1
|
Girma A. Biology of human respiratory syncytial virus: Current perspectives in immune response and mechanisms against the virus. Virus Res 2024; 350:199483. [PMID: 39396572 PMCID: PMC11513633 DOI: 10.1016/j.virusres.2024.199483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Human respiratory syncytial virus (hRSV) remains a leading cause of morbidity and mortality in infants, young children, and older adults. hRSV infection's limited treatment and vaccine options significantly increase bronchiolitis' morbidity rates. The severity and outcome of viral infection hinge on the innate immune response. Developing vaccines and identifying therapeutic interventions suitable for young children, older adults, and pregnant women relies on comprehending the molecular mechanisms of viral PAMP recognition, genetic factors of the inflammatory response, and antiviral defense. This review covers fundamental elements of hRSV biology, diagnosis, pathogenesis, and the immune response, highlighting prospective options for vaccine development.
Collapse
Affiliation(s)
- Abayeneh Girma
- Department of Biology, College of Natural and Computational Sciences, Mekdela Amba University, P.O. Box 32, Tulu Awuliya, Ethiopia.
| |
Collapse
|
2
|
Sadiq A, Khan T, Bostan N, Yinda CK, Matthijnssens J. Antigenic epitope analysis of Pakistani G3 and G9 rotavirus strains compared to vaccine strains revealed multiple amino acid differences. Diagn Microbiol Infect Dis 2024; 109:116346. [PMID: 38759540 DOI: 10.1016/j.diagmicrobio.2024.116346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/13/2023] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
Rotaviruses belong to genotype VP4-P[8] are a significant cause of severe loose diarrhea in infants and young children. In the present study, we characterised the complete genome of three of the Pakistani P[8]b RVA strains by Illumina HiSeq sequencing technology to determine the complete genotype constellation providing insight into the evolutionary dynamics of their genes using maximum likelihood analysis. The maximum genomic sequences of our study strains were similar to more recent human Wa-Like G1P[8]a, G3P[8]a, G4P[6], G4P[8], G9P[4], G9P[8]a, G11P[25],G12P[8]a and G12P[6] strains circulating around the world. Therefore, strains PAK274, PAK439 and PAK624 carry natively distinctive VP4 gene with universally common human Wa-Like genetic backbone. Comparing our study P[8]b strains with vaccines strains RotarixTM and RotaTeqTM, multiple amino acid differences were examined between vaccine virus antigenic epitopes and Pakistani isolates. Over time, these differences may result in the selection for strains that will escape the vaccine-induced RVA-neutralizing-antibody effect.
Collapse
Affiliation(s)
- Asma Sadiq
- Department of Microbiology, University of Jhang, Jhang, Pakistan
| | - Tariq Khan
- Department of Biosciences, COMSATS University (CUI), Park Road, Tarlai Kalan, Chak Shahzad, Islamabad,45550, Pakistan
| | - Nazish Bostan
- Department of Biosciences, COMSATS University (CUI), Park Road, Tarlai Kalan, Chak Shahzad, Islamabad,45550, Pakistan.
| | - Claude Kwe Yinda
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Jelle Matthijnssens
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, Leuven, Belgium
| |
Collapse
|
3
|
Moumbeket Yifomnjou MH, Monamele GC, Modiyinji AF, Njankouo-Ripa M, Onana B, Njouom R. Genetic Diversity of Human Respiratory Syncytial Virus during COVID-19 Pandemic in Yaoundé, Cameroon, 2020-2021. Microorganisms 2024; 12:952. [PMID: 38792782 PMCID: PMC11123827 DOI: 10.3390/microorganisms12050952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/03/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
Worldwide, human respiratory syncytial virus (HRSV) is a major cause of severe infections of the lower respiratory system, affecting individuals of all ages. This study investigated the genetic variability of HRSV during the COVID-19 outbreak in Yaoundé; nasopharyngeal samples positive for HRSV were collected from different age groups between July 2020 and October 2021. A semi-nested RT-PCR was performed on the second hypervariable region of the G gene of detected HRSV, followed by sequencing and phylogenetic assessment. Throughout the study, 40 (37.7%) of the 106 HRSV-positive samples successfully underwent G-gene amplification. HRSV A and HRSV B co-circulated at rates of 47.5% and 52.5%, respectively. HRSV A clustered in the GA2.3.5 genetic lineage (ON1) and HRSV B clustered in the GB5.0.5a genetic lineage (BA9). Differences in circulating genotypes were observed between pre- and post-pandemic years for HRSV A. Predictions revealed potential N-glycosylation sites at positions 237-318 of HRSV A and positions 228-232-294 of HRSV B. This study reports the molecular epidemiology of HRSV in Cameroon during the COVID-19 pandemic. It describes the exclusive co-circulation of two genetic lineages. These findings highlight the importance of implementing comprehensive molecular surveillance to prevent the unexpected emergence of other diseases.
Collapse
Affiliation(s)
- Moïse Henri Moumbeket Yifomnjou
- Virology Unit, Centre Pasteur du Cameroun, 451 Rue 2005, Yaoundé P.O. Box 1274, Cameroon; (M.H.M.Y.); (G.C.M.); (A.F.M.); (M.N.-R.)
- Laboratory of Microbiology, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon;
| | - Gwladys Chavely Monamele
- Virology Unit, Centre Pasteur du Cameroun, 451 Rue 2005, Yaoundé P.O. Box 1274, Cameroon; (M.H.M.Y.); (G.C.M.); (A.F.M.); (M.N.-R.)
| | - Abdou Fatawou Modiyinji
- Virology Unit, Centre Pasteur du Cameroun, 451 Rue 2005, Yaoundé P.O. Box 1274, Cameroon; (M.H.M.Y.); (G.C.M.); (A.F.M.); (M.N.-R.)
| | - Mohamadou Njankouo-Ripa
- Virology Unit, Centre Pasteur du Cameroun, 451 Rue 2005, Yaoundé P.O. Box 1274, Cameroon; (M.H.M.Y.); (G.C.M.); (A.F.M.); (M.N.-R.)
| | - Boyomo Onana
- Laboratory of Microbiology, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon;
| | - Richard Njouom
- Virology Unit, Centre Pasteur du Cameroun, 451 Rue 2005, Yaoundé P.O. Box 1274, Cameroon; (M.H.M.Y.); (G.C.M.); (A.F.M.); (M.N.-R.)
| |
Collapse
|
4
|
Shen Z, Zhang Y, Li H, Du L. Rapid typing diagnosis and clinical analysis of subtypes A and B of human respiratory syncytial virus in children. Virol J 2022; 19:15. [PMID: 35062975 PMCID: PMC8781464 DOI: 10.1186/s12985-022-01744-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 01/12/2022] [Indexed: 12/04/2022] Open
Abstract
Background Human respiratory syncytial virus (HRSV) is the leading pathogens causing acute respiratory infections (ARI) in children under five years old. We aimed to investigate the distribution of HRSV subtypes and explore the relationship between viral subtypes and clinical symptoms and disease severity. Methods From November 2016 to April 2017, 541 children hospitalized because of ARI were included in the study. Throat swabs were collected for analysis and all samples were tested by multiplex one-step qRT-PCR for quantitative analysis and typing of HRSV. Patients’ demographics, clinical symptoms as well as laboratory and imaging results were retrieved from medical records. Results HRSV was detected in 19.6% of children hospitalized due to ARI. HRSV-positive children were younger (P < 0.001), had a higher frequency of wheezing and pulmonary rales (P < 0.001; P = 0.003), and were more likely to develop bronchopneumonia (P < 0.001). Interleukin (IL) 10、CD4/CD8 (below normal range) and C-reactive protein levels between subtypes A and B groups were significantly different (P = 0.037; P = 0.029; P = 0.007), and gender differences were evident. By age-stratified analysis between subtypes A and B, we found significant differences in fever frequency and lymphocyte ratio (P = 0.008; P = 0.03) in the 6–12 months age group, while the 12. 1–36 months age group showed significant differences in fever days and count of leukocytes, platelets, levels aspartate aminotransferase, IL-6, lactate dehydrogenase and proportion CD4 positive T cells(P = 0.013; P = 0.018; P = 0.016; P = 0.037; P = 0.049; P = 0.025; P = 0.04). We also found a positive correlation between viral load and wheezing days in subtype A (P < 0.05), and a negative correlation between age, monocyte percentage and LDH concentration in subtype B (P < 0.05). Conclusions HRSV is the main causative virus of bronchopneumonia in infants and children. The multiplex one-step qRT-PCR not only provides a rapid and effective diagnosis of HRSV infection, but also allows its typing. There were no significant differences in the severity of HRSV infection between subtypes A and B, except significant gender-specific and age-specific differences in some clinical characteristics and laboratory results. Knowing the viral load of HRSV infection can help understanding the clinical features of different subtypes of HRSV infection.
Collapse
|
5
|
Fall A, Elawar F, Hodcroft EB, Jallow MM, Toure CT, Barry MA, Kiori DE, Sy S, Diaw Y, Goudiaby D, Niang MN, Dia N. Genetic diversity and evolutionary dynamics of respiratory syncytial virus over eleven consecutive years of surveillance in Senegal. INFECTION GENETICS AND EVOLUTION 2021; 91:104864. [PMID: 33866019 DOI: 10.1016/j.meegid.2021.104864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 11/18/2022]
Affiliation(s)
- Amary Fall
- Virology Department, Institute Pasteur of Dakar, Senegal.
| | - Farah Elawar
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| | - Emma B Hodcroft
- Biozentrum, University of Basel, Basel, Switzerland; Swiss Institute of Bioinformatics, Basel, Switzerland.
| | - Mamadou Malado Jallow
- Virology Department, Institute Pasteur of Dakar, Senegal; University Cheikh Anta Diop of Dakar, Senegal.
| | - Cheikh Talibouya Toure
- Virology Department, Institute Pasteur of Dakar, Senegal; University Cheikh Anta Diop of Dakar, Senegal.
| | - Mamadou A Barry
- Unit Epidemiology of Infectious Diseases, Institute Pasteur of Dakar, Senegal.
| | | | - Sara Sy
- Virology Department, Institute Pasteur of Dakar, Senegal.
| | - Yague Diaw
- Virology Department, Institute Pasteur of Dakar, Senegal.
| | | | | | - Ndongo Dia
- Virology Department, Institute Pasteur of Dakar, Senegal.
| |
Collapse
|
6
|
Borochova K, Niespodziana K, Stenberg Hammar K, van Hage M, Hedlin G, Söderhäll C, Focke-Tejkl M, Valenta R. Features of the Human Antibody Response against the Respiratory Syncytial Virus Surface Glycoprotein G. Vaccines (Basel) 2020; 8:vaccines8020337. [PMID: 32630611 PMCID: PMC7350215 DOI: 10.3390/vaccines8020337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 11/18/2022] Open
Abstract
Respiratory syncytial virus (RSV) infections are a major cause of serious respiratory disease in infants. RSV occurs as two major subgroups A and B, which mainly differ regarding the surface glycoprotein G. The G protein is important for virus attachment and G-specific antibodies can protect against infection. We expressed the surface-exposed part of A2 strain-derived G (A2-G) in baculovirus-infected insect cells and synthesized overlapping peptides spanning complete A2-G. The investigation of the natural IgG response of adult subjects during a period of one year showed that IgG antibodies (i) recognize G significantly stronger than the fusion protein F0, (ii) target mainly non-conformational, sequential peptide epitopes from the exposed conserved region but also buried peptides, and (iii) exhibit a scattered but constant recognition profile during the observation period. The IgG subclass reactivity profile (IgG1 > IgG2 > IgG4 = IgG3) was indicative of a mixed Th1/Th2 response. Two strongly RSV-neutralizing sera including the 1st WHO standard contained high IgG anti-G levels. G-specific IgG increased strongly in children after wheezing attacks suggesting RSV as trigger factor. Our study shows that RSV G and G-derived peptides are useful for serological diagnosis of RSV-triggered exacerbations of respiratory diseases and underlines the importance of G for development of RSV-neutralizing vaccines.
Collapse
Affiliation(s)
- Kristina Borochova
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (K.B.); (K.N.); (M.F.-T.)
| | - Katarzyna Niespodziana
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (K.B.); (K.N.); (M.F.-T.)
| | - Katarina Stenberg Hammar
- Department of Women’s and Children’s Health, Karolinska Institutet, 171 77 Stockholm, Sweden; (K.S.H.); (G.H.); (C.S.)
- Astrid Lindgren Children’s Hospital, Karolinska University Hospital, 14186 Stockholm, Sweden
- Centre of Allergy Research, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Marianne van Hage
- Division of Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, 171 77 Stockholm, Sweden;
| | - Gunilla Hedlin
- Department of Women’s and Children’s Health, Karolinska Institutet, 171 77 Stockholm, Sweden; (K.S.H.); (G.H.); (C.S.)
- Astrid Lindgren Children’s Hospital, Karolinska University Hospital, 14186 Stockholm, Sweden
- Centre of Allergy Research, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Cilla Söderhäll
- Department of Women’s and Children’s Health, Karolinska Institutet, 171 77 Stockholm, Sweden; (K.S.H.); (G.H.); (C.S.)
- Astrid Lindgren Children’s Hospital, Karolinska University Hospital, 14186 Stockholm, Sweden
- Centre of Allergy Research, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Margarete Focke-Tejkl
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (K.B.); (K.N.); (M.F.-T.)
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (K.B.); (K.N.); (M.F.-T.)
- NRC Institute of Immunology FMBA of Russia, 115478 Moscow, Russia
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow 119991, Russia
- Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
- Correspondence: ; Tel.: +431-40400-51130; Fax: +431-40400-51300
| |
Collapse
|
7
|
Preliminary functional and phylogeographic analyses of the 72 nucleotide duplication region in the emerging human respiratory syncytial virus ON1 strain attachment glycoprotein gene. Biomed Pharmacother 2020; 123:109800. [PMID: 31901716 DOI: 10.1016/j.biopha.2019.109800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/12/2019] [Accepted: 12/15/2019] [Indexed: 01/19/2023] Open
Abstract
The emerging human respiratory syncytial virus (hRSV) ON1 strain, which is characterized by a 72-nt duplication in the attachment glycoprotein (G) gene, has replaced other prevailing global genotypes since its discovery in 2012. In this study, we used the pseudotype lentiviral system to directly address the effect of the duplication on hRSV infection. In addition, representative 199 ON1 sequences selected from 2599 ON1 sequences that were downloaded from GenBank were used to perform Bayesian skyline and phylogeographic analyses. Our results showed that lentiviral pseudoparticles mimicked the key functions of the G-protein on hRSV cell entry. Further, we showed that deletion of the G-protein duplication decreased the efficiency of pLV infection. The mean substitution rate of the second mucin-like highly variable region for the ON1 G-protein gene was 2.14 × 10-3 (95 % HPD: 1.23 × 10-3, 3.08 × 10-3) nucleotide substitutions per site per year. Phylogeographic analyses showed that the ON1 isolates might originate from Europe at the time of MRCA (i.e., the most recent common ancestors), which dated back to 1998.3 (95 % HPD: 1989.2, 2005.2). These preliminary findings revealed the enhanced attachment function of the duplication region in the ON1 G gene and highlighted the importance of ongoing surveillance of ON1 to better understand the molecular epidemiology of hRSV.
Collapse
|
8
|
Genotyping of Type A Human Respiratory Syncytial Virus Based on Direct F Gene Sequencing. ACTA ACUST UNITED AC 2019; 55:medicina55050169. [PMID: 31137571 PMCID: PMC6571984 DOI: 10.3390/medicina55050169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/16/2019] [Accepted: 05/14/2019] [Indexed: 12/23/2022]
Abstract
Background and objectives: The human respiratory syncytial virus (hRSV) is among the important respiratory pathogens affecting children. Genotype-specific attachment (G) gene sequencing is usually used to determine the virus genotype. The reliability of the fusion (F) gene vs. G gene genotype-specific sequencing was screened. Materials and Methods: Archival RNA from Saudi children who tested positive for hRSV-A were used. Samples were subjected to a conventional one-step RT-PCR for both F and G genes and direct gene sequencing of the amplicons using the same primer sets. Phylogeny and mutational analysis of the obtained sequences were conducted. Results: The generic primer set succeeded to amplify target gene sequences. The phylogenetic tree based on partial F gene sequencing resulted in an efficient genotyping of hRSV-A strains equivalent to the partial G gene genotyping method. NA1, ON1, and GA5 genotypes were detected in the clinical samples. The latter was detected for the first time in Saudi Arabia. Different mutations in both conserved and escape-mutant domains were detected in both F and G. Conclusion: It was concluded that a partial F gene sequence can be used efficiently for hRSV-A genotyping.
Collapse
|
9
|
Leemans A, Boeren M, Van der Gucht W, Martinet W, Caljon G, Maes L, Cos P, Delputte P. Characterization of the role of N-glycosylation sites in the respiratory syncytial virus fusion protein in virus replication, syncytium formation and antigenicity. Virus Res 2019; 266:58-68. [PMID: 31004621 DOI: 10.1016/j.virusres.2019.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/25/2019] [Accepted: 04/16/2019] [Indexed: 11/19/2022]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of infant hospitalization worldwide each year and there is presently no licensed vaccine to prevent severe RSV infections. Two major RSV glycoproteins, attachment (G) and fusion (F) protein, regulate viral replication and both proteins contain potential glycosylation sites which are highly variable for the G protein and conserved for the F protein among virus isolates. The RSV F sequence possesses five N-glycosylation sites located in the F2 subunit (N27 and N70), the p27 peptide (N116 and N126) and the F1 subunit (N500). The importance of RSV F N-glycosylation in virus replication and immunogenicity is not yet fully understood, and a better understanding may provide new insights for vaccine development. By using a BAC-based reverse genetics system, recombinant viruses expressing F proteins with loss of N-glycosylation sites were made. Mutant viruses with single N-glycosylation sites removed could be recovered, while this was not possible with the mutant with all N-glycosylation sites removed. Although the individual RSV F N-glycosylation sites were shown not to be essential for viral replication, they do contribute to the efficiency of in vitro and in vivo viral infection. To evaluate the role of N-glycosylation sites on RSV F antigenicity, serum antibody titers were determined after infection of BALB/c mice with RSV expressing the glycomutant F proteins. Infection with recombinant virus lacking the N-glycosylation site at position N116 (RSV F N116Q) resulted in significant higher neutralizing antibody titers compared to RSV F WT infection, which is surprising since this N-glycan is present in the p27 peptide which is assumed to be absent from the mature F protein in virions. Thus, single or combined RSV F glycomutations which affect virus replication and fusogenicity, and which may induce enhanced antibody responses upon immunization could have the potential to improve the efficacy of RSV LAV approaches.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Cell Line, Tumor
- Chlorocebus aethiops
- Female
- Giant Cells/virology
- Glycosylation
- Humans
- Immunization
- Immunogenicity, Vaccine
- Mice, Inbred BALB C
- Mutation
- Respiratory Syncytial Virus Infections/metabolism
- Respiratory Syncytial Virus Infections/pathology
- Respiratory Syncytial Virus Infections/virology
- Respiratory Syncytial Virus, Human/growth & development
- Respiratory Syncytial Virus, Human/immunology
- Respiratory Syncytial Virus, Human/pathogenicity
- Respiratory Syncytial Virus, Human/physiology
- Vero Cells
- Viral Fusion Proteins/genetics
- Viral Fusion Proteins/immunology
- Viral Fusion Proteins/metabolism
- Virus Replication
Collapse
Affiliation(s)
- Annelies Leemans
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, B-2610, Belgium.
| | - Marlies Boeren
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, B-2610, Belgium.
| | - Winke Van der Gucht
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, B-2610, Belgium.
| | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, B-2610, Belgium.
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, B-2610, Belgium.
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, B-2610, Belgium.
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, B-2610, Belgium.
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, B-2610, Belgium.
| |
Collapse
|
10
|
Ortega V, Stone JA, Contreras EM, Iorio RM, Aguilar HC. Addicted to sugar: roles of glycans in the order Mononegavirales. Glycobiology 2019; 29:2-21. [PMID: 29878112 PMCID: PMC6291800 DOI: 10.1093/glycob/cwy053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/29/2018] [Accepted: 06/05/2018] [Indexed: 12/25/2022] Open
Abstract
Glycosylation is a biologically important protein modification process by which a carbohydrate chain is enzymatically added to a protein at a specific amino acid residue. This process plays roles in many cellular functions, including intracellular trafficking, cell-cell signaling, protein folding and receptor binding. While glycosylation is a common host cell process, it is utilized by many pathogens as well. Protein glycosylation is widely employed by viruses for both host invasion and evasion of host immune responses. Thus better understanding of viral glycosylation functions has potential applications for improved antiviral therapeutic and vaccine development. Here, we summarize our current knowledge on the broad biological functions of glycans for the Mononegavirales, an order of enveloped negative-sense single-stranded RNA viruses of high medical importance that includes Ebola, rabies, measles and Nipah viruses. We discuss glycobiological findings by genera in alphabetical order within each of eight Mononegavirales families, namely, the bornaviruses, filoviruses, mymonaviruses, nyamiviruses, paramyxoviruses, pneumoviruses, rhabdoviruses and sunviruses.
Collapse
Affiliation(s)
- Victoria Ortega
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jacquelyn A Stone
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA
| | - Erik M Contreras
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Ronald M Iorio
- Department of Microbiology and Physiological Systems and Program in Immunology and Microbiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Hector C Aguilar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
11
|
High prevalence of G3 rotavirus in hospitalized children in Rawalpindi, Pakistan during 2014. PLoS One 2018; 13:e0195947. [PMID: 29708975 PMCID: PMC5927433 DOI: 10.1371/journal.pone.0195947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/03/2018] [Indexed: 12/23/2022] Open
Abstract
Rotavirus A species (RVA) is the leading cause of severe diarrhea among children in both developed and developing countries. Among different RVA G types, humans are most commonly infected with G1, G2, G3, G4 and G9. During 2003-2004, G3 rotavirus termed as "new variant G3" emerged in Japan that later disseminated to multiple countries across the world. Although G3 rotaviruses are now commonly detected globally, they have been rarely reported from Pakistan. We investigated the genetic diversity of G3 strains responsible RVA gastroenteritis in children hospitalized in Rawalpindi, Pakistan during 2014. G3P[8] (18.3%; n = 24) was detected as the most common genotype causing majority of infections in children less than 06 months. Phylogenetic analysis of Pakistani G3 strains showed high amino acid similarity to "new variant G3" and G3 strains reported from China, Russia, USA, Japan, Belgium and Hungary during 2007-2012. Pakistani G3 strains belonged to lineage 3 within sub-lineage 3d, containing an extra N-linked glycosylation site compared to the G3 strain of RotaTeqTM. To our knowledge, this is the first report on the molecular epidemiology of G3 rotavirus strains from Pakistan and calls for immediate response measures to introduce RV vaccine in the routine immunization program of the country on priority.
Collapse
|
12
|
Kenmoe S, Vernet MA, Miszczak F, Dina J, Schoenhals M, Beng VP, Vabret A, Njouom R. Genetic diversity of human respiratory syncytial virus isolated among children with acute respiratory infections in Southern Cameroon during three consecutive epidemic seasons, 2011-2013. Trop Med Health 2018; 46:7. [PMID: 29618942 PMCID: PMC5881174 DOI: 10.1186/s41182-018-0088-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/20/2018] [Indexed: 02/07/2023] Open
Abstract
Background Human respiratory syncytial virus (HRSV) is the main viral cause of severe lower respiratory tract disease in infants and young children. The aim of this study was to describe for the first time the genetic variability of HRSV in Cameroonian patients living in Yaounde for three consecutive epidemic seasons. Methods HRSV-positive nasopharyngeal samples detected in children less than 15 years in Yaounde were collected from September 2011 to December 2013. Semi-nested RT-PCR, sequencing, and phylogenetic analyses of the second hypervariable region of the G gene were performed. Results A total of 57 HRSV-positive samples were collected during the study period. Among these, 46 (80.7%) could be amplified in the G gene. HRSV group A (HRSV-A) and group B (HRSV-B) co-circulated in this population at 17.4 and 82.6%, respectively. HRSV-A strains clustered in the NA-1 genotype while HRSV-B strains clustered in the BA-9 genotype. HRSV-A strains accounted for 33.3% (2/6), 4.3% (1/23), and 29.4% (5/17) of the viruses isolated in 2011, 2012, and 2013, respectively. Conclusions This study reports molecular epidemiology data of HRSV in Cameroon for the first time. Additional studies are required to clarify evolutionary patterns of HRSV throughout sub-Saharan Africa to support antiviral and vaccine development.
Collapse
Affiliation(s)
- Sebastien Kenmoe
- Virology Department, Centre Pasteur of Cameroon, P.O.Box 1274, Yaounde, Cameroon.,2Normandie Université, 14032 Caen, France.,3UNICAEN, UNIROUEN, GRAM, 14000 Caen, France.,4Department of Virology, University Hospital of Caen, 14000 Caen, France.,5Département de Biochimie, Université de Yaoundé I, BP 812 Yaoundé, Cameroon
| | - Marie-Astrid Vernet
- Virology Department, Centre Pasteur of Cameroon, P.O.Box 1274, Yaounde, Cameroon
| | - Fabien Miszczak
- 2Normandie Université, 14032 Caen, France.,3UNICAEN, UNIROUEN, GRAM, 14000 Caen, France.,4Department of Virology, University Hospital of Caen, 14000 Caen, France
| | - Julia Dina
- 2Normandie Université, 14032 Caen, France.,3UNICAEN, UNIROUEN, GRAM, 14000 Caen, France.,4Department of Virology, University Hospital of Caen, 14000 Caen, France
| | - Matthieu Schoenhals
- Virology Department, Centre Pasteur of Cameroon, P.O.Box 1274, Yaounde, Cameroon
| | | | - Astrid Vabret
- 2Normandie Université, 14032 Caen, France.,3UNICAEN, UNIROUEN, GRAM, 14000 Caen, France.,4Department of Virology, University Hospital of Caen, 14000 Caen, France
| | - Richard Njouom
- Virology Department, Centre Pasteur of Cameroon, P.O.Box 1274, Yaounde, Cameroon
| |
Collapse
|
13
|
Bayrakdar F, Kocabas CN, Altas AB, Kavuncuoglu HG, Cosgun Y, Mısırlıoglu ED, Durmaz I, Korukluoglu G, Ozkul A. Genetic variability human respiratory syncytial virus subgroups A and B in Turkey during six successive epidemic seasons, 2009-2015. J Med Virol 2017; 90:456-463. [PMID: 29077212 PMCID: PMC7166824 DOI: 10.1002/jmv.24983] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/12/2017] [Indexed: 01/10/2023]
Abstract
Human respiratory syncytial virus (HRSV) is most important viral respiratory pathogen of acute lower respiratory tract infections in infants and young children worldwide. The circulating pattern and genetic characteristics in the HRSV attachment glycoprotein gene were investigated in Turkey during six consecutive seasons from 2009 to 2015. HRSVA was dominant in the all epidemic seasons except 2011‐2012 season. Partial sequences of the HVR2 region of the G gene of 479 HRSVA and 135 HRSVB were obtained. Most Turkish strains belonged to NA1, ON1, and BA9, which were the predominant genotypes circulating worldwide. Although three novel genotypes, TR‐A, TR‐BA1, and TR‐BA2, were identified, they were not predominant. Clinical data were available for 69 HRSV‐positive patients who were monitored due to acute lower respiratory tract illness. There were no significant differences in the clinical diagnosis, hospitalization rates, laboratory findings and treatment observed between the HRSVA and HRSVB groups, and co‐infections in this study. The major population afflicted by HRSV infections included infants and children between 13 and 24 months of age. We detected that the CB1, GB5, and THB strains clustered in the same branch with a bootstrap value of 100%. CB‐B and BA12 strains clustered in the same branch with a bootstrap value of 65%. The BA11 genotype was clustered in the BA9 genotype in our study. The present study may contribute on the molecular epidemiology of HRSV in Turkey and provide data for HRSV strains circulating in local communities and other regions worldwide.
Collapse
Affiliation(s)
- Fatma Bayrakdar
- Virology Reference and Research Laboratory, Public Health Institutions of Turkey, Ankara, Turkey
| | - Can Naci Kocabas
- Pediatric Immunology and Allergy Unit, Faculty of Medicine, Mugla Sitki Koçman Universty, Muğla, Turkey
| | - Ayse Basak Altas
- Virology Reference and Research Laboratory, Public Health Institutions of Turkey, Ankara, Turkey
| | - H Gokhan Kavuncuoglu
- Virology Reference and Research Laboratory, Public Health Institutions of Turkey, Ankara, Turkey
| | - Yasemin Cosgun
- Virology Reference and Research Laboratory, Public Health Institutions of Turkey, Ankara, Turkey
| | - Emine Dibek Mısırlıoglu
- Department of Pediatric Allergy and Immunology, Ankara Children's Hematology Oncology Training and Research Hospital, Ankara, Turkey
| | - Ihsan Durmaz
- Virology Reference and Research Laboratory, Public Health Institutions of Turkey, Ankara, Turkey
| | - Gulay Korukluoglu
- Virology Reference and Research Laboratory, Public Health Institutions of Turkey, Ankara, Turkey
| | - Aykut Ozkul
- Faculty of Veterinary Medicine, Department of Virology, Ankara University, Ankara, Turkey
| |
Collapse
|
14
|
Yoshihara K, Le MN, Nagasawa K, Tsukagoshi H, Nguyen HA, Toizumi M, Moriuchi H, Hashizume M, Ariyoshi K, Dang DA, Kimura H, Yoshida LM. Molecular evolution of respiratory syncytial virus subgroup A genotype NA1 and ON1 attachment glycoprotein (G) gene in central Vietnam. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2016; 45:437-446. [PMID: 27746294 DOI: 10.1016/j.meegid.2016.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 01/08/2023]
Abstract
We performed molecular evolutionary analyses of the G gene C-terminal 3rd hypervariable region of RSV-A genotypes NA1 and ON1 strains from the paediatric acute respiratory infection patients in central Vietnam during the 2010-2012 study period. Time-scaled phylogenetic analyses were performed using Bayesian Markov Chain Monte Carlo (MCMC) method, and pairwise distances (p-distances) were calculated. Bayesian Skyline Plot (BSP) was constructed to analyze the time-trend relative genetic diversity of central Vietnam RSV-A strains. We also estimated the N-glycosylation sites within G gene hypervariable region. Amino acid substitutions under positive and negative selection pressure were examined using Conservative Single Likelihood Ancestor Counting (SLAC), Fixed Effects Likelihood (FEL), Internal Fixed Effects Likelihood (IFEL) and Mixed Effects Model for Episodic Diversifying Selection (MEME) models. The majority of central Vietnam ON1 strains detected in 2012 were classified into lineage 1 with few positively selected substitutions. As for the Vietnamese NA1 strains, four lineages were circulating during the study period with a few positive selection sites. Shifting patterns of the predominantly circulating NA1 lineage were observed in each year during the investigation period. Median p-distance of central Vietnam NA1 strains was wider (p-distance=0.028) than that of ON1 (p-distance=0.012). The molecular evolutionary rate of central Vietnam ON1 strains was estimated to be 2.55×10-2 (substitutions/site/year) and was faster than NA1 (7.12×10-3 (substitutions/site/year)). Interestingly, the evolutionary rates of both genotypes ON1 and NA1 strains from central Vietnam were faster than the global strains respectively. Furthermore, the shifts of N-glycosylation pattern within the G gene 3rd hypervariable region of Vietnamese NA1 strains were observed in each year. BSP analysis indicated the rapid growth of RSV-A effective population size in early 2012. These results suggested that the molecular evolution of RSV-A G gene detected in central Vietnam was fast with unique evolutionary dynamics.
Collapse
Affiliation(s)
- Keisuke Yoshihara
- Department of Paediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Minh Nhat Le
- Department of Paediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Koo Nagasawa
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
| | - Hiroyuki Tsukagoshi
- Gunma Prefectural Institute of Public Health and Environmental Sciences, Maebashi, Gunma 371-0052, Japan
| | - Hien Anh Nguyen
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Michiko Toizumi
- Department of Paediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Hiroyuki Moriuchi
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan; Department of Paediatrics, Nagasaki University Hospital, Nagasaki 852-8102, Japan
| | - Masahiro Hashizume
- Department of Paediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Koya Ariyoshi
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Duc Anh Dang
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Hirokazu Kimura
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
| | - Lay-Myint Yoshida
- Department of Paediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan.
| |
Collapse
|
15
|
Zheng Y, Liu L, Wang S, Li Z, Hou M, Li J, Yu XF, Zhang W, Hua S. Prevailing genotype distribution and characteristics of human respiratory syncytial virus in northeastern China. J Med Virol 2016; 89:222-233. [PMID: 27448044 PMCID: PMC5157725 DOI: 10.1002/jmv.24640] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2016] [Indexed: 01/10/2023]
Abstract
Although human respiratory syncytial virus (RSV) is one of the most common viruses inducing respiratory tract infections in young children and the elderly, the genotype distribution and characteristics of RSV in northeastern China have not been investigated. Here, we identified 25 RSV‐A and 8 RSV‐B strains from 80 samples of patients with respiratory infections between February 2015 and May 2015. All 25 RSV‐A viruses were classified as the ON1 genotype, which rapidly spread and became the dominant genotype in the world since being identified in Ontario (Canada) in December 2010. All eight RSV‐B viruses belonged to the BA genotype with a 60‐nucleotide duplication, seven of which formed two new genotypes, BA‐CCA and BA‐CCB. The remaining RSV‐B virus clustered with one of the Hangzhou strains belonging to genotype BA11. Construction of a phylogenetic tree and amino acid substitution analysis showed that Changchun ON1 viruses exclusively constituted Lineages 3, 5 and 6, and contained several unique and newly identified amino acid substitutions, including E224G, R244K, L289I, Y297H, and L298P. Selective pressure was also evaluated, and various N and O‐glycosylation sites were predicted. This study provides the first genetic analysis of RSV in northeastern China and may facilitate a better understanding of the evolution of this virus locally and globally. J. Med. Virol. 89:222–233, 2017. © 2016 The Authors. Journal of Medical Virology Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yuxuan Zheng
- Department of Respiratory Medicine, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Li Liu
- Department of Pediatric Respiratory Medicine, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Shaohua Wang
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhaolong Li
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Min Hou
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jingliang Li
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiao-Fang Yu
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Wenyan Zhang
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Shucheng Hua
- Department of Respiratory Medicine, First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
16
|
Do LAH, Wilm A, van Doorn HR, Lam HM, Sim S, Sukumaran R, Tran AT, Nguyen BH, Tran TTL, Tran QH, Vo QB, Dac NAT, Trinh HN, Nguyen TTH, Binh BTL, Le K, Nguyen MT, Thai QT, Vo TV, Ngo NQM, Dang TKH, Cao NH, Tran TV, Ho LV, Farrar J, de Jong M, Chen S, Nagarajan N, Bryant JE, Hibberd ML. Direct whole-genome deep-sequencing of human respiratory syncytial virus A and B from Vietnamese children identifies distinct patterns of inter- and intra-host evolution. J Gen Virol 2016; 96:3470-3483. [PMID: 26407694 DOI: 10.1099/jgv.0.000298] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Human respiratory syncytial virus (RSV) is the major cause of lower respiratory tract infections in children ,2 years of age. Little is known about RSV intra-host genetic diversity over the course of infection or about the immune pressures that drive RSV molecular evolution. We performed whole-genome deep-sequencing on 53 RSV-positive samples (37 RSV subgroup A and 16 RSV subgroup B) collected from the upper airways of hospitalized children in southern Vietnam over two consecutive seasons. RSV A NA1 and RSV B BA9 were the predominant genotypes found in our samples, consistent with other reports on global RSV circulation during the same period. For both RSV A and B, the M gene was the most conserved, confirming its potential as a target for novel therapeutics. The G gene was the most variable and was the only gene under detectable positive selection. Further, positively selected sites inG were found in close proximity to and in some cases overlapped with predicted glycosylation motifs, suggesting that selection on amino acid glycosylation may drive viral genetic diversity. We further identified hotspots and coldspots of intra-host genetic diversity in the RSV genome, some of which may highlight previously unknown regions of functional importance.
Collapse
Affiliation(s)
- Lien Anh Ha Do
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, Ho Chi Minh City, Vietnam
| | - Andreas Wilm
- Genome Institute of Singapore, Genome Building, 138672 Singapore
| | - H Rogier van Doorn
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, Ho Chi Minh City, Vietnam.,Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Ha Minh Lam
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, Ho Chi Minh City, Vietnam
| | - Shuzhen Sim
- Genome Institute of Singapore, Genome Building, 138672 Singapore
| | - Rashmi Sukumaran
- Genome Institute of Singapore, Genome Building, 138672 Singapore
| | - Anh Tuan Tran
- Children's Hospital 1, Ward 10, District 10, Ho Chi Minh City, Vietnam
| | - Bach Hue Nguyen
- Children's Hospital 1, Ward 10, District 10, Ho Chi Minh City, Vietnam
| | - Thi Thu Loan Tran
- Children's Hospital 2, Ben Nghe Ward, District 1, Ho Chi Minh City, Vietnam
| | - Quynh Huong Tran
- Children's Hospital 2, Ben Nghe Ward, District 1, Ho Chi Minh City, Vietnam
| | - Quoc Bao Vo
- Children's Hospital 2, Ben Nghe Ward, District 1, Ho Chi Minh City, Vietnam
| | | | - Hong Nhien Trinh
- Children's Hospital 1, Ward 10, District 10, Ho Chi Minh City, Vietnam
| | | | - Bao Tinh Le Binh
- Children's Hospital 1, Ward 10, District 10, Ho Chi Minh City, Vietnam
| | - Khanh Le
- Children's Hospital 1, Ward 10, District 10, Ho Chi Minh City, Vietnam
| | - Minh Tien Nguyen
- Children's Hospital 1, Ward 10, District 10, Ho Chi Minh City, Vietnam
| | - Quang Tung Thai
- Children's Hospital 1, Ward 10, District 10, Ho Chi Minh City, Vietnam
| | - Thanh Vu Vo
- Children's Hospital 1, Ward 10, District 10, Ho Chi Minh City, Vietnam
| | | | - Thi Kim Huyen Dang
- Children's Hospital 2, Ben Nghe Ward, District 1, Ho Chi Minh City, Vietnam
| | - Ngoc Huong Cao
- Children's Hospital 2, Ben Nghe Ward, District 1, Ho Chi Minh City, Vietnam
| | - Thu Van Tran
- Children's Hospital 2, Ben Nghe Ward, District 1, Ho Chi Minh City, Vietnam
| | - Lu Viet Ho
- Children's Hospital 2, Ben Nghe Ward, District 1, Ho Chi Minh City, Vietnam
| | - Jeremy Farrar
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, Ho Chi Minh City, Vietnam
| | - Menno de Jong
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, Ho Chi Minh City, Vietnam.,Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Swaine Chen
- Genome Institute of Singapore, Genome Building, 138672 Singapore
| | | | - Juliet E Bryant
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, Ho Chi Minh City, Vietnam.,Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Martin L Hibberd
- Genome Institute of Singapore, Genome Building, 138672 Singapore
| |
Collapse
|
17
|
Košutić-Gulija T, Slovic A, Ljubin-Sternak S, Mlinarić-Galinović G, Forčić D. A study of genetic variability of human parainfluenza virus type 1 in Croatia, 2011-2014. J Med Microbiol 2016; 65:793-803. [PMID: 27302417 DOI: 10.1099/jmm.0.000297] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular epidemiology of human parainfluenza viruses type 1 (HPIV1) was investigated. Samples were collected from patients hospitalized in Croatia during the three consecutive epidemic seasons (2011-2014). Results indicated co-circulation of two major genetic clusters of HPIV1. Samples from the current study refer to clades II and III in a phylogenetic tree of haemagglutinin-neuraminidase (HN) gene. Additional phylogenetic trees of fusion (F) and phosphoprotein (P) genes confirmed the topology. Analysis of nucleotide diversity of entire P, F and HN genes demonstrated similar values: 0.0255, 0.0236 and 0.0237, respectively. However, amino acid diversity showed F protein to be the most conserved, while P protein was the most tolerant to mutations. Potential N- and O-glycosylation sites suggested that HPIV1 HN protein is abundantly glycosylated, and a specific N-glycosylation pattern could distinguish between clades II and III. Analysis of potential O-glycosylation sites in F protein indicated that samples from this study have two potential O-glycosylation sites, while publicly available sequences have five potential sites. This study provides data on the molecular characterization and epidemic pattern of HPIV1 in Croatia.
Collapse
Affiliation(s)
- Tanja Košutić-Gulija
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Anamarija Slovic
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Sunčanica Ljubin-Sternak
- Andrija Stampar Teaching Institute of Public Health, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Gordana Mlinarić-Galinović
- Department of Virology, Croatian National Institute of Public Health, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Dubravko Forčić
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
18
|
Antigenic Fingerprinting following Primary RSV Infection in Young Children Identifies Novel Antigenic Sites and Reveals Unlinked Evolution of Human Antibody Repertoires to Fusion and Attachment Glycoproteins. PLoS Pathog 2016; 12:e1005554. [PMID: 27100289 PMCID: PMC4839671 DOI: 10.1371/journal.ppat.1005554] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/14/2016] [Indexed: 11/24/2022] Open
Abstract
Respiratory Syncytial Virus (RSV) is the major cause of pneumonia among infants. Here we elucidated the antibody repertoire following primary RSV infection and traced its evolution through adolescence and adulthood. Whole genome-fragment phage display libraries (GFPDL) expressing linear and conformational epitopes in the RSV fusion protein (F) and attachment protein (G) were used for unbiased epitope profiling of infant sera prior to and following RSV infection. F-GFPDL analyses demonstrated modest changes in the anti-F epitope repertoires post-RSV infection, while G-GFPDL analyses revealed 100-fold increase in number of bound phages. The G-reactive epitopes spanned the N- and C-terminus of the G ectodomain, along with increased reactivity to the central conserved domain (CCD). Panels of F and G antigenic sites were synthesized to evaluate sera from young children (<2 yr), adolescents (14–18 yr) and adults (30–45 yr) in SPR real-time kinetics assays. A steady increase in RSV-F epitope repertoires from young children to adults was observed using peptides and F proteins. Importantly, several novel epitopes were identified in pre-fusion F and an immunodominant epitope in the F-p27. In all age groups, antibody binding to pre-fusion F was 2–3 folds higher than to post-fusion form. For RSV-G, antibody responses were high following early RSV infection in children, but declined significantly in adults, using either G proteins or peptides. This study identified unlinked evolution of anti-F and anti G responses and supportive evidence for immune pressure driven evolution of RSV-G. These findings could help development of effective countermeasures including vaccines. Respiratory syncytial virus (RSV) is the major cause of pneumonia and bronchiolitis among infants and children globally. In the United States, RSV infections lead to 57,000 hospitalizations among young children, especially in those less than one year old. Furthermore, despite the development of immunity following RSV infection during childhood, individuals remain susceptible to RSV upper respiratory tract reinfection. In the current study we explored the antibody repertoires following primary RSV infection and their evolution in adolescents and adults. Whole genome-fragment phage display libraries (GFPDL) expressing linear and conformational epitopes from RSV fusion protein (F) and attachment protein (G) were used for unbiased epitope profiling of sera prior to and following RSV infection. In addition, Plasmon Surface Resonance (SPR) was used to measure antibody binding to F and G peptides and proteins. A steady increase in RSV-F epitope repertoires from young children to adults was observed. Several novel epitopes were identified in pre-fusion F and an immunodominant epitope in F0-p27. For RSV-G, antibody responses were high following RSV infection in children, but declined in adults. This study identified unlinked evolution of anti-F and anti G responses that could help development of better RSV vaccines and therapies.
Collapse
|
19
|
Trento A, Ábrego L, Rodriguez-Fernandez R, González-Sánchez MI, González-Martínez F, Delfraro A, Pascale JM, Arbiza J, Melero JA. Conservation of G-Protein Epitopes in Respiratory Syncytial Virus (Group A) Despite Broad Genetic Diversity: Is Antibody Selection Involved in Virus Evolution? J Virol 2015; 89:7776-85. [PMID: 25995258 PMCID: PMC4505632 DOI: 10.1128/jvi.00467-15] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/11/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Worldwide G-glycoprotein phylogeny of human respiratory syncytial virus (hRSV) group A sequences revealed diversification in major clades and genotypes over more than 50 years of recorded history. Multiple genotypes cocirculated during prolonged periods of time, but recent dominance of the GA2 genotype was noticed in several studies, and it is highlighted here with sequences from viruses circulating recently in Spain and Panama. Reactivity of group A viruses with monoclonal antibodies (MAbs) that recognize strain-variable epitopes of the G glycoprotein failed to correlate genotype diversification with antibody reactivity. Additionally, no clear correlation was found between changes in strain-variable epitopes and predicted sites of positive selection, despite both traits being associated with the C-terminal third of the G glycoprotein. Hence, our data do not lend support to the proposed antibody-driven selection of variants as a major determinant of hRSV evolution. Other alternative mechanisms are considered to account for the high degree of hRSV G-protein variability. IMPORTANCE An unusual characteristic of the G glycoprotein of human respiratory syncytial virus (hRSV) is the accumulation of nonsynonymous (N) changes at higher rates than synonymous (S) changes, reaching dN/dS values at certain sites predictive of positive selection. Since these sites cluster preferentially in the C-terminal third of the G protein, like certain epitopes recognized by murine antibodies, it was proposed that immune (antibody) selection might be driving the apparent positive selection, analogous to the antigenic drift observed in the influenza virus hemagglutinin (HA). However, careful antigenic and genetic comparison of the G glycoprotein does not provide evidence of antigenic drift in the G molecule, in agreement with recently published data which did not indicate antigenic drift in the G protein with human sera. Alternative explanations to the immune-driven selection hypothesis are offered to account for the high level of G-protein genetic diversity highlighted in this study.
Collapse
Affiliation(s)
- Alfonsina Trento
- Unidad de Biología Viral, Centro Nacional de Microbiología, Madrid, Spain CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Leyda Ábrego
- Departamento de Investigación en Virología, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá, Panama
| | | | | | | | - Adriana Delfraro
- Sección Virología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Juan M Pascale
- Departamento de Investigación en Virología, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá, Panama
| | - Juan Arbiza
- Sección Virología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - José A Melero
- Unidad de Biología Viral, Centro Nacional de Microbiología, Madrid, Spain CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
20
|
Agoti CN, Otieno JR, Gitahi CW, Cane PA, Nokes DJ. Rapid spread and diversification of respiratory syncytial virus genotype ON1, Kenya. Emerg Infect Dis 2015; 20:950-9. [PMID: 24856417 PMCID: PMC4036793 DOI: 10.3201/eid2006.131438] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Surveillance of this new genotype helps clarify the mechanisms of rapid emergence of respiratory viruses. Respiratory syncytial virus genotype ON1, which is characterized by a 72-nt duplication in the attachment protein gene, has been detected in >10 countries since first identified in Ontario, Canada, in 2010. We describe 2 waves of genotype ON1 infections among children admitted to a rural hospital in Kenya during 2012. Phylogenetic analysis of attachment protein gene sequences showed multiple introductions of genotype ON1; variants distinct from the original Canadian viruses predominated in both infection waves. The genotype ON1 dominated over the other group A genotypes during the second wave, and some first wave ON1 variants reappeared in the second wave. An analysis of global genotype ON1 sequences determined that this genotype has become considerably diversified and has acquired signature coding mutations within immunogenic regions, and its most recent common ancestor dates to ≈2008–2009. Surveillance of genotype ON1 contributes to an understanding of the mechanisms of rapid emergence of respiratory viruses.
Collapse
|
21
|
Robinson MJ, Tan CS, Fenwick F, Chambers CJ, Routledge EG, Toms GL. Generation and epitope mapping of a sub-group cross-reactive anti-respiratory syncytial virus G glycoprotein monoclonal antibody which is protective in vivo. J Med Virol 2014; 86:1267-77. [PMID: 24415460 DOI: 10.1002/jmv.23881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2013] [Indexed: 11/07/2022]
Abstract
Passively administered antibodies to conserved epitopes on the attachment (G) glycoprotein of human respiratory syncytial virus (hRSV) have potential in the immunoprophylaxis of human infections. This study set out to generate monoclonal antibodies (MAbs) recognizing all prevalent lineages of HRSV and capable of immunoprophylaxis in mice. Two murine MAbs of broad specificity for prevalent virus strains were generated by immunization of mice with hRSV of sub-group A followed by selection of hybridomas on recombinant G glycoprotein from a sub-group B virus. The anti-G hybridomas generated secreted antibody of high affinity but negligible neutralizing capacity one of which was tested in mice and found to be protective against live virus challenge. Western blotting and partial epitope mapping on transiently expressed G-glycoprotein fragments indicate that these antibodies recognize a complex epitope on the protein backbone of the molecule involving residues both C'- and N-terminal to the central conserved motif.
Collapse
Affiliation(s)
- Mark J Robinson
- Institute of Cellular Medicine, The Medical School, Newcastle upon Tyne, United Kingdom
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Respiratory syncytial virus (RSV) is amongst the most important pathogenic infections of childhood and is associated with significant morbidity and mortality. Although there have been extensive studies of epidemiology, clinical manifestations, diagnostic techniques, animal models and the immunobiology of infection, there is not yet a convincing and safe vaccine available. The major histopathologic characteristics of RSV infection are acute bronchiolitis, mucosal and submucosal edema, and luminal occlusion by cellular debris of sloughed epithelial cells mixed with macrophages, strands of fibrin, and some mucin. There is a single RSV serotype with two major antigenic subgroups, A and B. Strains of both subtypes often co-circulate, but usually one subtype predominates. In temperate climates, RSV infections reflect a distinct seasonality with onset in late fall or early winter. It is believed that most children will experience at least one RSV infection by the age of 2 years. There are several key animal models of RSV. These include a model in mice and, more importantly, a bovine model; the latter reflects distinct similarity to the human disease. Importantly, the prevalence of asthma is significantly higher amongst children who are hospitalized with RSV in infancy or early childhood. However, there have been only limited investigations of candidate genes that have the potential to explain this increase in susceptibility. An atopic predisposition appears to predispose to subsequent development of asthma and it is likely that subsequent development of asthma is secondary to the pathogenic inflammatory response involving cytokines, chemokines and their cognate receptors. Numerous approaches to the development of RSV vaccines are being evaluated, as are the use of newer antiviral agents to mitigate disease. There is also significant attention being placed on the potential impact of co-infection and defining the natural history of RSV. Clearly, more research is required to define the relationships between RSV bronchiolitis, other viral induced inflammatory responses, and asthma.
Collapse
Affiliation(s)
- Andrea T. Borchers
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6501, Davis, CA 95616 USA
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6501, Davis, CA 95616 USA
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6501, Davis, CA 95616 USA
| | - Laurel J. Gershwin
- Department of Pathology, Microbiology and Immunology, University of California, Davis, School of Veterinary Medicine, Davis, CA USA
| |
Collapse
|
23
|
Cui G, Zhu R, Qian Y, Deng J, Zhao L, Sun Y, Wang F. Genetic variation in attachment glycoprotein genes of human respiratory syncytial virus subgroups a and B in children in recent five consecutive years. PLoS One 2013; 8:e75020. [PMID: 24069376 PMCID: PMC3775769 DOI: 10.1371/journal.pone.0075020] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 08/08/2013] [Indexed: 11/19/2022] Open
Abstract
Human respiratory syncytial virus (HRSV) outranks other viral agents as the cause of respiratory tract diseases in children worldwide. Molecular epidemiological study of the virus provides useful information for the development of globally effective vaccine. We investigated the circulating pattern and genetic variation in the attachment glycoprotein genes of HRSV in Beijing during 5 consecutive seasons from 2007 to 2012. Out of 19,942 tested specimens, 3,160 (15.8%) were HRSV antigen-positive. The incidence of HRSV infection in males was significantly higher than in females. Of the total 723 (23.1%) randomly selected HRSV antigen-positive samples, 462 (63.9%) and 239 (33.1%) samples were identified as subgroup A and B, respectively. Subgroups A and B co-circulated in the 5 consecutive HRSV seasons, which showed a shifting mixed pattern of subgroup dominance. Complete G gene sequences were obtained from 190 HRSV-A and 72 HRSV-B by PCR for phylogenetic analysis. Although 4 new genotypes, NA3 and NA4 for HRSV-A and BA-C and CB1 for HRSV-B, were identified here, they were not predominant; NA1 and BA9 were the prevailing HRSV-A and -B genotypes, respectively. We provide the first report of a 9 consecutive nucleotide insertion in 3 CB1 genotype strains. One Beijing strain of ON1 genotype with a 72 nucleotide insertion was found among samples collected in February 2012. The reversion of codon states in glycosylation sites to previous ones were found from HRSV strains in this study, suggesting an immune-escape strategy of this important virus.
Collapse
Affiliation(s)
- Guanglin Cui
- Laboratory of Virology, Peking University Capital Institute of Pediatrics Teaching Hospital, Beijing, China
- Laboratory of Virology, Capital Institute of Pediatrics, Beijing, China
| | - Runan Zhu
- Laboratory of Virology, Capital Institute of Pediatrics, Beijing, China
| | - Yuan Qian
- Laboratory of Virology, Peking University Capital Institute of Pediatrics Teaching Hospital, Beijing, China
- Laboratory of Virology, Capital Institute of Pediatrics, Beijing, China
- * E-mail:
| | - Jie Deng
- Laboratory of Virology, Capital Institute of Pediatrics, Beijing, China
| | - Linqing Zhao
- Laboratory of Virology, Capital Institute of Pediatrics, Beijing, China
| | - Yu Sun
- Laboratory of Virology, Capital Institute of Pediatrics, Beijing, China
| | - Fang Wang
- Laboratory of Virology, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
24
|
Aamir UB, Alam MM, Sadia H, Zaidi SSZ, Kazi BM. Molecular characterization of circulating respiratory syncytial virus (RSV) genotypes in Gilgit Baltistan Province of Pakistan during 2011-2012 winter season. PLoS One 2013; 8:e74018. [PMID: 24058513 PMCID: PMC3772930 DOI: 10.1371/journal.pone.0074018] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 07/25/2013] [Indexed: 11/18/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the major cause of acute lower respiratory tract infections in young children, but very little is known about its epidemiology and circulating genotypes in Pakistan. This study analyzed the epidemiological and molecular characteristics of RSV genotypes detected in Pakistani children less than 2 years of age with acute respiratory tract infections (ARIs) in a tertiary care hospital in Gilgit Baltistan (GB) province during 2011-12 winter season. RSV was detected in 75 out of 105 children presenting with acute respiratory infection. Male infants between 2-6 months age made up the highest percentage of RSV positive cases. Epidemiological factors such as pre-maturity, mean weight, clinical features and diagnosis when compared between RSV positive and negative groups were found to be statistically insignificant. Phylogenetic analysis classified all 75 of the RSV strains into 71 strains of subgroups A and 4 strains of subgroup B, respectively. Strains belonging to subgroups A and B were further subdivided into NA1/GA2 and BA, respectively. The nucleotide and deduced amino acid sequence identities were relatively high among these strains (>90%). Both RSV-A and RSV-B isolates had two potential N-glycosylation sites in HVR2 of G protein and with heavy O-glycosylation of serine and threonine residues (G scores of 0.5-0.7). This report highlights the significance of RSV as a dominant viral etiologic agent of pediatric ARIs, and need for continued molecular epidemiological surveys for early detection of prevalent strains and newly emerging genotypes to understand epidemiology of RSV infections in various regions of Pakistan.
Collapse
Affiliation(s)
- Uzma Bashir Aamir
- Department of Virology, National Institute of Health, Chak Shahzad, Park Road, Islamabad, Pakistan
| | - Muhammad Masroor Alam
- Department of Virology, National Institute of Health, Chak Shahzad, Park Road, Islamabad, Pakistan
| | - Hajra Sadia
- Atta-ur-Rehman School of Applied BioSciences (ASAB), National University of Science & Technology (NUST), Islamabad, Pakistan
| | - Syed Sohail Zahoor Zaidi
- Department of Virology, National Institute of Health, Chak Shahzad, Park Road, Islamabad, Pakistan
- * E-mail:
| | - Birjees Mazher Kazi
- Department of Virology, National Institute of Health, Chak Shahzad, Park Road, Islamabad, Pakistan
| |
Collapse
|
25
|
Almajhdi FN, Farrag MA, Amer HM. Genetic diversity in the G protein gene of group A human respiratory syncytial viruses circulating in Riyadh, Saudi Arabia. Arch Virol 2013; 159:73-81. [PMID: 23884633 DOI: 10.1007/s00705-013-1792-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/07/2013] [Indexed: 11/26/2022]
Abstract
Human respiratory syncytial virus (HRSV) is a frequent cause of hospitalization and mortality in children worldwide. The molecular epidemiology and circulation pattern of HRSV in Saudi Arabia is mostly uncharted. In the current study, the genetic variability and phylogenetic relationships of HRSV type A strains circulating in Riyadh Province were explored. Nasopharyngeal aspirates were collected from hospitalized children with acute respiratory symptoms during the winter-spring seasons of 2007/08 and 2008/09. Among 175 samples analyzed, 39 (22.3 %) were positive for HRSV by one-step RT-PCR (59 % type A and 41 % type B). Propagation of positive samples in HEp-2 cells permitted the recovery of the first Saudi HRSV isolates. Genetic variability among Saudi HRSV-A strains was evaluated by sequence analysis of the complete attachment (G) protein gene. The nucleotide sequence was compared to representatives of the previously identified HRSV-A genotypes. Sequence and phylogenetic analysis showed that the strains examined in this study were very closely related at both the nucleotide and amino acid level, and all of them are clustered in the GA2 genotype (and mostly belonged to the NA-1 subtype). A total of 23 mutation sites, 14 of which resulted in an amino acid change, were recorded only in Saudi strains. This is the first report on genetic diversity of HRSV-A strains in Saudi Arabia. Further analysis of strains on a geographical and temporal basis is needed to fully understand HRSV-A circulation patterns in Saudi Arabia.
Collapse
Affiliation(s)
- Fahad N Almajhdi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia,
| | | | | |
Collapse
|
26
|
Mouna BHF, Hamida-Rebaï MB, Heylen E, Zeller M, Moussa A, Kacem S, Van Ranst M, Matthijnssens J, Trabelsi A. Sequence and phylogenetic analyses of human rotavirus strains: comparison of VP7 and VP8(∗) antigenic epitopes between Tunisian and vaccine strains before national rotavirus vaccine introduction. INFECTION GENETICS AND EVOLUTION 2013; 18:132-44. [PMID: 23684631 DOI: 10.1016/j.meegid.2013.05.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 05/07/2013] [Accepted: 05/07/2013] [Indexed: 12/23/2022]
Abstract
Group A rotaviruses (RVA) are the leading cause of severe gastroenteritis in infants and young children worldwide. Due to their epidemiological complexity, it is important to compare the genetic characteristics of vaccine strains with the RVA strains circulating before the introduction of the vaccine in the Tunisian immunization program. In the present study, the nucleotide sequences of VP7 and VP8∗ (n=31), the main targets for neutralizing antibodies, were determined. Comparison of antigenic epitopes of 11 G1P[8], 12 G2P[4], 4 G3P[8], 2 G4P[8], 1 G6P[9] and 1 G12P[8] RVA strains circulating in Tunisia from 2006 to 2011 with the RVA strains present in licensed vaccines showed that multiple amino acid differences existed in or near putative neutralizing domains of VP7 and VP8∗. The Tunisian G3 RVA strains were found to possess a potential extra N-linked glycosylation site. The Tunisian G4 RVA were closely related to the G4 vaccine strain in RotaTeq, belonging to the same lineage, but the alignment of their VP7 amino acids revealed an insertion of an asparagine residue at position 76 which is close to a glycosylation site (aa 69-71). Despite several differences detected between Tunisian and vaccine strains, which may affect binding of neutralizing antibodies, both vaccines are known to protect against the vast majority of the circulating genotypes, providing an indication of the high vaccine efficiency that can be expected in a future rotavirus immunization program.
Collapse
Affiliation(s)
- Ben Hadj Fredj Mouna
- UR06SP20, Laboratory of Microbiology, Sahloul University Hospital, 4054 Sousse, Tunisia
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Molecular epidemiology and disease severity of human respiratory syncytial virus in Vietnam. PLoS One 2013; 8:e45436. [PMID: 23349659 PMCID: PMC3551923 DOI: 10.1371/journal.pone.0045436] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 08/17/2012] [Indexed: 11/19/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of acute respiratory infections (ARIs) in children worldwide and can cause high mortality, especially in developing countries. However, information on the clinical and molecular characteristics of RSV infection in developing countries is limited. From April 2010 to May 2011, 1,082 nasopharyngeal swabs were collected from children with ARI admitted to the Children's Hospital 2, Ho Chi Minh City, Vietnam. Samples were screened for RSV and genotyped by reverse transcription-PCR and sequencing. Demographic and clinical data was also recorded. RSV was found in 23.8% (257/1,082) of samples. RSV A was the dominant subgroup, accounting for 91.4% (235/257), followed by RSV B, 5.1% (13/257), and 9 cases (3.5%) were mixed infection of these subgroups. The phylogenetic analysis revealed that all group A strains belonged to the GA2 genotype. All group B strains belonged to the recently identified BA genotype, and further clustered into 2 recently described subgenotypes BA9 and BA10. One GA2 genotype strain had a premature stop codon which shortened the G protein length. RSV infection was significantly associated with younger age and higher severity score than those without. Co-infection with other viruses did not affect disease severity. RSV A caused more severe disease than RSV B. The results from this study will not only contribute to the growing database on the molecular diversity of RSV circulating worldwide but may be also useful in clinical management and vaccine development.
Collapse
|
28
|
Melero JA, Moore ML. Influence of respiratory syncytial virus strain differences on pathogenesis and immunity. Curr Top Microbiol Immunol 2013; 372:59-82. [PMID: 24362684 DOI: 10.1007/978-3-642-38919-1_3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Molecular epidemiology studies have provided convincing evidence of antigenic and sequence variability among respiratory syncytial virus (RSV) isolates. Circulating viruses have been classified into two antigenic groups (A and B) that correlate with well-delineated genetic groups. Most sequence and antigenic differences (both inter- and intra-groups) accumulate in two hypervariable segments of the G-protein gene. Sequences of the G gene have been used for phylogenetic analyses. These studies have shown a worldwide distribution of RSV strains with both local and global replacement of dominant viruses with time. Although data are still limited, there is evidence that strain variation may contribute to differences in pathogenicity. In addition, there is some but limited evidence that RSV variation may be, at least partially, immune (antibody) driven. However, there is the paradox in RSV that, in contrast to other viruses (e.g., influenza viruses) the epitopes recognized by the most effective RSV-neutralizing antibodies are highly conserved. In contrast, antibodies that recognize strain-specific epitopes are poorly neutralizing. It is likely that this apparent contradiction is due to the lack of a comprehensive knowledge of the duration and specificities of the human antibody response against RSV antigens. Since there are some data supporting a group- (or clade-) specific antibody response after a primary infection in humans, it may be wise to consider the incorporation of strains representative of groups A and B (or their antigens) in future RSV vaccine development.
Collapse
Affiliation(s)
- José A Melero
- Unidad de Biología Viral, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain,
| | | |
Collapse
|
29
|
Forcic D, Ivancic-Jelecki J, Mlinaric-Galinovic G, Vojnovic G, Babic-Erceg A, Tabain I. A study of the genetic variability of human respiratory syncytial virus in Croatia, 2006-2008. J Med Virol 2012; 84:1985-92. [DOI: 10.1002/jmv.23425] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Murata Y, Catherman SC. Antibody response to the central unglycosylated region of the respiratory syncytial virus attachment protein in mice. Vaccine 2012; 30:5382-8. [PMID: 22728222 DOI: 10.1016/j.vaccine.2012.06.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/15/2012] [Accepted: 06/07/2012] [Indexed: 12/30/2022]
Abstract
We examined the humoral immune response to the unglycosylated central region of the respiratory syncytial virus (RSV) attachment (G) protein in mice following intranasal challenge at day 0 (primary) and day 21 (secondary) with subtype A (A2 strain) or B (B1 strain) RSV preparations. Our serological screening reagents included bacterially derived glutathione S-transferase (GST) fusion proteins, each bearing a portion of the RSV G central core (CC; residues 151-190), proximal central core (PCC; residues 151-172), and the distal central core (DCC; residues 173-190) and purified RSV G proteins from subtype A and B viruses. Convalescent sera collected on day 21 following primary RSV infection bore robust IgG response primarily against the homosubtypic RSV G DCC with relatively modest antigen affinity/avidity as demonstrated by brief incubation with 6M urea. In contrast, sera collected on day 42 following secondary homosubtypic RSV infection bore IgG titers of higher magnitudes and antigen affinity/avidity against the homosubtypic RSV G CC, PCC, and/or the DCC regions and full-length RSV G protein but not against the heterosubtypic RSV G protein or recombinant CC subdomains. In contrast, heterosubtypic secondary RSV infection elicits a broad array of IgG responses with titers of varying magnitudes to homo- and heterosubtypic RSV G CC regions as well as to purified F, Ga, and Gb proteins with the notable exception of minimal response to the RSV G DCC domain associated with the secondary RSV challenge. Our results have implications for RSV G-based serological assays as well as prophylactic immunotherapy and RSV vaccine development.
Collapse
Affiliation(s)
- Yoshihiko Murata
- Division of Infectious Diseases, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | | |
Collapse
|
31
|
Choi Y, Mason CS, Jones LP, Crabtree J, Jorquera PA, Tripp RA. Antibodies to the central conserved region of respiratory syncytial virus (RSV) G protein block RSV G protein CX3C-CX3CR1 binding and cross-neutralize RSV A and B strains. Viral Immunol 2012; 25:193-203. [PMID: 22551066 DOI: 10.1089/vim.2011.0094] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a primary cause of severe lower respiratory tract disease in infants, young children, and the elderly worldwide, and despite decades of effort, there remains no safe and effective vaccine. RSV modifies the host immune response during infection by CX3C chemokine mimicry adversely affecting pulmonary leukocyte chemotaxis and CX3CR1+ RSV-specific T-cell responses. In this study we investigated whether immunization of mice with RSV G protein polypeptides from strain A2 could induce antibodies that block G protein-CX3CR1 interactions of both RSV A and B strains. The results show that mice immunized with RSV A2 G polypeptides generate antibodies that block binding of RSV A2 and B1 native G proteins to CX3CR1, and that these antibodies effectively cross-neutralize both A and B strains of RSV. These findings suggest that vaccines that induce RSV G protein-CX3CR1 blocking antibodies may provide a disease intervention strategy in the efforts to develop safe and efficacious RSV vaccines.
Collapse
Affiliation(s)
- Youngjoo Choi
- College of Veterinary Medicine, Department of Infectious Disease, University of Georgia, Athens, Georgia, USA
| | | | | | | | | | | |
Collapse
|
32
|
Genetic analyses reveal differences in the VP7 and VP4 antigenic epitopes between human rotaviruses circulating in Belgium and rotaviruses in Rotarix and RotaTeq. J Clin Microbiol 2011; 50:966-76. [PMID: 22189107 DOI: 10.1128/jcm.05590-11] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Two live-attenuated rotavirus group A (RVA) vaccines, Rotarix (G1P[8]) and RotaTeq (G1-G4, P[8]), have been successfully introduced in many countries worldwide, including Belgium. The parental RVA strains used to generate the vaccines were isolated more than 20 years ago in France (G4 parental strain in RotaTeq) and the United States (all other parental strains). At present, little is known about the relationship between currently circulating human RVAs and the vaccine strains. In this study, we determined sequences for the VP7 and VP4 outer capsid proteins of representative G1P[8], G2P[4], G3P[8], G4P[8], G9P[8], and G12P[8] RVAs circulating in Belgium during 2007 to 2009. The analyses showed that multiple amino acid differences existed between the VP7 and VP4 antigenic epitopes of the vaccine viruses and the Belgian isolates, regardless of their G and P genotypes. However, the highest variability was observed among the circulating G1P[8] RVA strains and the G1 and P[8] components of both RVA vaccines. In particular, RVA strains of the P[8] lineage 4 (OP354-like) showed a significant number of amino acid differences with the P[8] VP4 of both vaccines. In addition, the circulating Belgian G3 RVA strains were found to possibly possess an extra N-linked glycosylation site compared to the G3 RVA vaccine strain of RotaTeq. These results indicate that the antigenic epitopes of RVA strains contained in the vaccines differ substantially from those of the currently circulating RVA strains in Belgium. Over time, these differences might result in selection for strains that escape the RVA neutralizing-antibody pressure induced by vaccines.
Collapse
|
33
|
Gaunt ER, Jansen RR, Poovorawan Y, Templeton KE, Toms GL, Simmonds P. Molecular epidemiology and evolution of human respiratory syncytial virus and human metapneumovirus. PLoS One 2011; 6:e17427. [PMID: 21390255 PMCID: PMC3046979 DOI: 10.1371/journal.pone.0017427] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 02/02/2011] [Indexed: 11/23/2022] Open
Abstract
Human respiratory syncytial virus (HRSV) and human metapneumovirus (HMPV) are ubiquitous respiratory pathogens of the Pneumovirinae subfamily of the Paramyxoviridae. Two major surface antigens are expressed by both viruses; the highly conserved fusion (F) protein, and the extremely diverse attachment (G) glycoprotein. Both viruses comprise two genetic groups, A and B. Circulation frequencies of the two genetic groups fluctuate for both viruses, giving rise to frequently observed switching of the predominantly circulating group. Nucleotide sequence data for the F and G gene regions of HRSV and HMPV variants from the UK, the Netherlands, Bangkok and data available from Genbank were used to identify clades of both viruses. Several contemporary circulating clades of HRSV and HMPV were identified by phylogenetic reconstructions. The molecular epidemiology and evolutionary dynamics of clades were modelled in parallel. Times of origin were determined and positively selected sites were identified. Sustained circulation of contemporary clades of both viruses for decades and their global dissemination demonstrated that switching of the predominant genetic group did not arise through the emergence of novel lineages each respiratory season, but through the fluctuating circulation frequencies of pre-existing lineages which undergo proliferative and eclipse phases. An abundance of sites were identified as positively selected within the G protein but not the F protein of both viruses. For HRSV, these were discordant with previously identified residues under selection, suggesting the virus can evade immune responses by generating diversity at multiple sites within linear epitopes. For both viruses, different sites were identified as positively selected between genetic groups.
Collapse
Affiliation(s)
- Eleanor R Gaunt
- Centre for Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom.
| | | | | | | | | | | |
Collapse
|
34
|
Murata Y, Lightfoote PM, Biear JN, Falsey AR, Walsh EE. Humoral response to the central unglycosylated region of the respiratory syncytial virus attachment protein. Vaccine 2010; 28:6242-6. [PMID: 20655403 DOI: 10.1016/j.vaccine.2010.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 07/02/2010] [Accepted: 07/02/2010] [Indexed: 10/19/2022]
Abstract
To characterize the humoral response to the unglycosylated central region of the respiratory syncytial virus (RSV) attachment (G) protein, we generated glutathione S-transferase (GST)-RSV G subdomains (central core (CC), residues 151-190; proximal central core (PCC), 151-172; and distal central core (DCC), 173-190) to screen paired sera from RSV subtype A- or B-infected adults in hospitalized or outpatient settings. Following RSV infection, a >or=4-fold increase in homo- and heterosubtypic IgG response was noted in most subjects against the RSV G CC and PCC regions; in contrast, such titer increases against the RSV G DCC was only noted in a homosubtypic manner. Our results have implications for RSV G-based serological diagnostics and vaccine development.
Collapse
Affiliation(s)
- Yoshihiko Murata
- Division of Infectious Diseases, Department of Medicine, University of Rochester School of Medicine and Dentistry and Infectious Diseases Unit, Rochester General Hospital, 601 Elmwood Avenue Box 689, Rochester, NY 14642, USA. Yoshihiko
| | | | | | | | | |
Collapse
|
35
|
Respiratory syncytial virus grown in Vero cells contains a truncated attachment protein that alters its infectivity and dependence on glycosaminoglycans. J Virol 2009; 83:10710-8. [PMID: 19656891 DOI: 10.1128/jvi.00986-09] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human respiratory syncytial virus (RSV) contains a heavily glycosylated 90-kDa attachment glycoprotein (G). Infection of HEp-2 and Vero cells in culture depends largely on virion G protein binding to cell surface glycosaminoglycans (GAGs). This GAG-dependent phenotype has been described for RSV grown in HEp-2 cells, but we have found that it is greatly reduced by a single passage in Vero cells. Virions produced from Vero cells primarily display a 55-kDa G glycoprotein. This smaller G protein represents a post-Golgi compartment form that is lacking its C terminus, indicating that the C terminus is required for GAG dependency. Vero cell-grown virus infected primary well-differentiated human airway epithelial (HAE) cell cultures 600-fold less efficiently than did HEp-2 cell-grown virus, indicating that the C terminus of the G protein is also required for virus attachment to this model of the in vivo target cells. This reduced infectivity for HAE cell cultures is not likely to be due to the loss of GAG attachment since heparan sulfate, the primary GAG used by RSV for attachment to HEp-2 cells, is not detectable at the apical surface of HAE cell cultures where RSV enters. Growing RSV stocks in Vero cells could dramatically reduce the initial infection of the respiratory tract in animal models or in volunteers receiving attenuated virus vaccines, thereby reducing the efficiency of infection or the efficacy of the vaccine.
Collapse
|
36
|
Emerging genotypes of human respiratory syncytial virus subgroup A among patients in Japan. J Clin Microbiol 2009; 47:2475-82. [PMID: 19553576 DOI: 10.1128/jcm.00115-09] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human respiratory syncytial virus (HRSV) is a common etiological agent of acute lower respiratory tract disease in infants. We report the molecular epidemiology of HRSV in Niigata, Japan, over six successive seasons (from 2001 to 2007) and the emerging genotypes of HRSV subgroup A (HRSV-A) strains. A total of 488 HRSV samples were obtained from 1,103 screened cases in a pediatric clinic in Niigata. According to the phylogenetic analysis, among the PCR-positive samples, 338 HRSV-A strains clustered into the previously reported genotypes GA5 and GA7 and two novel genotypes, NA1 and NA2, which were genetically close to GA2 strains. One hundred fifty HRSV-B strains clustered into three genotypes, namely, GB3, SAB3, and BA, which has a 60-nucleotide insertion in the second hypervariable region of the G protein. The NA1 strains emerged first, in the 2004-2005 season, and subsequently, the NA2 strain emerged in the 2005-2006 season. Both strains caused large epidemics in the 2005-2006 and 2006-2007 seasons. The average age of children who were infected with NA2 strains was significantly higher than that of those infected with GA5 and the frequency of reinfection by NA2 was the highest among all genotypes, suggesting that this genotype possessed new antigenicity for evading past host immunity. This is the first paper to show a possible correlation between an emerging genotype, NA2, and large outbreaks of HRSV in Japan. Continuing studies to follow up the genetic changes and to clarify the mechanism of reinfection in HRSV are important steps to understand HRSV infections.
Collapse
|
37
|
Oshansky CM, Zhang W, Moore E, Tripp RA. The host response and molecular pathogenesis associated with respiratory syncytial virus infection. Future Microbiol 2009; 4:279-97. [PMID: 19327115 DOI: 10.2217/fmb.09.1] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Since the isolation of respiratory syncytial virus (RSV) in 1956, its significance as an important human pathogen in infants, the elderly and the immunocompromised has been established. Many important mechanisms contributing to RSV infection, replication and disease pathogenesis have been uncovered; however, there is still insufficient knowledge in these and related areas, which must be addressed to facilitate the development of safe and effective vaccines and therapeutic treatments. A better understanding of the molecular pathogenesis of RSV infection, particularly the host-cell response and transcription profiles to RSV infection, is required to advance disease intervention strategies. Substantial information is accumulating regarding how RSV proteins modulate molecular signaling and regulation of cytokine and chemokine responses to infection, molecular signals regulating programmed cell death, and innate and adaptive immune responses to infection. This review discusses RSV manipulation of the host response to infection and related disease pathogenesis.
Collapse
Affiliation(s)
- Christine M Oshansky
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA.
| | | | | | | |
Collapse
|
38
|
Genetic variability of group A human respiratory syncytial virus strains circulating in Germany from 1998 to 2007. J Clin Microbiol 2009; 47:1800-10. [PMID: 19386848 DOI: 10.1128/jcm.02286-08] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The variability between respiratory syncytial virus (RSV) strains is one of the features of RSV infections that might contribute to the ability of the virus to infect people repeatedly and cause yearly outbreaks. To study the molecular epidemiology of RSV, more than 1,400 RSV isolates from human nasopharyngeal aspirates or nasal or throat swabs from patients with respiratory illness were identified and differentiated by TaqMan reverse transcription-PCR into groups A and B. RSV group A was dominant in seven out of nine epidemic seasons. Phylogenetic analysis revealed that RSV group A genotypes GA2 and GA5 circulated from 1998 to 2007. Genotype GA7 was present in only two seasons (1999 to 2000 and 2002 to 2003). Comparison of the synonymous mutation/nonsynonymous mutation ratios showed greater evidence for selection pressure for genotype GA2 (1.18) than for GA5 (4.34). Partial protein sequences were predicted to encode G proteins of 298 amino acids in length and in a few cases of G proteins of 297 amino acids in length. Amino acid analysis also revealed genotype-specific amino acid substitutions: two substitutions for genotype GA2, seven for GA5, and three for GA7. Two to four putative, genotype-specific N-linked glycosylation sites were determined. Predicted O-glycosylation sites included 22 to 34 residues. This study provides for the first time data on the circulation pattern of RSV group A genotypes and their molecular characterization in Germany during nine consecutive epidemic seasons.
Collapse
|
39
|
Positive selection results in frequent reversible amino acid replacements in the G protein gene of human respiratory syncytial virus. PLoS Pathog 2009; 5:e1000254. [PMID: 19119418 PMCID: PMC2603285 DOI: 10.1371/journal.ppat.1000254] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 12/04/2008] [Indexed: 11/23/2022] Open
Abstract
Human respiratory syncytial virus (HRSV) is the major cause of lower respiratory tract infections in children under 5 years of age and the elderly, causing annual disease outbreaks during the fall and winter. Multiple lineages of the HRSVA and HRSVB serotypes co-circulate within a single outbreak and display a strongly temporal pattern of genetic variation, with a replacement of dominant genotypes occurring during consecutive years. In the present study we utilized phylogenetic methods to detect and map sites subject to adaptive evolution in the G protein of HRSVA and HRSVB. A total of 29 and 23 amino acid sites were found to be putatively positively selected in HRSVA and HRSVB, respectively. Several of these sites defined genotypes and lineages within genotypes in both groups, and correlated well with epitopes previously described in group A. Remarkably, 18 of these positively selected tended to revert in time to a previous codon state, producing a “flip-flop” phylogenetic pattern. Such frequent evolutionary reversals in HRSV are indicative of a combination of frequent positive selection, reflecting the changing immune status of the human population, and a limited repertoire of functionally viable amino acids at specific amino acid sites. As part of the Viral Genetic Diversity Network (VGDN), we sequenced the second variable region (G2) of the G protein of human respiratory syncytial virus (HRSV) A and B from 568 patients sampled during 11 consecutive HRSV seasons (1995–2005) in the state of São Paulo, Brazil. A total of 933 HRSVA and 673 HRSB time-stamped sequences, including those sampled here and globally, was used for phylogenetic inference and the analysis of selection pressures. We identified 18 positively selected sites in both HRSVA (9 sites) and HRSVB (9 sites) that tended to revert in time to their previous codon state (i.e. exhibited a “flip-flop” pattern). We argue that these common evolutionary reversals are indicative of frequent positive selection, reflecting the changing immune status of the human population, coupled with a limited repertoire of functional viable amino acids at specific sites. This information is of particular importance since the ectodomain of the G protein is also a target site in vaccines that have so far proven unsuccessful and because it constitutes a significant step towards describing and understanding the immune-escape repertoire of this major human pathogen.
Collapse
|
40
|
Kaplan NM, Dove W, Abd-Eldayem SA, Abu-Zeid AF, Shamoon HE, Hart CA. Molecular epidemiology and disease severity of respiratory syncytial virus in relation to other potential pathogens in children hospitalized with acute respiratory infection in Jordan. J Med Virol 2008; 80:168-74. [PMID: 18041044 PMCID: PMC7166429 DOI: 10.1002/jmv.21067] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Human respiratory syncytial virus (HRSV) is the major viral cause of acute lower respiratory tract infections in children. Few data about the molecular epidemiology of respiratory syncytial virus in developing countries, such as Jordan, are available. The frequency and severity of infections caused by HRSV were assessed in hospitalized Jordanian children <5 years of age compared with other potential etiological agents. Overall a potential pathogen was detected in 78% (254/326) of the children. HRSV was detected in 43% (140/326) of the nasopharyngeal aspirates. HRSV was found more frequently during the winter (January/February), being less frequent or negligible by spring (March/April). Analysis of 135 HRSV‐positive strains using restriction fragment length polymorphism showed that 94 (70%) belonged to subgroup A, and 41 (30%) to subgroup B. There were also two cases of mixed genotypic infection. Only four of the six previously described N genotypes were detected with NP4 predominating. There were no associations between subgroup or N‐genogroup and disease severity. HRSV was significantly associated with more severe acute respiratory infection and the median age of children with HRSV was lower than for those without. Next in order of frequency were adenovirus (116/312: 37%), human bocavirus (57/312: 18%), rhinovirus (36/325: 11%), Chlamydia spp. (14/312: 4.5%), human metapneumovirus (8/326: 2.5%), human coronavirus NL63 (4/325: 1.2%), and influenza A virus (2/323: 0.6%). Influenza B; parainfluenza viruses 1–4, human coronavirus HKU1 and Mycoplasma pneumoniae were not detected. J. Med. Virol. 80:168–174, 2008. © 2007 Wiley‐Liss, Inc.
Collapse
Affiliation(s)
- Nasser M Kaplan
- Department of Microbiology, King Hussein Medical Centre, Amman, Jordan
| | | | | | | | | | | |
Collapse
|
41
|
Serum mannose-binding lectin levels are linked with respiratory syncytial virus (RSV) disease. J Clin Immunol 2007; 28:166-73. [PMID: 17952574 DOI: 10.1007/s10875-007-9141-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 09/19/2007] [Indexed: 01/08/2023]
Abstract
The innate immune response facilitates the quality of the adaptive immune response and is critical to an individual's susceptibility to infection and disease. Mannose-binding lectin (MBL) is a plasma protein with anti-microbial properties that binds a wide range of pathogens to flag them for immune destruction independent of antibodies. In this study, serum MBL levels were measured in 81 children <5 years old experiencing acute respiratory syncytial virus infection and in 40 control children to determine the association with disease severity. Almost 70% of all RSV-infected children had low to intermediate MBL levels (<500 ng/ml) compared to controls, and most of the <6 months old RSV interned patients had low to intermediate levels. No differences were detected in MBL levels between case and control children <1 month old. Analysis of the T-cell compartment in peripheral blood mononuclear cells (PBMC) from acute RSV-infected and control children showed that the percent CD4+ T cells was statistically lower in RSV-infected children > or =6 months old compared to controls, while the percent CD8+ T cells in RSV-infected and control PBMC was generally similar. These results suggest that low serum MBL levels may be a marker of RSV disease severity in children and that MBL may be important in limiting RSV disease pathogenesis.
Collapse
|
42
|
Rawling J, Melero JA. The use of monoclonal antibodies and lectins to identify changes in viral glycoproteins that are influenced by glycosylation: the case of human respiratory syncytial virus attachment (G) glycoprotein. Methods Mol Biol 2007; 379:109-25. [PMID: 17502674 DOI: 10.1007/978-1-59745-393-6_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
The influence of viral envelope glycans is often overlooked, but one should bear in mind that variable glycosylation may affect the properties of viral envelope glycoproteins and potentially alter the course of an infection. Hence, there is a need for simple methods that can be use to identify changes in the glycosylation pattern of viral glycoproteins in a large number of samples. We describe here methods for the analysis of cell-line specific changes in glycosylation of the respiratory syncytial virus (RSV) attachment glycoprotein (G), which involve the use of lectins and anti-carbohydrate antibodies. Given the role of the G glycoprotein in RSV antigenicity, we also describe procedures based on Western blotting to determine the effect of G protein glycosylation changes on reactivity with human sera. We found that glycosylation of the C-terminal domain of the G protein reduces reactivity with human sera, indicating that variable glycosylation may contribute to evasion of the humoral immune response by RSV.
Collapse
Affiliation(s)
- Joanna Rawling
- Biología Viral, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | | |
Collapse
|
43
|
Kulkarni-Kale U, Ojha J, Manjari GS, Deobagkar DD, Mallya AD, Dhere RM, Kapre SV. Mapping antigenic diversity and strain specificity of mumps virus: A bioinformatics approach. Virology 2007; 359:436-46. [PMID: 17081582 DOI: 10.1016/j.virol.2006.09.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 08/18/2006] [Accepted: 09/15/2006] [Indexed: 11/30/2022]
Abstract
Mumps is an acute infectious disease caused by mumps virus, a member of the family Paramyxoviridae. With the implementation of vaccination programs, mumps infection is under control. However, due to resurgence of mumps epidemics, there is a renewed interest in understanding the antigenic diversity of mumps virus. Hemagglutinin-neuraminidase (HN) is the major surface antigen and is known to elicit neutralizing antibodies. Mutational analysis of HN of wild-type and vaccine strains revealed that the hypervariable positions are distributed over the entire length with no detectable pattern. In the absence of experimentally derived 3D structure data, the structure of HN protein of mumps virus was predicted using homology modeling. Mutations mapped on the predicted structures were found to cluster on one of the surfaces. A predicted conformational epitope encompasses experimentally characterized epitopes suggesting that it is a major site for neutralization. These analyses provide rationale for strain specificity, antigenic diversity and varying efficacy of mumps vaccines.
Collapse
|
44
|
Montieri S, Puzelli S, Ciccozzi M, Calzoletti L, Di Martino A, Milia M, Rossi A, Piro F, Rezza G, Donatelli I. Amino acid changes in the attachment g glycoprotein of human respiratory syncytial viruses (subgroup A) isolated in Italy over several epidemics (1997–2006). J Med Virol 2007; 79:1935-42. [DOI: 10.1002/jmv.21012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
45
|
Scott PD, Ochola R, Sande C, Ngama M, Okiro EA, Medley GF, Nokes DJ, Cane PA. Comparison of strain-specific antibody responses during primary and secondary infections with respiratory syncytial virus. J Med Virol 2007; 79:1943-50. [DOI: 10.1002/jmv.20999] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
46
|
Matheson JW, Rich FJ, Cohet C, Grimwood K, Huang QS, Penny D, Hendy MD, Kirman JR. Distinct patterns of evolution between respiratory syncytial virus subgroups A and B from New Zealand isolates collected over thirty-seven years. J Med Virol 2006; 78:1354-64. [PMID: 16927286 DOI: 10.1002/jmv.20702] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Respiratory syncytial virus (RSV) is the most important cause of viral lower respiratory tract infections in infants and children worldwide. In New Zealand, infants with RSV disease are hospitalized at a higher rate than other industrialized countries, without a proportionate increase in known risk factors. The molecular epidemiology of RSV in New Zealand has never been described. Therefore, we analyzed viral attachment glycoprotein (G) gene sequences from 106 RSV subgroup A isolates collected in New Zealand between 1967 and 2003, and 38 subgroup B viruses collected between 1984 and 2004. Subgroup A and B sequences were aligned separately, and compared to sequences of viruses isolated from other countries during a similar period. Genotyping and clustering analyses showed RSV in New Zealand is similar and temporally related to viruses found in other countries. By quantifying temporal clustering, we found subgroup B viruses clustered more strongly than subgroup A viruses. RSV B sequences displayed more variability in stop codon usage and predicted protein length, and had a higher degree of predicted O-glycosylation site changes than RSV A. The mutation rate calculated for the RSV B G gene was significantly higher than for RSV A. Together, these data reveal that RSV subgroups exhibit different patterns of evolution, with subgroup B viruses evolving faster than A.
Collapse
|
47
|
Galiano M, Trento A, Ver L, Carballal G, Videla C. Genetic heterogeneity of G and F protein genes from Argentinean human metapneumovirus strains. J Med Virol 2006; 78:631-7. [PMID: 16555281 DOI: 10.1002/jmv.20586] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Human metapneumovirus (hMPV) is a newly identified paramixovirus, associated with respiratory illnesses in all age groups. Two genetic groups of hMPV have been described. The nucleotide sequences of the G and F genes from 11 Argentinean hMPV strains (1998-2003) were determined by RT-PCR and direct sequencing. Phylogenetic analysis showed that hMPV strains clustered into two main genetic lineages, A and B. Strains clustered into A group were split into two sublineages, A1 and A2. All strains belonging to group B clustered with representative strains from sublineage B1. No Argentinean strains belonged to sublineage B2. F sequences showed high percentage identities at nucleotide and amino acid levels. In contrast, G sequences showed high diversity between A and B groups. Most changes observed in the deduced G protein sequence were amino acid substitutions in the extracellular domain, and changes in stop codon usage leading to different lengths in the G proteins. High content of serine and threonine residues were also shown, suggesting that this protein would be highly glycosylated. The potential sites for N- and O-glycosylation seem to have a different conservation pattern between the two main groups. This is the first report on the genetic variability of the G and F protein genes of hMPV strains in South America. Two main genetic groups and at least three subgroups were revealed among Argentinean hMPV strains. The F protein seems to be highly conserved, whereas the G protein showed extensive diversity between groups A and B.
Collapse
Affiliation(s)
- Monica Galiano
- Laboratorio de Virología Clínica, Centro de Educación Médica e Investigaciones Clínicas, CEMIC, Hospital Universitario, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
48
|
Mekseepralard C, Toms GL, Routledge EG. Protection of mice against Human respiratory syncytial virus by wild-type and aglycosyl mouse–human chimaeric IgG antibodies to subgroup-conserved epitopes on the G glycoprotein. J Gen Virol 2006; 87:1267-1273. [PMID: 16603529 DOI: 10.1099/vir.0.81660-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Monoclonal antibodies (mAbs) to conserved epitopes on the G glycoprotein of human respiratory syncytial virus (HRSV) subgroup A fail to neutralize the virus in cell culture in the absence of complement, but are protective in rodent models of infection. They may have potential as prophylactic agents in human infants. In order to investigate the role of Fc-dependent pathways in protection by one such antibody, 1C2, the VH and VL genes were isolated by RT-PCR and assembled with human κ light-chain and human γ1 heavy-chain constant-region genes to form two mouse–human chimaeras, which were expressed in NS0 cells. One of the chimaeras carried a wild-type γ1 chain, whilst the other had an aglycosyl mutation in the CH2 domain rendering the antibody defective in complement activation and FcγR binding. Whilst both chimaeric antibodies exhibited similar avidity for HRSV in ELISA, only the fully glycosylated wild type was capable of neutralizing the virus in the presence of complement. In mice passively immunized with either murine or wild-type γ1 chimaeric antibody, no virus could be recovered from the lungs 4 days after intranasal inoculation of HRSV. In mice immunized with the aglycosyl γ1 chimaera, however, virus was present in the lungs following challenge, although virus titres were significantly reduced compared with controls (P<0·005). These results indicate that the protective effect of this antibody is mediated by both Fc-dependent and Fc-independent pathways.
Collapse
Affiliation(s)
- C Mekseepralard
- The Schools of Clinical Medical Sciences and Cell and Molecular Biosciences, The University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK
| | - G L Toms
- The Schools of Clinical Medical Sciences and Cell and Molecular Biosciences, The University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK
| | - E G Routledge
- The Schools of Clinical Medical Sciences and Cell and Molecular Biosciences, The University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
49
|
Savón C, Goyenechea A, Valdés O, Aguilar J, González G, Palerm L, Gonzalez G, Pérez Breña P. Respiratory Syncytial Virus Group A and B Genotypes and Disease Severity among Cuban Children. Arch Med Res 2006; 37:543-7. [PMID: 16624656 DOI: 10.1016/j.arcmed.2005.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Accepted: 08/24/2005] [Indexed: 10/24/2022]
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is the leading cause of serious lower tract infections in infants. Comorbid conditions such as chronic diseases and prematurity have been associated with greater severity illness, but virus genotypes and disease severity is still unknown. METHODS Forty selected strains of RSV group A and B from Cuban infants with acute respiratory disease (ARD) over five seasons were studied. Viral RNA was extracted and polymerase chain reaction (PCR) was carried out using direct primers directed to parts of the nucleoprotein (N) and fusion (F) genes, respectively. Amplicons were digested using restriction fragment length polymorphism (RFLP) to define the association between virus and disease severity. Disease severity was assessed as very mild, mild, moderate, and severe. RESULTS Three of six known N genotypes were detected. NP4 and NP3 were found more frequently; moreover, it was difficult to establish a relationship between N genotypes and disease severity. Five genotypes in F gene were found: F1, F2, F5, F9 and F11; F9 and F11 were associated with very mild disease, but F1 genotype appears to be associated with moderate to severe disease. CONCLUSIONS At least five combinations of N and F genotypes circulated in the studied infants in Cuba. Patients with F1NP4 genotype showed moderate to severe disease. Relationship between genotypes and disease severity was established.
Collapse
Affiliation(s)
- Clara Savón
- Instituto de Medicina Tropical Pedro Kourí, Havana, Cuba.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
|