
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Arunakumar Gangaplara
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Rakesh H. Basavalingappa
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Rajkumar A. Rajasekaran
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Hiep Vu
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Jean-Jack Riethoven
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - David Steffen
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Asit K. Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
3
|
Souii A, Ben M'hadheb-Gharbi M, Gharbi J. Role of RNA structure motifs in IRES-dependent translation initiation of the coxsackievirus B3: new insights for developing live-attenuated strains for vaccines and gene therapy. Mol Biotechnol 2014; 55:179-202. [PMID: 23881360 DOI: 10.1007/s12033-013-9674-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Internal ribosome entry site (IRES) elements are highly structured RNA sequences that function to recruit ribosomes for the initiation of translation. In contrast to the canonical cap-binding, the mechanism of IRES-mediated translation initiation is still poorly understood. Translation initiation of the coxsackievirus B3 (CVB3), a causative agent of viral myocarditis, has been shown to be mediated by a highly ordered structure of the 5' untranslated region (5'UTR), which harbors an IRES. Taking into account that efficient initiation of mRNA translation depends on temporally and spatially orchestrated sequence of RNA-protein and RNA-RNA interactions, and that, at present, little is known about these interactions, we aimed to describe recent advances in our understanding of molecular structures and biochemical functions of the translation initiation process. Thus, this review will explore the IRES elements as important RNA structures and the significance of these structures in providing an alternative mechanism of translation initiation of the CVB3 RNA. Since translation initiation is the first intracellular step during the CVB3 infection cycle, the IRES region provides an ideal target for antiviral therapies. Interestingly, the 5' and 3'UTRs represent promising candidates for the study of CVB3 cardiovirulence and provide new insights for developing live-attenuated vaccines.
Collapse
Affiliation(s)
- Amira Souii
- Institut Supérieur de Biotechnologie de Monastir-Université de Monastir, Avenue Tahar Hadded, BP 74, 5000, Monastir, Tunisia
| | | | | |
Collapse
|
4
|
The crystal structure of a coxsackievirus B3-RD variant and a refined 9-angstrom cryo-electron microscopy reconstruction of the virus complexed with decay-accelerating factor (DAF) provide a new footprint of DAF on the virus surface. J Virol 2012; 86:12571-81. [PMID: 22973031 DOI: 10.1128/jvi.01592-12] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The coxsackievirus-adenovirus receptor (CAR) and decay-accelerating factor (DAF) have been identified as cellular receptors for coxsackievirus B3 (CVB3). The first described DAF-binding isolate was obtained during passage of the prototype strain, Nancy, on rhabdomyosarcoma (RD) cells, which express DAF but very little CAR. Here, the structure of the resulting variant, CVB3-RD, has been solved by X-ray crystallography to 2.74 Å, and a cryo-electron microscopy reconstruction of CVB3-RD complexed with DAF has been refined to 9.0 Å. This new high-resolution structure permits us to correct an error in our previous view of DAF-virus interactions, providing a new footprint of DAF that bridges two adjacent protomers. The contact sites between the virus and DAF clearly encompass CVB3-RD residues recently shown to be required for binding to DAF; these residues interact with DAF short consensus repeat 2 (SCR2), which is known to be essential for virus binding. Based on the new structure, the mode of the DAF interaction with CVB3 differs significantly from the mode reported previously for DAF binding to echoviruses.
Collapse
|
5
|
Cifuente JO, Ferrer MF, Jaquenod de Giusti C, Song WC, Romanowski V, Hafenstein SL, Gómez RM. Molecular determinants of disease in coxsackievirus B1 murine infection. J Med Virol 2012; 83:1571-81. [PMID: 21739448 DOI: 10.1002/jmv.22133] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To understand better how different genomic regions may confer pathogenicity for the coxsackievirus B (CVB), two intratypic CVB1 variants, and a number of recombinant viruses were studied. Sequencing analysis showed 23 nucleotide changes between the parental non-pathogenic CVB1N and the pathogenic CVB1Nm. Mutations present in CVB1Nm were more conserved than those in CVB1N when compared to other CVB sequences. Inoculation in C3H/HeJ mice showed that the P1 region is critical for pathogenicity in murine pancreas and heart. The molecular determinants of disease for these organs partially overlap. Several P1 region amino acid differences appear to be located in the decay-accelerating factor (DAF) footprint CVBs. CVB1N and CVB1Nm interacted with human CAR, but only CVB1N seemed to interact with human DAF, as determined using soluble receptors in a plaque-reduction assay. However, the murine homolog Daf-1 did not interact with any virus assessed by hemagglutination. The results of this study suggest that an unknown receptor interaction with the virus play an important role in the pathogenicity of CVB1Nm. Further in vivo studies may clarify this issue.
Collapse
Affiliation(s)
- Javier O Cifuente
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, La Plata, Argentina
| | | | | | | | | | | | | |
Collapse
|
6
|
Introduction of a strong temperature-sensitive phenotype into enterovirus 71 by altering an amino acid of virus 3D polymerase. Virology 2010; 396:1-9. [DOI: 10.1016/j.virol.2009.10.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 12/04/2008] [Accepted: 10/13/2009] [Indexed: 11/19/2022]
|
7
|
Seo I, Jee Y, Ahn J, Jun EJ, Kim D, Joo CH, Kim YK, Lee H. Mutation variants generated from nonvirulent coxsackievirus B3 acquire virulence phenotypes by active virus replication. Intervirology 2008; 50:447-53. [PMID: 18268408 DOI: 10.1159/000115950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 12/13/2007] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To understand coxsackievirus B3 (CVB3) virulence at the molecular level. METHOD A mutation library was generated from noncardiovirulent CVB3/0. Highly virulent mutation variants were recovered and characterized both phenotypically and genotypically. RESULTS The variants consistently caused destruction of multiple tissues together with active virus production and induced severe mortality in vivo. The extent of infectious virus generation was directly correlated with that of histopathological aberration. Genotypic analysis of the entire genome indicated that the virulent viruses encode nucleotide substitutions in the 5'-nontranslated region, which have previously been identified in other virulent CVB3s. CONCLUSION The present study provides evidence that particular nucleotide substitutions in the 5'-nontranslated region of nonvirulent CVB3 can lead to active virus replication, which is sufficient to induce virulence.
Collapse
Affiliation(s)
- Ilseon Seo
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
8
|
M'hadheb-Gharbi MB, Kean KM, Gharbi J. Molecular analysis of the role of IRES stem-loop V in replicative capacities and translation efficiencies of Coxsackievirus B3 mutants. Mol Biol Rep 2007; 36:255-62. [PMID: 18027104 DOI: 10.1007/s11033-007-9174-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2007] [Accepted: 10/30/2007] [Indexed: 11/27/2022]
Abstract
Coxsackievirus B3 (CVB3) is a principal viral cause of acute myocarditis in humans and has been implicated in the pathogenesis of dilated cardiomyopathy. The natural genetic determinants of cardiovirulence for CVB3 have not been identified, although using strains engineered in the laboratory, it has been demonstrated elsewhere that, for several wild-type CB3 strains, the primary molecular determinant of cardiovirulence phenotype localizes to the 5' nontranslated region (5'NTR) and capsid. Stable RNA tetraloop motifs are found frequently in biologically active RNAs. These motifs carry out a wide variety of functions in RNA folding, in RNA-RNA and RNA-protein interactions. A great deal of knowledge about the structures and functions of tetraloop motifs has accumulated largely due to intensive theoretical, biochemical, and biophysical studies on one most frequently occurring family of tetraloop sequences, namely, the GNRA sequence, especially the GNAA sequence conserved in all enteroviruses. Here in this study, through construction of CVB3 chimeric mutants, the predicted stem loop (SL) V within the 5'NTR has been identified as important in determining viral cardiovirulence. Replication assays in HeLa cell monolayers revealed that wild-type CVB3 virus and two of the six mutants constructed here grow efficiently, whereas other mutant viruses replicate poorly. Furthermore, the in vitro translation products from these mutants and wild-type CVB3, demonstrated that the two mutants who replicate efficiently, translated at relatively equivalent amount than the wild-type. However, other mutants demonstrated a low efficiency in their production of protein when translated in a Rabbit Reticulocytes Lysats.
Collapse
Affiliation(s)
- Manel Ben M'hadheb-Gharbi
- Unité de Pathogenèse et Virulence Virales (PVV), Laboratoire des Maladies Dominantes Transmissibles (MDT-01), Faculté de Pharmacie, Université de Monastir, Avenue Avicenne, Monastir, 5000, Tunisia
| | | | | |
Collapse
|
9
|
Aly M, Wiltshire S, Chahrour G, Osti JCL, Vidal SM. Complex genetic control of host susceptibility to coxsackievirus B3-induced myocarditis. Genes Immun 2007; 8:193-204. [PMID: 17287827 DOI: 10.1038/sj.gene.6364374] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The pathogenesis of viral myocarditis is a multifactorial process involving host genetics, viral genetics and the environment in which they interact. We have used a model of infection with coxsackievirus B3 (CVB3) to characterize the contribution of host genetics to viral myocarditis in mice of different genetic backgrounds but with a common H2 haplotype: A/J and B10.A-H2(a). Here we have used Evans blue dye as a quantitative biomarker for susceptibility to CVB3-induced myocarditis in addition to histopathological semiquantitative measures. We have found evidence of linkage between susceptibility to viral myocarditis and three loci. A locus on chromosome 1 centered on D1Mit200 was linked to sarcolemmal disruption in males (P=0.00005), a second locus on chromosome 4 centered on D4Mit81 was also linked to sarcolemmal disruption in males (P=0.0022). A third locus on distal chromosome 3 centered on D3Mit19 was linked to myocardial infiltration, with a logarithm of odds (LOD) score of 4.7 (P=0.0045), as well as sarcolemmal disruption in females (P=0.0015). These results provide strong evidence for the presence of loci contributing to the susceptibility of mice to viral myocarditis.
Collapse
Affiliation(s)
- M Aly
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | |
Collapse
|
10
|
Ben M'hadheb-Gharbi M, Gharbi J, Paulous S, Brocard M, Komaromva A, Aouni M, Kean KM. Effects of the Sabin-like mutations in domain V of the internal ribosome entry segment on translational efficiency of the Coxsackievirus B3. Mol Genet Genomics 2006; 276:402-12. [PMID: 16909284 DOI: 10.1007/s00438-006-0155-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 07/21/2006] [Indexed: 01/28/2023]
Abstract
The domain V within the internal ribosome entry segment (IRES) of poliovirus (PV) is expected to be important in its own neurovirulence because it contains an attenuating mutation in each of the Sabin vaccine strains. In this study, we try to find out if the results observed in the case of Sabin vaccine strains of PV can be extrapolated to another virus belonging to the same genus of enteroviruses but with a different tropism. To test this hypothesis, we used the coxsackievirus B3 (CVB3), known to be the most common causal agent of viral myocarditis. The introduction of the three PV Sabin-like mutations in the equivalent positions (nucleotides 484, 485, and 473) to the domain V of the CVB3 IRES results in significant reduced viral titer of the Sabin3-like mutant (Sab3-like) but not on those of Sab1- and Sab2-like mutants. This low titer was correlated with poor translation efficiency in vitro when all mutants were translated in rabbit reticulocyte lysates. However, elucidation by biochemical probing of the secondary structure of the entire domain V of the IRES of Sabin-like mutants reveals no distinct profiles in comparison with the wild-type counterpart. Prediction of secondary structure by MFOLD program indicates a structural perturbation of the stem containing the Sab3-like mutation, suggesting that specific protein-viral RNA interactions are disrupted, preventing efficient viral translation.
Collapse
MESH Headings
- Animals
- Base Sequence
- DNA, Viral/genetics
- Enterovirus B, Human/genetics
- Enterovirus B, Human/metabolism
- Enterovirus B, Human/pathogenicity
- HeLa Cells
- Humans
- In Vitro Techniques
- Mutagenesis, Site-Directed
- Mutation
- Nucleic Acid Conformation
- Poliovirus/genetics
- Poliovirus/metabolism
- Poliovirus/pathogenicity
- Poliovirus Vaccine, Oral/genetics
- Protein Biosynthesis
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Rabbits
- Species Specificity
- Virulence/genetics
Collapse
Affiliation(s)
- Manel Ben M'hadheb-Gharbi
- Unité de Pathogenèse et Virulence Virales, Laboratoire des Maladies Dominantes Transmissibles (MDT-01), Faculté de Pharmacie, Avenue Avicenne, Monastir, 5000, Tunisia,
| | | | | | | | | | | | | |
Collapse
|
11
|
Dan M, Chantler JK. A genetically engineered attenuated coxsackievirus B3 strain protects mice against lethal infection. J Virol 2005; 79:9285-95. [PMID: 15994822 PMCID: PMC1168767 DOI: 10.1128/jvi.79.14.9285-9295.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coxsackievirus B3 (CVB3) is a common human pathogen that is endemic throughout the world. There is currently no vaccine available, although the virus is known to be highly lethal to newborns and has been associated with heart disease and pancreatitis in older children and adults. Previously, we showed that the virulence of CVB3 is reduced by a lysine-to-arginine substitution in the capsid protein VP2 (K2168R) or a glutamic acid-to-glycine substitution in VP3 (E3060G). In this report, we show that the double mutant virus CVB3(KR/EG) displays additional attenuation, particularly for the pancreas, in A/J mice. In addition, two other attenuating mutations have been identified in the capsid protein VP1. When either the aspartic acid residue D1155 was replaced with glutamic acid or the proline residue P1126 was replaced with methionine, the resulting mutant also possessed an attenuated phenotype. Moreover, when either of these mutations was incorporated into CVB3(KR/EG), the resulting triple mutant viruses, CVB3(KR/EG/DE) and CVB3(KR/EG/PM), were completely noncardiovirulent and caused only small foci of damage to the pancreas, even at a high dose. Both triple mutants were found to be immunogenic, and a single injection of young A/J mice with either was found to protect them from a subsequent lethal challenge with wild-type CVB3. These findings indicate that the triple mutants could be exploited for the development of a live attenuated vaccine against CVB3.
Collapse
Affiliation(s)
- M Dan
- Department of Pathology and Laboratory Medicine, University of British Columbia, #318, BCRICWH, 950 West 28th Ave., Vancouver, British Columbia, Canada V5Z4H4
| | | |
Collapse
|
12
|
Yang D, Cheung P, Sun Y, Yuan J, Zhang H, Carthy CM, Anderson DR, Bohunek L, Wilson JE, McManus BM. A shine-dalgarno-like sequence mediates in vitro ribosomal internal entry and subsequent scanning for translation initiation of coxsackievirus B3 RNA. Virology 2003; 305:31-43. [PMID: 12504538 DOI: 10.1006/viro.2002.1770] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Translation initiation of coxsackievirus B3 (CVB3) RNA is directed by an internal ribosome entry site (IRES) within the 5' untranslated region. However, the details of ribosome-template recognition and subsequent translation initiation are still poorly understood. In this study, we have provided evidence to support the hypothesis that 40S ribosomal subunits bind to CVB3 RNA via basepairing with 18S rRNA in a manner analogous to that of the Shine-Dalgarno (S-D) sequence in prokaryotic systems. We also identified a new site within both the 18S rRNA and the polpyrimidine-tract sequence of the IRES that allows them to form stronger sequence complementation. All these data were obtained from in vitro translation experiments using mutant RNAs containing either an antisense IRES core sequence at the original position or site-directed mutations or deletions in the polypyrimidine tract of the IRES. The mutations significantly reduced translation efficiency but did not abolish protein synthesis, suggesting that the S-D-like sequence is essential, but not sufficient for ribosome binding. To determine how ribosomes reach the initiation codon after internal entry, we created additional mutants: when the authentic initiation codon at nucleotide (nt) 742 was mutated, a 180-nt downstream in-frame AUG codon at nt 922 is able to produce a truncated smaller protein. When this mutation was introduced into the full-length cDNA of CVB3, the derived viruses were still infectious. However, their infectivity was much weaker than that of the wild-type CVB3. In addition, when a stable stem-loop was inserted upstream of the initiation codon in the bicistronic RNA, translation was strongly inhibited. These data suggest that ribosomes reach the initiation codon from the IRES likely by scanning along the viral RNA.
Collapse
Affiliation(s)
- Decheng Yang
- The MRL/iCAPTUR4E Center, Department of Pathology and Laboratory Medicine, University of British Columbia-St. Paul's Hospital, Vancouver, B. C, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Merkle I, van Ooij MJM, van Kuppeveld FJM, Glaudemans DHRF, Galama JMD, Henke A, Zell R, Melchers WJG. Biological significance of a human enterovirus B-specific RNA element in the 3' nontranslated region. J Virol 2002; 76:9900-9. [PMID: 12208967 PMCID: PMC136489 DOI: 10.1128/jvi.76.19.9900-9909.2002] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2002] [Accepted: 06/24/2002] [Indexed: 11/20/2022] Open
Abstract
The secondary structures predicted for the enteroviral 3' nontranslated region (3'NTR) all seem to indicate a conformation consisting of two (X and Y) hairpin structures. The higher-order RNA structure of the 3'NTR appears to exist as an intramolecular kissing interaction between the loops of these two hairpin structures. The enterovirus B-like subgroup possesses an additional stem-loop structure, domain Z, which is not present in the poliovirus-like enteroviruses. It has been suggested that the Z domain originated from a burst of short sequence repetitions (E. V. Pilipenko, S. V. Maslova, A. N. Sinyakov, and V. I. Agol, Nucleic Acids Res. 20:1739-1745, 1992). However, no functional features have yet been ascribed to this enterovirus B-like-specific RNA element in the 3'NTR. In this study, we tested the functional characteristics and biological significance of domain Z. A mutant of the cardiovirulent coxsackievirus group B3 strain Nancy which completely lacked the Z domain and which therefore acquired enterovirus C-like secondary structures exhibited a wild-type growth phenotype, as determined by single-cycle growth analysis with BGM cells. This result proves that the Z domain is virtually dispensable for viral growth in tissue cultures. Partial distortion of the Z domain structure resulted in a disabled virus with reduced growth kinetics, probably due to alternative conformations of the overall structure of the domain. Infection of mice showed that the recombinant coxsackievirus group B3 mutant which completely lacked the Z domain was less virulent. Pancreatic tissues from mice infected with wild-type virus and recombinant virus were equally affected. However, the heart tissue from mice infected with the recombinant virus showed only slight signs of myocarditis. These results suggest that the enterovirus B-like-specific Z domain plays a role in coxsackievirus-induced pathogenesis.
Collapse
Affiliation(s)
- Ingrid Merkle
- Institute of Virology, Friedrich Schiller University, D-07745 Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Myocarditis is an acquired form inflammatory heart muscle disease, manifested as acute and chronic conditions. While many etiologies have been reported, the most common cause of this disease is infection, primarily viral. Typically, the specific causative agent(s) and mechanism(s) are elusive. Over the past several years, various new findings have added to our understanding of myocarditis. These include the identification of adenoviruses as important causative agents, a new receptor protein likely to play an important role in the virulence of certain agents affecting the myocardium, and the effect of viruses on the cardiac cytoskeleton. This report reviews the current understanding of myocarditis, proposes a hypothesis about the long-term sequelae, and suggests possible new therapeutic strategies.
Collapse
Affiliation(s)
- NE Bowles
- Department of Pediatrics, Section of Cardiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
15
|
Martino TA, Petric M, Weingartl H, Bergelson JM, Opavsky MA, Richardson CD, Modlin JF, Finberg RW, Kain KC, Willis N, Gauntt CJ, Liu PP. The coxsackie-adenovirus receptor (CAR) is used by reference strains and clinical isolates representing all six serotypes of coxsackievirus group B and by swine vesicular disease virus. Virology 2000; 271:99-108. [PMID: 10814575 DOI: 10.1006/viro.2000.0324] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Group B coxsackieviruses are etiologically linked to many human diseases, and cell surface receptors are postulated to play an important role in mediating their pathogenesis. The coxsackievirus adenovirus receptor (CAR) has been shown to function as a receptor for selected strains of coxsackievirus group B (CVB) serotypes 3, 4, and 5 and is postulated to serve as a receptor for all six serotypes. In this study, we demonstrate that CAR can serve as a receptor for laboratory reference strains and clinical isolates of all six CVB serotypes. Infection of CHO cells expressing human CAR results in a 1000-fold increase in CVB progeny virus titer compared to mock transfected cells. CAR was shown to be a functional receptor for swine vesicular disease virus (SVDV), as CHO-CAR cells but not CHO mock transfected controls were susceptible to SVDV infection, produced progeny SVDV, and developed cytopathic effects. Moreover, SVDV infection could be specifically blocked by monoclonal antibody to CAR (RmcB). SVDV infection of HeLa cells was also inhibited by an anti-CD55 MAb, suggesting that this virus, like some CVB, may interact with CD55 (decay accelerating factor) in addition to CAR. Finally, pretreatment of CVB or SVDV with soluble CAR effectively blocks virus infection of HeLa cell monolayers.
Collapse
Affiliation(s)
- T A Martino
- Heart and Stroke/Richard Lewar Center of Excellence, University of Toronto, Toronto General Hospital, 200 Elizabeth Street, Toronto, Ontario, M5G 2C4, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Dunn JJ, Chapman NM, Tracy S, Romero JR. Genomic determinants of cardiovirulence in coxsackievirus B3 clinical isolates: localization to the 5' nontranslated region. J Virol 2000; 74:4787-94. [PMID: 10775617 PMCID: PMC112001 DOI: 10.1128/jvi.74.10.4787-4794.2000] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/1999] [Accepted: 02/04/2000] [Indexed: 01/23/2023] Open
Abstract
Coxsackievirus B3 (CVB3) infections can cause myocarditis in humans and are implicated in the pathogenesis of dilated cardiomyopathy. The natural genetic determinants of cardiovirulence for CVB3 have not been identified, although using strains engineered in the laboratory, cardiovirulence determinants have been identified in the CVB3 5' nontranslated region (5'NTR) and capsid. The myocarditic phenotypes of two CVB3 clinical isolates were determined using an established murine model of inflammatory heart disease. The 5'NTRs and capsid proteins of the noncardiovirulent CVB3/CO strain and cardiovirulent CVB3/AS strain were examined to determine their influence on the cardiovirulence phenotype. Six intratypic chimeric viruses were constructed in which 5'NTR and capsid sequences of the infectious cDNA copy of the cardiovirulent CVB3/20 genome were replaced by homologous sequences from CVB3/CO or CVB3/AS. Chimeric strains were tested for cardiovirulence by inoculation of C3H/HeJ mice. Sections of hearts removed at 10 days postinoculation were examined for evidence of myocarditis by light microscopy and assayed for the presence of virus. Replacement of the CVB3/20 capsid coding region by that from the homologous region of CVB3/CO resulted in no change in the cardiovirulent CVB3/20 phenotype, with virus recoverable from the heart at 10 days postinoculation. However, recombinant virus containing the CVB3/CO 5'NTR alone or the 5'NTR and capsid sequences together were not myocarditic, and infectious virus was not recovered from the myocardium. Chimeric viruses containing the CVB3/AS 5'NTR alone, capsid sequence alone, or both together preserved the myocarditic phenotype. These data support the 5'NTR as the primary site in the determination of the natural cardiovirulence phenotype of CVB3.
Collapse
Affiliation(s)
- J J Dunn
- Enterovirus Research Laboratory, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | | | | | | |
Collapse
|