1
|
Martin H, Coursan A, Lallement J, Di Miceli M, Kandiah J, Raho I, Buttler J, Guilloux JP, De Deurwaerdere P, Layé S, Routh VH, Guiard BP, Magnan C, Cruciani-Guglielmacci C, Fioramonti X. Serotonergic neurons are involved in the counter-regulatory response to hypoglycemia. J Neuroendocrinol 2023; 35:e13344. [PMID: 37857383 DOI: 10.1111/jne.13344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVES Intensive insulin therapy provides optimal glycemic control in patients with diabetes. However, intensive insulin therapy causes so-called iatrogenic hypoglycemia as a major adverse effect. The ventromedial hypothalamus (VMH) has been described as the primary brain area initiating the counter-regulatory response (CRR). Nevertheless, the VMH receives projections from other brain areas which could participate in the regulation of the CRR. In particular, studies suggest a potential role of the serotonin (5-HT) network. Thus, the objective of this study was to determine the contribution of 5-HT neurons in CRR control. METHODS Complementary approaches have been used to test this hypothesis in quantifying the level of 5-HT in several brain areas by HPLC in response to insulin-induced hypoglycemia, measuring the electrical activity of dorsal raphe (DR) 5-HT neurons in response to insulin or decreased glucose level by patch-clamp electrophysiology; and measuring the CRR hormone glucagon as an index of the CRR to the modulation of the activity of 5-HT neurons using pharmacological or pharmacogenetic approaches. RESULTS HPLC measurements show that the 5HIAA/5HT ratio is increased in several brain regions including the VMH in response to insulin-induced hypoglycemia. Patch-clamp electrophysiological recordings show that insulin, but not decreased glucose level, increases the firing frequency of DR 5-HT neurons in the DR. In vivo, both the pharmacological inhibition of 5-HT neurons by intraperitoneal injection of the 5-HT1A receptor agonist 8-OH-DPAT or the chemogenetic inhibition of these neurons reduce glucagon secretion, suggesting an impaired CRR. CONCLUSION Taken together, these data highlight a new neuronal network involved in the regulation of the CRR. In particular, this study shows that DR 5-HT neurons detect iatrogenic hypoglycemia in response to the increased insulin level and may play an important role in the regulation of CRR.
Collapse
Affiliation(s)
- Hugo Martin
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Adeline Coursan
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | | | - Mathieu Di Miceli
- Worcester Biomedical Research Group, School of Science and the Environment, University of Worcester, Worcester, UK
| | - Janany Kandiah
- Université Paris Cité, BFA, UMR 8251, CNRS, Paris, France
| | - Ilyès Raho
- Université Paris Cité, BFA, UMR 8251, CNRS, Paris, France
| | - Jasmine Buttler
- INCIA, UMR CNRS, Bordeaux University, Neurocampus, Bordeaux, France
| | | | | | - Sophie Layé
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Vanessa H Routh
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, New Jersey, USA
| | - Bruno P Guiard
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Toulouse, France
| | | | | | - Xavier Fioramonti
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| |
Collapse
|
2
|
Hampton RF, Jimenez-Gonzalez M, Stanley SA. Unravelling innervation of pancreatic islets. Diabetologia 2022; 65:1069-1084. [PMID: 35348820 PMCID: PMC9205575 DOI: 10.1007/s00125-022-05691-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/08/2022] [Indexed: 01/05/2023]
Abstract
The central and peripheral nervous systems play critical roles in regulating pancreatic islet function and glucose metabolism. Over the last century, in vitro and in vivo studies along with examination of human pancreas samples have revealed the structure of islet innervation, investigated the contribution of sympathetic, parasympathetic and sensory neural pathways to glucose control, and begun to determine how the structure and function of pancreatic nerves are disrupted in metabolic disease. Now, state-of-the art techniques such as 3D imaging of pancreatic innervation and targeted in vivo neuromodulation provide further insights into the anatomy and physiological roles of islet innervation. Here, we provide a summary of the published work on the anatomy of pancreatic islet innervation, its roles, and evidence for disordered islet innervation in metabolic disease. Finally, we discuss the possibilities offered by new technologies to increase our knowledge of islet innervation and its contributions to metabolic regulation.
Collapse
Affiliation(s)
- Rollie F Hampton
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Jimenez-Gonzalez
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah A Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
3
|
Walldorf J, Porzner M, Neumann M, Joodi G, Niess JH, von Boyen G, Mäder K, Weissbach J, Kleger A, Seufferlein T. The Selective 5-HT1A Agonist SR57746A Protects Intestinal Epithelial Cells and Enteric Glia Cells and Promotes Mucosal Recovery in Experimental Colitis. Inflamm Bowel Dis 2022; 28:423-433. [PMID: 34417821 DOI: 10.1093/ibd/izab191] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Neurotrophic growth factors can stabilize the intestinal barrier by preventing the apoptosis of enteric glial cells (EGCs) and enterocytes. We reasoned that a selective 5-HT1A receptor agonist may have neuroprotective properties in the gut and that topical application of SR57746A might be an effective treatment strategy in inflammatory bowel disease (IBD). METHODS The therapeutic potential of 5-HT1A receptor agonist SR57746A in IBD was evaluated in vitro (nontransformed NCM460 colonic epithelial cells, SW480 colorectal carcinoma cells) and in vivo (murine dextran sulfate sodium [DSS] colitis and CD4-T-cell transfer colitis). In vitro, we analyzed the effect of SR57746A on apoptosis in intestinal epithelial cells (IECs) and EGCs, and upon proliferation, migration, and intracellular signaling in IECs. In vivo, the effect of topical application of SR57746 on disease activity and on histological and endoscopic findings was compared with intraperitoneal infliximab and placebo, respectively. RESULTS The SR57746A activates PI3-K/AKT- and ERK-signaling in IECs. Depending on ERK- and AKT activation, SR57746A potently prevents apoptosis of IECs without inducing proliferation or migration in these cells. Moreover, SR57746A prevented apoptosis in EGCs in vitro. Topical SR57746A treatment significantly reduced mucosal injury in 2 experimental murine colitis models and was as effective as intraperitoneal infliximab treatment. CONCLUSIONS Treatment with SR57746A prevents inflammatory cell damage and apoptosis in IECs and EGCs, similar to the neurotrophic effects of EGCs on IECs. Topical treatment with SR57746A could be a candidate for clinical evaluation in the treatment of IBD.
Collapse
Affiliation(s)
- Jens Walldorf
- Department of Internal Medicine I, Martin Luther University Halle-Wittenberg Halle (Saale), Germany
| | | | - Martin Neumann
- Department of Internal Medicine I, Martin Luther University Halle-Wittenberg Halle (Saale), Germany
| | - Golsa Joodi
- Department of Internal Medicine I, Martin Luther University Halle-Wittenberg Halle (Saale), Germany.,Yale School of Medicine, New Haven, Connecticut, USA
| | - Jan Hendrik Niess
- Department of Biomedicine, University of Basel, Basel, Switzerland.,University Center for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital of Basel, Basel, Switzerland
| | - Georg von Boyen
- Department of Internal Medicine, Hospital of Sigmaringen, Germany
| | - Karsten Mäder
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg Halle (Saale), Germany
| | - Julia Weissbach
- Department of Internal Medicine I, Martin Luther University Halle-Wittenberg Halle (Saale), Germany
| | - Alexander Kleger
- Department of Internal Medicine I, University of Ulm, Ulm, Germany
| | | |
Collapse
|
4
|
Layunta E, Buey B, Mesonero JE, Latorre E. Crosstalk Between Intestinal Serotonergic System and Pattern Recognition Receptors on the Microbiota-Gut-Brain Axis. Front Endocrinol (Lausanne) 2021; 12:748254. [PMID: 34819919 PMCID: PMC8607755 DOI: 10.3389/fendo.2021.748254] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Disruption of the microbiota-gut-brain axis results in a wide range of pathologies that are affected, from the brain to the intestine. Gut hormones released by enteroendocrine cells to the gastrointestinal (GI) tract are important signaling molecules within this axis. In the search for the language that allows microbiota to communicate with the gut and the brain, serotonin seems to be the most important mediator. In recent years, serotonin has emerged as a key neurotransmitter in the gut-brain axis because it largely contributes to both GI and brain physiology. In addition, intestinal microbiota are crucial in serotonin signaling, which gives more relevance to the role of the serotonin as an important mediator in microbiota-host interactions. Despite the numerous investigations focused on the gut-brain axis and the pathologies associated, little is known regarding how serotonin can mediate in the microbiota-gut-brain axis. In this review, we will mainly discuss serotonergic system modulation by microbiota as a pathway of communication between intestinal microbes and the body on the microbiota-gut-brain axis, and we explore novel therapeutic approaches for GI diseases and mental disorders.
Collapse
Affiliation(s)
- Elena Layunta
- Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
| | - Berta Buey
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Universidad de Zaragoza, Zaragoza, Spain
| | - Jose Emilio Mesonero
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón—IA2 (Universidad de Zaragoza–CITA), Zaragoza, Spain
| | - Eva Latorre
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
- Instituto Agroalimentario de Aragón—IA2 (Universidad de Zaragoza–CITA), Zaragoza, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
5
|
Aurora SK, Shrewsbury SB, Ray S, Hindiyeh N, Nguyen L. A link between gastrointestinal disorders and migraine: Insights into the gut-brain connection. Headache 2021; 61:576-589. [PMID: 33793965 PMCID: PMC8251535 DOI: 10.1111/head.14099] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/03/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022]
Abstract
Background Migraine is a complex, multifaceted, and disabling headache disease that is often complicated by gastrointestinal (GI) conditions, such as gastroparesis, functional dyspepsia, and cyclic vomiting syndrome (CVS). Functional dyspepsia and CVS are part of a spectrum of disorders newly classified as disorders of gut–brain interaction (DGBI). Gastroparesis and functional dyspepsia are both associated with delayed gastric emptying, while nausea and vomiting are prominent in CVS, which are also symptoms that commonly occur with migraine attacks. Furthermore, these gastric disorders are comorbidities frequently reported by patients with migraine. While very few studies assessing GI disorders in patients with migraine have been performed, they do demonstrate a physiological link between these conditions. Objective To summarize the available studies supporting a link between GI comorbidities and migraine, including historical and current scientific evidence, as well as provide evidence that symptoms of GI disorders are also observed outside of migraine attacks during the interictal period. Additionally, the importance of route of administration and formulation of migraine therapies for patients with GI symptoms will be discussed. Methods A literature search of PubMed for articles relating to the relationship between the gut and the brain with no restriction on the publication year was performed. Studies providing scientific support for associations of gastroparesis, functional dyspepsia, and CVS with migraine and the impact these associations may have on migraine treatment were the primary focus. This is a narrative review of identified studies. Results Although the association between migraine and GI disorders has received very little attention in the literature, the existing evidence suggests that they may share a common etiology. In particular, the relationship between migraine, gastric motility, and vomiting has important clinical implications in the treatment of migraine, as delayed gastric emptying and vomiting may affect oral dosing compliance, and thus, the absorption and efficacy of oral migraine treatments. Conclusions There is evidence of a link between migraine and GI comorbidities, including those under the DGBI classification. Many patients do not find adequate relief with oral migraine therapies, which further necessitates increased recognition of GI disorders in patients with migraine by the headache community.
Collapse
Affiliation(s)
- Sheena K Aurora
- Medical Affairs, Impel NeuroPharma, Seattle, WA, USA.,Department of Neurology, Stanford University, Stanford, CA, USA
| | | | - Sutapa Ray
- Medical Affairs, Impel NeuroPharma, Seattle, WA, USA
| | - Nada Hindiyeh
- Department of Neurology, Stanford University, Stanford, CA, USA
| | - Linda Nguyen
- Department of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| |
Collapse
|
6
|
Bischoff SC, Kaden-Volynets V, Filipe Rosa L, Guseva D, Seethaler B. Regulation of the gut barrier by carbohydrates from diet - Underlying mechanisms and possible clinical implications. Int J Med Microbiol 2021; 311:151499. [PMID: 33864957 DOI: 10.1016/j.ijmm.2021.151499] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/13/2021] [Accepted: 03/22/2021] [Indexed: 02/09/2023] Open
Abstract
The gut barrier has been recognized as being of relevance in the pathogenesis of multiple different diseases ranging from inflammatory bowel disease, irritable bowel syndrome, inflammatory joint disease, fatty liver disease, and cardiometabolic disorders. The regulation of the gut barrier is, however, poorly understood. Especially, the role of food components such as sugars and complex carbohydrates has been discussed controversially in this respect. More recently, the intestinal microbiota has been proposed as an important regulator of the gut barrier. Whether the microbiota affects the barrier by its own, or whether food components such as carbohydrates mediate their effects through alterations of the microbiota composition or its metabolites, is still not clear. In this review, we will summarize the current knowledge on this topic derived from both animal and human studies and discuss data for possible clinical impact.
Collapse
Affiliation(s)
- Stephan C Bischoff
- Nstitute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| | - Valentina Kaden-Volynets
- Nstitute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany; Acousia Therapeutics GmbH & Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany.
| | - Louisa Filipe Rosa
- Nstitute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| | - Daria Guseva
- Nstitute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| | - Benjamin Seethaler
- Nstitute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
7
|
Abstract
At the time of Ivan Pavlov, pancreatic innervation was studied by looking at pancreas secretions in response to electrical stimulation of nerves. Nowadays we have ways to visualize neuronal activity in real time thanks to advances in fluorescent reporters and imaging techniques. We also have very precise optogenetic and pharmacogenetic approaches that allow neuronal manipulations in a very specific manner. These technological advances have been extensively employed for studying the central nervous system and are just beginning to be incorporated for studying visceral innervation. Pancreatic innervation is complex, and the role it plays in physiology and pathophysiology of the organ is still not fully understood. In this review we highlight anatomical aspects of pancreatic innervation, techniques for pancreatic neuronal labeling, and approaches for imaging pancreatic innervation in vitro and in vivo.
Collapse
|
8
|
Xia Z, Zhang Y, Li C, Xu Y, Dong J, Wang L, He Q, Zou X, Wu H, Han J, Cai M, Du Y, Wei L, Shang J. Traditional Tibetan medicine Anzhijinhua San attenuates ovalbumin-induced diarrhea by regulating the serotonin signaling system in mice. JOURNAL OF ETHNOPHARMACOLOGY 2019; 236:484-494. [PMID: 30738115 DOI: 10.1016/j.jep.2019.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/02/2018] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tibetan medicine has been practiced for 3800 years. Anzhijinhua San (AZJHS), which is a traditional Tibetan medicine, has been effective in the treatment of indigestion, anorexia and cold diarrhea. However, the effects of AZJHS on allergic diarrhea have not been reported. AIM OF THE STUDY The aim of the present study was to elucidate the effect of AZJHS on experimental ovalbumin-induced diarrhea and elucidate its possible mechanism. MATERIALS AND METHODS Female BALB/c mice were sensitized by intraperitoneal injection with 50 μg ovalbumin (OVA) and 1 mg alum in saline twice during a 2-week period. From day 28, mice were orally challenged with OVA (50 mg) every other day for a total of ten times. AZJHS (46.8 and 468.0 mg/kg) was orally administered every other day from day 0-46. Food allergy symptoms were evaluated. OVA- specific IgE, 5-HT and its metabolites in serum were determined. Immunohistochemical and histopathology were performed in gastrointestinal tract tissues. 5-HT-related gene expression was assayed in the colon. RESULTS Severe symptoms of allergic diarrhea were observed in the model group (diarrhea, anaphylactic response, and rectal temperature). AZJHS (46.8 and 468.0 mg/kg) significantly reduced mouse diarrhea and significantly prevented the increases in OVA-specific IgE levels (P < 0.05), which challenge with OVA. AZJHS (46.8 and 468.0 mg/kg) significantly prevented the increases in 5-HT-positive cells. The nuclei of EC cells in the AZJHS (46.8 and 468.0 mg/kg) group increased in size and the secretory granules were fewer in number compared with those in the model group. AZJHS (46.8 and 468.0 mg/kg) significantly increased the relative fold changes of 5-HTP and 5-HT compared with the model group. The mRNA expression of the serotonin transporter (Sert) and serotonin receptor 3A (Htr3a) was significantly decreased after the 10th challenge with OVA, and AZJHS (46.8 and 468.0 mg/kg) significantly increased these levels. CONCLUSIONS We demonstrated that the administration of AZJHS attenuated OVA-induced diarrhea by regulating the serotonin pathway. These results indicated that AZJHS may be a potential candidate as an anti-allergic diarrhea agent.
Collapse
Affiliation(s)
- Zhenjiang Xia
- Qinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China; Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yifan Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| | - Cen Li
- Qinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China; Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China.
| | - Yan Xu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| | - Jinjin Dong
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| | - Lulu Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| | - Qiangqiang He
- Qinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China; Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaoyan Zou
- Qinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China; Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Huali Wu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| | - Jichun Han
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| | - Minxuan Cai
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| | - Yuzhi Du
- Qinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China; Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China.
| | - Lixin Wei
- Qinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China; Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China.
| | - Jing Shang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; Qinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China; Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| |
Collapse
|
9
|
Cataldo Bascuñan LR, Lyons C, Bennet H, Artner I, Fex M. Serotonergic regulation of insulin secretion. Acta Physiol (Oxf) 2019; 225:e13101. [PMID: 29791774 DOI: 10.1111/apha.13101] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 12/13/2022]
Abstract
The exact physiological role for the monoamine serotonin (5-HT) in modulation of insulin secretion is yet to be fully understood. Although the presence of this monoamine in islets of Langerhans is well established, it is only with recent advances that the complex signalling network in islets involving 5-HT is being unravelled. With more than fourteen different 5-HT receptors expressed in human islets and receptor-independent mechanisms in insulin-producing β-cells, our understanding of 5-HT's regulation of insulin secretion is increasing. It is now widely accepted that failure of the pancreatic β-cell to release sufficient amounts of insulin is the main cause of type 2 diabetes (T2D), an ongoing global epidemic. In this context, 5-HT signalling may be of importance. In fact, 5-HT may serve an essential role in regulating the release of insulin and glucagon, the two main hormones that control glucose and lipid homoeostasis. In this review, we will discuss past and current understanding of 5-HT's role in the endocrine pancreas.
Collapse
Affiliation(s)
- L. R. Cataldo Bascuñan
- Endocrine Cell Differentiation and Function Group; Stem Cell Centre; Lund University; Lund Sweden
| | - C. Lyons
- Department of Clinical Sciences in Malmö; Unit of Molecular Metabolism; Lund University Diabetes Centre; Lund University; Malmö Sweden
- Clinical Research Center; Lund University; Malmö Sweden
- Malmö University Hospital; Lund University; Malmö Sweden
| | - H. Bennet
- Department of Clinical Sciences in Malmö; Unit of Molecular Metabolism; Lund University Diabetes Centre; Lund University; Malmö Sweden
- Clinical Research Center; Lund University; Malmö Sweden
- Malmö University Hospital; Lund University; Malmö Sweden
| | - I. Artner
- Endocrine Cell Differentiation and Function Group; Stem Cell Centre; Lund University; Lund Sweden
| | - M. Fex
- Department of Clinical Sciences in Malmö; Unit of Molecular Metabolism; Lund University Diabetes Centre; Lund University; Malmö Sweden
- Clinical Research Center; Lund University; Malmö Sweden
- Malmö University Hospital; Lund University; Malmö Sweden
| |
Collapse
|
10
|
Javid FA, Afshin-Javid S, Horn CC. Further investigation of the effects of 5-hydroxytryptamine, 8-OH-DPAT and DOI to mediate contraction and relaxation responses in the intestine and emesis in Suncus murinus. Eur J Pharmacol 2018; 821:79-87. [PMID: 29277716 DOI: 10.1016/j.ejphar.2017.12.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 11/29/2022]
Abstract
5-HT receptors are implicated in many gastrointestinal disorders. However, the precise role of 5-HT in mediating GI responses in Suncus murnius is still unclear. Therefore in this study, the effects of 5-HT and its agonists were investigated in Suncus. The involvement of 5-HT2C receptors in mediating emesis was also investigated. The ability of 5-HT and its agonists/antagonists at 5-HT1A and 5-HT2 to modify GI motility was investigated in vitro and in vivo. WAY100635 (a 5-HT1A antagonist) inhibited the contraction response to 5-HT in the proximal segments without affecting the maximum response; whilst enhancing the contraction to 5-HT (>30.0nM) in the distal intestine. The selective 5-HT2A and 5-HT2B receptor antagonists MDL-100907 and RS-127445 attenuated 5-HT-induced contractions (<10.0µM) in the distal segments. RS-127445 also attenuated 5-HT-induced contractions in the central segments. The selective 5-HT2C receptor antagonist SB-242084, attenuated the responses to 5-HT (> 3.0nM) in the proximal and central but not the distal regions. 8-OH-DPAT-induced relaxation was resistant to the antagonism by 5-HT1A/7 antagonists. DOI in the presence of 5-HT1A/2A/2B/2C antagonists induced greater contraction responses (>1.0µM) in most tissues, whilst RS-127445, or SB-242084, reduced the responses to DOI (< 1.0µM) in some tissues. SB-242084 also suppressed emesis-induced by motion and intragastric CuSO4. In conclusion, within different regions of intestine, 5-HT2 receptors are differently involved in contraction and emetic responses and that 8-OH-DPAT induces relaxation via non-5-HT1A/7 receptors. Suncus could provide a model to investigate these diverse actions of 5-HT.
Collapse
Affiliation(s)
- Farideh A Javid
- Division of Pharmacy and Pharmaceutical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK.
| | - Saeed Afshin-Javid
- College of Engineering Design and Physical Sciences Tower D -203, Brunel University London, Uxbridge UB8 3PH, UK
| | - Charles C Horn
- Biobehavioral Oncology Program, University of Pittsburgh Cancer Institute, United States; Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Pittsburgh School of Medicine, United States; Department of Anesthesiology, University of Pittsburgh School of Medicine, United States; Center for Neuroscience, University of Pittsburgh, United States
| |
Collapse
|
11
|
Linan-Rico A, Ochoa-Cortes F, Beyder A, Soghomonyan S, Zuleta-Alarcon A, Coppola V, Christofi FL. Mechanosensory Signaling in Enterochromaffin Cells and 5-HT Release: Potential Implications for Gut Inflammation. Front Neurosci 2016; 10:564. [PMID: 28066160 PMCID: PMC5165017 DOI: 10.3389/fnins.2016.00564] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/22/2016] [Indexed: 12/12/2022] Open
Abstract
Enterochromaffin (EC) cells synthesize 95% of the body 5-HT and release 5-HT in response to mechanical or chemical stimulation. EC cell 5-HT has physiological effects on gut motility, secretion and visceral sensation. Abnormal regulation of 5-HT occurs in gastrointestinal disorders and Inflammatory Bowel Diseases (IBD) where 5-HT may represent a key player in the pathogenesis of intestinal inflammation. The focus of this review is on mechanism(s) involved in EC cell "mechanosensation" and critical gaps in our knowledge for future research. Much of our knowledge and concepts are from a human BON cell model of EC, although more recent work has included other cell lines, native EC cells from mouse and human and intact mucosa. EC cells are "mechanosensors" that respond to physical forces generated during peristaltic activity by translating the mechanical stimulus (MS) into an intracellular biochemical response leading to 5-HT and ATP release. The emerging picture of mechanosensation includes Piezo 2 channels, caveolin-rich microdomains, and tight regulation of 5-HT release by purines. The "purinergic hypothesis" is that MS releases purines to act in an autocrine/paracrine manner to activate excitatory (P2Y1, P2Y4, P2Y6, and A2A/A2B) or inhibitory (P2Y12, A1, and A3) receptors to regulate 5-HT release. MS activates a P2Y1/Gαq/PLC/IP3-IP3R/SERCA Ca2+signaling pathway, an A2A/A2B-Gs/AC/cAMP-PKA signaling pathway, an ATP-gated P2X3 channel, and an inhibitory P2Y12-Gi/o/AC-cAMP pathway. In human IBD, P2X3 is down regulated and A2B is up regulated in EC cells, but the pathophysiological consequences of abnormal mechanosensory or purinergic 5-HT signaling remain unknown. EC cell mechanosensation remains poorly understood.
Collapse
Affiliation(s)
- Andromeda Linan-Rico
- Department of Anesthesiology, Wexner Medical Center at Ohio State UniversityColumbus, OH, USA; CONACYT-Centro Universitario de Investigaciones Biomedicas, University of ColimaColima, Mexico
| | - Fernando Ochoa-Cortes
- Department of Anesthesiology, Wexner Medical Center at Ohio State University Columbus, OH, USA
| | - Arthur Beyder
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Department of Physiology and Biomedical Engineering, Mayo Clinic Rochester, MN, USA
| | - Suren Soghomonyan
- Department of Anesthesiology, Wexner Medical Center at Ohio State University Columbus, OH, USA
| | - Alix Zuleta-Alarcon
- Department of Anesthesiology, Wexner Medical Center at Ohio State University Columbus, OH, USA
| | - Vincenzo Coppola
- SBS-Cancer Biology and Genetics, Ohio State University Columbus, OH, USA
| | - Fievos L Christofi
- Department of Anesthesiology, Wexner Medical Center at Ohio State University Columbus, OH, USA
| |
Collapse
|
12
|
Margolis KG, Gershon MD. Enteric Neuronal Regulation of Intestinal Inflammation. Trends Neurosci 2016; 39:614-624. [PMID: 27450201 DOI: 10.1016/j.tins.2016.06.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/24/2016] [Accepted: 06/27/2016] [Indexed: 02/07/2023]
Abstract
Recent research has highlighted the importance of the two-way interaction between the nervous and immune systems. This interaction is particularly important in the bowel because of the unique properties of this organ. The lumen of the gut is lined by a very large but remarkably thin surface that separates the body from the enteric microbiome. Immune defenses against microbial invasion are thus well developed and neuroimmune interactions are important in regulating and integrating these defenses. Important concepts in the phylogeny of neuroimmunity, enteric neuronal and glial regulation of immunity, changes that occur in the enteric nervous system during inflammation, the fundamental role of serotonin (5-HT) in enteric neuroimmune mechanisms, and future perspectives are reviewed.
Collapse
Affiliation(s)
- Kara Gross Margolis
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, 620 West 168th Street, New York, NY 10032, USA
| | - Michael D Gershon
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, 650 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
13
|
Bennet H, Mollet IG, Balhuizen A, Medina A, Nagorny C, Bagge A, Fadista J, Ottosson-Laakso E, Vikman P, Dekker-Nitert M, Eliasson L, Wierup N, Artner I, Fex M. Serotonin (5-HT) receptor 2b activation augments glucose-stimulated insulin secretion in human and mouse islets of Langerhans. Diabetologia 2016; 59:744-54. [PMID: 26733006 DOI: 10.1007/s00125-015-3847-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/04/2015] [Indexed: 12/22/2022]
Abstract
AIMS/HYPOTHESIS The Gq-coupled 5-hydroxytryptamine 2B (5-HT2B) receptor is known to regulate the proliferation of islet beta cells during pregnancy. However, the role of serotonin in the control of insulin release is still controversial. The aim of the present study was to explore the role of the 5-HT2B receptor in the regulation of insulin secretion in mouse and human islets, as well as in clonal INS-1(832/13) cells. METHODS Expression of HTR2B mRNA and 5-HT2B protein was examined with quantitative real-time PCR, RNA sequencing and immunohistochemistry. α-Methyl serotonin maleate salt (AMS), a serotonin receptor agonist, was employed for robust 5-HT2B receptor activation. Htr2b was silenced with small interfering RNA in INS-1(832/13) cells. Insulin secretion, Ca(2+) response and oxygen consumption rate were determined. RESULTS Immunohistochemistry revealed that 5-HT2B is expressed in human and mouse islet beta cells. Activation of 5-HT2B receptors by AMS enhanced glucose-stimulated insulin secretion (GSIS) in human and mouse islets as well as in INS-1(832/13) cells. Silencing Htr2b in INS-1(832/13) cells led to a 30% reduction in GSIS. 5-HT2B receptor activation produced robust, regular and sustained Ca(2+) oscillations in mouse islets with an increase in both peak distance (period) and time in the active phase as compared with control. Enhanced insulin secretion and Ca(2+) changes induced by AMS coincided with an increase in oxygen consumption in INS-1(832/13) cells. CONCLUSIONS/INTERPRETATION Activation of 5-HT2B receptors stimulates GSIS in beta cells by triggering downstream changes in cellular Ca(2+) flux that enhance mitochondrial metabolism. Our findings suggest that serotonin and the 5-HT2B receptor stimulate insulin release.
Collapse
Affiliation(s)
- Hedvig Bennet
- Lund University Diabetes Centre, Department of Clinical Sciences, Unit of Diabetes and Celiac disease, Clinical Research Centre, Jan Waldenströms gata 35, Clinical Research Centre House 91:10, Skåne University Hospital Malmö, SE-20502, Malmö, Sweden.
| | - Inês G Mollet
- Lund University Diabetes Centre, Islet Cell Exocytosis, Malmö, Sweden
| | - Alexander Balhuizen
- Lund University Diabetes Centre, Department of Clinical Sciences, Unit of Diabetes and Celiac disease, Clinical Research Centre, Jan Waldenströms gata 35, Clinical Research Centre House 91:10, Skåne University Hospital Malmö, SE-20502, Malmö, Sweden
| | - Anya Medina
- Lund University Diabetes Centre, Department of Clinical Sciences, Unit of Diabetes and Celiac disease, Clinical Research Centre, Jan Waldenströms gata 35, Clinical Research Centre House 91:10, Skåne University Hospital Malmö, SE-20502, Malmö, Sweden
| | - Cecilia Nagorny
- Lund University Diabetes Centre, Molecular Metabolism, Malmö, Sweden
| | - Annika Bagge
- Lund University Diabetes Centre, Molecular Metabolism, Malmö, Sweden
| | - Joao Fadista
- Lund University Diabetes Centre, Diabetes and Endocrinology, Malmö, Sweden
| | | | - Petter Vikman
- Lund University Diabetes Centre, Diabetes and Endocrinology, Malmö, Sweden
| | - Marloes Dekker-Nitert
- Lund University Diabetes Centre, Diabetes and Endocrinology, Malmö, Sweden
- Royal Brisbane Clinical School, UQ Centre for Clinical Research, The University of Queensland, Herston, QLD, Australia
| | - Lena Eliasson
- Lund University Diabetes Centre, Islet Cell Exocytosis, Malmö, Sweden
| | - Nils Wierup
- Lund University Diabetes Centre, Neuroendocrine Cell Biology, Malmö, Sweden
| | - Isabella Artner
- Lund University Diabetes Centre, Stem Cell Center, Biomedical Centre (BMC), Lund, Sweden
| | - Malin Fex
- Lund University Diabetes Centre, Department of Clinical Sciences, Unit of Diabetes and Celiac disease, Clinical Research Centre, Jan Waldenströms gata 35, Clinical Research Centre House 91:10, Skåne University Hospital Malmö, SE-20502, Malmö, Sweden
| |
Collapse
|
14
|
Rapalli A, Bertoni S, Arcaro V, Saccani F, Grandi A, Vivo V, Cantoni AM, Barocelli E. Dual Role of Endogenous Serotonin in 2,4,6-Trinitrobenzene Sulfonic Acid-Induced Colitis. Front Pharmacol 2016; 7:68. [PMID: 27047383 PMCID: PMC4802166 DOI: 10.3389/fphar.2016.00068] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/08/2016] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND AND AIMS Changes in gut serotonin (5-HT) content have been described in Inflammatory Bowel Disease (IBD) and in different experimental models of colitis: the critical role of this monoamine in the pathogenesis of chronic gastrointestinal inflammation is gradually emerging. Aim of the present study was to evaluate the contribution of endogenous 5-HT through the activation of its specific receptor subtypes to the local and systemic inflammatory responses in an experimental model of IBD. MATERIALS AND METHODS Colitis was induced by intrarectal 2,4,6-TriNitroBenzene Sulfonic acid in mice subacutely treated with selective antagonists of 5-HT1A (WAY100135), 5-HT2A (Ketanserin), 5-HT3 (Ondansetron), 5-HT4 (GR125487), 5-HT7 (SB269970) receptors and with 5-HT1A agonist 8-Hydroxy-2-(di-n-propylamino)tetralin. RESULTS Blockade of 5-HT1A receptors worsened TNBS-induced local and systemic neutrophil recruitment while 5-HT1A agonist delayed and mitigated the severity of colitis, counteracting the increase in colonic 5-HT content. On the contrary, blockade of 5-HT2A receptors improved global health conditions, reduced colonic morphological alterations, down-regulated neutrophil recruitment, inflammatory cytokines levels and colonic apoptosis. Antagonism of 5-HT3, 5-HT4, and 5-HT7 receptor sites did not remarkably affect the progression and outcome of the pathology or only slightly improved it. CONCLUSION The prevailing deleterious contribution given by endogenous 5-HT to inflammation in TNBS-induced colitis is seemingly mediated by 5-HT2A and, to a lesser extent, by 5-HT4 receptors and coexists with the weak beneficial effect elicited by 5-HT1A stimulation. These findings suggest how only a selective interference with 5-HT pro-inflammatory actions may represent an additional potential therapeutic option for intestinal inflammatory disorders.
Collapse
Affiliation(s)
- Alberto Rapalli
- Dipartimento di Farmacia, Università degli Studi di Parma Parma, Italy
| | - Simona Bertoni
- Dipartimento di Farmacia, Università degli Studi di Parma Parma, Italy
| | - Valentina Arcaro
- Dipartimento di Farmacia, Università degli Studi di Parma Parma, Italy
| | - Francesca Saccani
- Dipartimento di Farmacia, Università degli Studi di Parma Parma, Italy
| | - Andrea Grandi
- Dipartimento di Farmacia, Università degli Studi di Parma Parma, Italy
| | - Valentina Vivo
- Dipartimento di Farmacia, Università degli Studi di Parma Parma, Italy
| | - Anna M Cantoni
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma Parma, Italy
| | | |
Collapse
|
15
|
Bennet H, Balhuizen A, Medina A, Dekker Nitert M, Ottosson Laakso E, Essén S, Spégel P, Storm P, Krus U, Wierup N, Fex M. Altered serotonin (5-HT) 1D and 2A receptor expression may contribute to defective insulin and glucagon secretion in human type 2 diabetes. Peptides 2015. [PMID: 26206285 DOI: 10.1016/j.peptides.2015.07.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Islet produced 5-hydroxy tryptamine (5-HT) is suggested to regulate islet hormone secretion in a paracrine and autocrine manner in rodents. Hitherto, no studies demonstrate a role for this amine in human islet function, nor is it known if 5-HT signaling is involved in the development of beta cell dysfunction in type 2 diabetes (T2D). To clarify this, we performed a complete transcriptional mapping of 5-HT receptors and processing enzymes in human islets and investigated differential expression of these genes in non-diabetic and T2D human islet donors. We show the expression of fourteen 5-HT receptors as well as processing enzymes involved in the biosynthesis of 5-HT at the mRNA level in human islets. Two 5-HT receptors (HTR1D and HTR2A) were over-expressed in T2D islet donors. Both receptors (5-HT1d and 5-HT2a) were localized to human alpha, beta and delta cells. 5-HT inhibited both insulin and glucagon secretion in non-diabetic islet donors. In islets isolated from T2D donors the amine significantly increased release of insulin in response to glucose. Our results suggest that 5-HT signaling participates in regulation of overall islet hormone secretion in non- diabetic individuals and over-expression of HTR1D and HTR2A may either contribute to islet dysfunction in T2D or arise as a consequence of an already dysfunctional islet.
Collapse
Affiliation(s)
- H Bennet
- Department of Clinical Science, Lund University Diabetes Centre, Scania University Hospital, Entrance 72, Clinical Research Centre House 91, Jan Waldenströmsgata 35, SE-20502, Malmö, Sweden
| | - A Balhuizen
- Department of Clinical Science, Lund University Diabetes Centre, Scania University Hospital, Entrance 72, Clinical Research Centre House 91, Jan Waldenströmsgata 35, SE-20502, Malmö, Sweden
| | - A Medina
- Department of Clinical Science, Lund University Diabetes Centre, Scania University Hospital, Entrance 72, Clinical Research Centre House 91, Jan Waldenströmsgata 35, SE-20502, Malmö, Sweden
| | - M Dekker Nitert
- Department of Clinical Science, Lund University Diabetes Centre, Scania University Hospital, Entrance 72, Clinical Research Centre House 91, Jan Waldenströmsgata 35, SE-20502, Malmö, Sweden; Royal Brisbane Clinical School, UQ Centre for Clinical Research, The University of Queensland, Herston, QLD 4029, Australia
| | - E Ottosson Laakso
- Department of Clinical Science, Lund University Diabetes Centre, Scania University Hospital, Entrance 72, Clinical Research Centre House 91, Jan Waldenströmsgata 35, SE-20502, Malmö, Sweden
| | - S Essén
- The Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Getingevägen 60, SE-22241, Lund, Sweden
| | - P Spégel
- Department of Clinical Science, Lund University Diabetes Centre, Scania University Hospital, Entrance 72, Clinical Research Centre House 91, Jan Waldenströmsgata 35, SE-20502, Malmö, Sweden
| | - P Storm
- Department of Clinical Science, Lund University Diabetes Centre, Scania University Hospital, Entrance 72, Clinical Research Centre House 91, Jan Waldenströmsgata 35, SE-20502, Malmö, Sweden
| | - U Krus
- Department of Clinical Science, Lund University Diabetes Centre, Scania University Hospital, Entrance 72, Clinical Research Centre House 91, Jan Waldenströmsgata 35, SE-20502, Malmö, Sweden
| | - N Wierup
- Department of Clinical Science, Lund University Diabetes Centre, Scania University Hospital, Entrance 72, Clinical Research Centre House 91, Jan Waldenströmsgata 35, SE-20502, Malmö, Sweden
| | - M Fex
- Department of Clinical Science, Lund University Diabetes Centre, Scania University Hospital, Entrance 72, Clinical Research Centre House 91, Jan Waldenströmsgata 35, SE-20502, Malmö, Sweden.
| |
Collapse
|
16
|
Farajian Mashhadi F, Naylor RJ, Javid FA. The Effects of Serotonin Receptor Antagonists on Contraction and Relaxation Responses Induced by Electrical Stimulation in the Rat Small Intestine. ACTA ACUST UNITED AC 2014. [DOI: 10.17795/gct-18311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Bertoni S, Arcaro V, Vivo V, Rapalli A, Tognolini M, Cantoni AM, Saccani F, Flammini L, Domenichini G, Ballabeni V, Barocelli E. Suppression of inflammatory events associated to intestinal ischemia–reperfusion by 5-HT1A blockade in mice. Pharmacol Res 2014; 81:17-25. [DOI: 10.1016/j.phrs.2014.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 02/04/2014] [Accepted: 02/05/2014] [Indexed: 12/19/2022]
|
18
|
Stasi C, Bellini M, Bassotti G, Blandizzi C, Milani S. Serotonin receptors and their role in the pathophysiology and therapy of irritable bowel syndrome. Tech Coloproctol 2014; 18:613-21. [PMID: 24425100 DOI: 10.1007/s10151-013-1106-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 12/02/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is a functional disorder of the gastrointestinal tract characterized by abdominal discomfort, pain and changes in bowel habits, often associated with psychological/psychiatric disorders. It has been suggested that the development of IBS may be related to the body's response to stress, which is one of the main factors that can modulate motility and visceral perception through the interaction between brain and gut (brain-gut axis). The present review will examine and discuss the role of serotonin (5-hydroxytryptamine, 5-HT) receptor subtypes in the pathophysiology and therapy of IBS. METHODS Search of the literature published in English using the PubMed database. RESULTS Several lines of evidence indicate that 5-HT and its receptor subtypes are likely to have a central role in the pathophysiology of IBS. 5-HT released from enterochromaffin cells regulates sensory, motor and secretory functions of the digestive system through the interaction with different receptor subtypes. It has been suggested that pain signals originate in intrinsic primary afferent neurons and are transmitted by extrinsic primary afferent neurons. Moreover, IBS is associated with abnormal activation of central stress circuits, which results in altered perception during visceral stimulation. CONCLUSIONS Altered 5-HT signaling in the central nervous system and in the gut contributes to hypersensitivity in IBS. The therapeutic effects of 5-HT agonists/antagonists in IBS are likely to be due also to the ability to modulate visceral nociception in the central stress circuits. Further studies are needed in order to develop an optimal treatment.
Collapse
Affiliation(s)
- C Stasi
- Department of Experimental and Clinical Medicine, University of Florence, Viale G.B. Morgagni, 85, 50134, Florence, Italy,
| | | | | | | | | |
Collapse
|
19
|
Abstract
Serotonin (5-HT) has been recognized for decades as an important signalling molecule in the gut, but it is still revealing its secrets. Novel gastrointestinal functions of 5-HT continue to be discovered, as well as distant actions of gut-derived 5-HT, and we are learning how 5-HT signalling is altered in gastrointestinal disorders. Conventional functions of 5-HT involving intrinsic reflexes include stimulation of propulsive and segmentation motility patterns, epithelial secretion and vasodilation. Activation of extrinsic vagal and spinal afferent fibres results in slowed gastric emptying, pancreatic secretion, satiation, pain and discomfort, as well as nausea and vomiting. Within the gut, 5-HT also exerts nonconventional actions such as promoting inflammation and serving as a trophic factor to promote the development and maintenance of neurons and interstitial cells of Cajal. Platelet 5-HT, originating in the gut, promotes haemostasis, influences bone development and serves many other functions. 5-HT3 receptor antagonists and 5-HT4 receptor agonists have been used to treat functional disorders with diarrhoea or constipation, respectively, and the synthetic enzyme tryptophan hydroxylase has also been targeted. Emerging evidence suggests that exploiting epithelial targets with nonabsorbable serotonergic agents could provide safe and effective therapies. We provide an overview of these serotonergic actions and treatment strategies.
Collapse
|
20
|
Wang GD, Wang XY, Zou F, Qu M, Liu S, Fei G, Xia Y, Needleman BJ, Mikami DJ, Wood JD. Mast cell expression of the serotonin1A receptor in guinea pig and human intestine. Am J Physiol Gastrointest Liver Physiol 2013. [PMID: 23518679 DOI: 10.1152/ajpgi.00421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Serotonin [5-hydroxytryptamine (5-HT)] is released from enterochromaffin cells in the mucosa of the small intestine. We tested a hypothesis that elevation of 5-HT in the environment of enteric mast cells might degranulate the mast cells and release mediators that become paracrine signals to the enteric nervous system, spinal afferents, and secretory glands. Western blotting, immunofluorescence, ELISA, and pharmacological analysis were used to study expression of 5-HT receptors by mast cells in the small intestine and action of 5-HT to degranulate the mast cells and release histamine in guinea pig small intestine and segments of human jejunum discarded during Roux-en-Y gastric bypass surgeries. Mast cells in human and guinea pig preparations expressed the 5-HT1A receptor. ELISA detected spontaneous release of histamine in guinea pig and human preparations. The selective 5-HT1A receptor agonist 8-hydroxy-PIPAT evoked release of histamine. A selective 5-HT1A receptor antagonist, WAY-100135, suppressed stimulation of histamine release by 5-HT or 8-hydroxy-PIPAT. Mast cell-stabilizing drugs, doxantrazole and cromolyn sodium, suppressed the release of histamine evoked by 5-HT or 8-hydroxy-PIPAT in guinea pig and human preparations. Our results support the hypothesis that serotonergic degranulation of enteric mast cells and release of preformed mediators, including histamine, are mediated by the 5-HT1A serotonergic receptor. Association of 5-HT with the pathophysiology of functional gastrointestinal disorders (e.g., irritable bowel syndrome) underlies a question of whether selective 5-HT1A receptor antagonists might have therapeutic application in disorders of this nature.
Collapse
Affiliation(s)
- Guo-Du Wang
- Dept. of Physiology and Cell Biology, College of Medicine and Public Health, The Ohio State Univ., 304 Hamilton Hall, 1645 Neil Ave., Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wang GD, Wang XY, Zou F, Qu M, Liu S, Fei G, Xia Y, Needleman BJ, Mikami DJ, Wood JD. Mast cell expression of the serotonin1A receptor in guinea pig and human intestine. Am J Physiol Gastrointest Liver Physiol 2013; 304:G855-63. [PMID: 23518679 PMCID: PMC3652070 DOI: 10.1152/ajpgi.00421.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Serotonin [5-hydroxytryptamine (5-HT)] is released from enterochromaffin cells in the mucosa of the small intestine. We tested a hypothesis that elevation of 5-HT in the environment of enteric mast cells might degranulate the mast cells and release mediators that become paracrine signals to the enteric nervous system, spinal afferents, and secretory glands. Western blotting, immunofluorescence, ELISA, and pharmacological analysis were used to study expression of 5-HT receptors by mast cells in the small intestine and action of 5-HT to degranulate the mast cells and release histamine in guinea pig small intestine and segments of human jejunum discarded during Roux-en-Y gastric bypass surgeries. Mast cells in human and guinea pig preparations expressed the 5-HT1A receptor. ELISA detected spontaneous release of histamine in guinea pig and human preparations. The selective 5-HT1A receptor agonist 8-hydroxy-PIPAT evoked release of histamine. A selective 5-HT1A receptor antagonist, WAY-100135, suppressed stimulation of histamine release by 5-HT or 8-hydroxy-PIPAT. Mast cell-stabilizing drugs, doxantrazole and cromolyn sodium, suppressed the release of histamine evoked by 5-HT or 8-hydroxy-PIPAT in guinea pig and human preparations. Our results support the hypothesis that serotonergic degranulation of enteric mast cells and release of preformed mediators, including histamine, are mediated by the 5-HT1A serotonergic receptor. Association of 5-HT with the pathophysiology of functional gastrointestinal disorders (e.g., irritable bowel syndrome) underlies a question of whether selective 5-HT1A receptor antagonists might have therapeutic application in disorders of this nature.
Collapse
Affiliation(s)
- Guo-Du Wang
- 1Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio;
| | - Xi-Yu Wang
- 1Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio;
| | - Fei Zou
- 1Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio;
| | - Meihua Qu
- 1Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio;
| | - Sumei Liu
- 1Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio;
| | - Guijun Fei
- 1Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio;
| | - Yun Xia
- 1Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio; ,2Department of Anesthesiology, College of Medicine, The Ohio State University, Columbus, Ohio; and
| | - Bradley J. Needleman
- 3Department of Surgery, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Dean J. Mikami
- 3Department of Surgery, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Jackie D. Wood
- 1Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio;
| |
Collapse
|
22
|
Neunlist M, Van Landeghem L, Mahé MM, Derkinderen P, des Varannes SB, Rolli-Derkinderen M. The digestive neuronal-glial-epithelial unit: a new actor in gut health and disease. Nat Rev Gastroenterol Hepatol 2013; 10:90-100. [PMID: 23165236 DOI: 10.1038/nrgastro.2012.221] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The monolayer of columnar epithelial cells lining the gastrointestinal tract--the intestinal epithelial barrier (IEB)--is the largest exchange surface between the body and the external environment. The permeability of the IEB has a central role in the regulation of fluid and nutrient intake as well as in the control of the passage of pathogens. The functions of the IEB are highly regulated by luminal as well as internal components, such as bacteria or immune cells, respectively. Evidence indicates that two cell types of the enteric nervous system (ENS), namely enteric neurons and enteric glial cells, are potent modulators of IEB functions, giving rise to the novel concept of a digestive 'neuronal-glial-epithelial unit' akin to the neuronal-glial-endothelial unit in the brain. In this Review, we summarize findings demonstrating that the ENS is a key regulator of IEB function and is actively involved in pathologies associated with altered barrier function.
Collapse
Affiliation(s)
- Michel Neunlist
- INSERM UMR913, Institut des Maladies de l'Appareil Digestif, Université de Nantes, CHU Hôtel Dieu, 1 place Alexis Ricordeau, 44093 Nantes, France.
| | | | | | | | | | | |
Collapse
|
23
|
Jeyarajah S, Akbar N, Moorhead J, Haji A, Banerjee S, Papagrigoriadis S. A clinicopathological study of serotonin of sigmoid colon mucosa in association with chronic symptoms in uncomplicated diverticulosis. Int J Colorectal Dis 2012; 27:1597-605. [PMID: 22744736 DOI: 10.1007/s00384-012-1515-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/29/2012] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Neurotransmitter imbalance is hypothesised as a pathogenetic mechanism in several bowel conditions. We previously reported increased 5-HT in the sigmoid mucosa of colon resected for complicated diverticular disease (DD). We aimed to identify if abnormal 5-HT expression is associated with symptoms of uncomplicated DD. METHODS This was a prospective, comparative study and follow-up survey of symptoms. We examined the differences in 5-HT between DD patients and controls, as well as the presence of bowel symptoms at time of endoscopy and also 2 years later. Sigmoid biopsies were collected at colonoscopy. Immunohistochemical staining for 5-HT cells was performed. RESULTS Eighty-seven patients were recruited, 37 (42.5 %) DD and 50 (57.5 %) controls. No patients underwent surgery. There was no significant difference in total mean number of 5-HT-positive cells in DD compared to controls or between patients and controls with abdominal symptoms. Forty-one patients (47.1 %) responded to questionnaires at median 57.8 months from biopsy. Eighteen (43.9 %) were DD and 23(56.1 %) controls. 5-HT counts showed no significant association to symptom persistence. DISCUSSION Although 5-HT expression has previously been found to be increased in complicated DD in whole bowel-resected specimens, the same is not confirmed on colonic mucosal biopsies. This raises the suggestion that 5-HT may be involved in the development of acute complications but may not be involved in the pathogenesis of chronic symptoms.
Collapse
Affiliation(s)
- S Jeyarajah
- Department of Colorectal Surgery, Kings College Hospital, London, UK.
| | | | | | | | | | | |
Collapse
|
24
|
Asad S, Nikamo P, Gyllenberg A, Bennet H, Hansson O, Wierup N, Carlsson A, Forsander G, Ivarsson SA, Larsson H, Lernmark Å, Lindblad B, Ludvigsson J, Marcus C, Rønningen KS, Nerup J, Pociot F, Luthman H, Fex M, Kockum I. HTR1A a novel type 1 diabetes susceptibility gene on chromosome 5p13-q13. PLoS One 2012; 7:e35439. [PMID: 22563461 PMCID: PMC3341376 DOI: 10.1371/journal.pone.0035439] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Accepted: 03/16/2012] [Indexed: 11/18/2022] Open
Abstract
Background We have previously performed a genome-wide linkage study in Scandinavian Type 1 diabetes (T1D) families. In the Swedish families, we detected suggestive linkage (LOD≤2.2) to the chromosome 5p13-q13 region. The aim of our study was to investigate the linked region in search for possible T1D susceptibility genes. Methodology/Principal Findings Microsatellites were genotyped in the Scandinavian families to fine-map the previously linked region. Further, SNPs were genotyped in Swedish and Danish families as well as Swedish sporadic cases. In the Swedish families we detected genome-wide significant linkage to the 5-hydroxytryptamine receptor 1A (HTR1A) gene (LOD 3.98, p<9.8×10−6). Markers tagging two separate genes; the ring finger protein 180 (RNF180) and HTR1A showed association to T1D in the Swedish and Danish families (p<0.002, p<0.001 respectively). The association was not confirmed in sporadic cases. Conditional analysis indicates that the primary association was to HTR1A. Quantitative PCR show that transcripts of both HTR1A and RNF180 are present in human islets of Langerhans. Moreover, immunohistochemical analysis confirmed the presence of the 5-HTR1A protein in isolated human islets of Langerhans as well as in sections of human pancreas. Conclusions We have identified and confirmed the association of both HTR1A and RFN180, two genes in high linkage disequilibrium (LD) to T1D in two separate family materials. As both HTR1A and RFN180 were expressed at the mRNA level and HTR1A as protein in human islets of Langerhans, we suggest that HTR1A may affect T1D susceptibility by modulating the initial autoimmune attack or either islet regeneration, insulin release, or both.
Collapse
Affiliation(s)
- Samina Asad
- Neuroimmunology Unit, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
| | - Pernilla Nikamo
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Alexandra Gyllenberg
- Neuroimmunology Unit, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
| | - Hedvig Bennet
- Diabetes and Celiac Unit, Department of Clinical Sciences, Lund University, Malmö University Hospital, Malmö, Sweden
- Lund University Diabetes Center, Lund, Sweden
| | - Ola Hansson
- Diabetes and Endocrinology, Department of Clinical Science, Lund, University, Malmö University Hospital, Malmö, Sweden
- Lund University Diabetes Center, Lund, Sweden
| | - Nils Wierup
- Neuroendocrine cell biology, Department of Clinical Science, Lund, University, Malmö University Hospital, Malmö, Sweden
- Lund University Diabetes Center, Lund, Sweden
| | | | - Annelie Carlsson
- Department of Pediatrics, Lund University Hospital, Lund, Sweden
| | - Gun Forsander
- Department of Pediatrics, the Queen Silvia Children’s Hospital, Göteborg, Sweden
| | - Sten-Anders Ivarsson
- Diabetes and Celiac Unit, Department of Clinical Sciences, Lund University, Malmö University Hospital, Malmö, Sweden
| | - Helena Larsson
- Diabetes and Celiac Unit, Department of Clinical Sciences, Lund University, Malmö University Hospital, Malmö, Sweden
| | - Åke Lernmark
- Diabetes and Celiac Unit, Department of Clinical Sciences, Lund University, Malmö University Hospital, Malmö, Sweden
| | - Bengt Lindblad
- Department of Pediatrics, the Queen Silvia Children’s Hospital, Göteborg, Sweden
| | - Johnny Ludvigsson
- Division of Pediatrics, Department of Clinical and Experimental Medicine, Diabetes Research Center, Linköping University Hospital, Linköping, Sweden
| | - Claude Marcus
- Division of Pediatrics, Department of Clinical Science, Intervention and Technology, National Childhood Obesity Center, Karolinska Institutet, Stockholm, Sweden
| | - Kjersti S. Rønningen
- Department of Pediatric Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Jan Nerup
- Steno Diabetes Center, Gentofte, Denmark
| | - Flemming Pociot
- Diabetes and Celiac Unit, Department of Clinical Sciences, Lund University, Malmö University Hospital, Malmö, Sweden
- Glostrup Research Institute, University Hospital Glostrup, Glostrup, Denmark
| | - Holger Luthman
- Diabetes and Celiac Unit, Department of Clinical Sciences, Lund University, Malmö University Hospital, Malmö, Sweden
- Lund University Diabetes Center, Lund, Sweden
| | - Malin Fex
- Diabetes and Celiac Unit, Department of Clinical Sciences, Lund University, Malmö University Hospital, Malmö, Sweden
- Lund University Diabetes Center, Lund, Sweden
| | - Ingrid Kockum
- Neuroimmunology Unit, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
25
|
Jiang ZE, Shin BN, Kim IH, Lee HJ, Yong JH, Lee MJ, Won MH, Lee YL. Roles of Non-cholinergic Intrapancreatic Nerves, Serotonergic Nerves, on Pancreatic Exocrine Secretion in the Isolated Perfused Rat Pancreas. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2011; 15:307-12. [PMID: 22128264 DOI: 10.4196/kjpp.2011.15.5.307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 10/14/2011] [Accepted: 10/07/2011] [Indexed: 11/15/2022]
Abstract
It has been rereported that axons which display 5-hydroxytryptamine (5-HT) immunoreactivity are abundant in the pancreas and the majority of serotonergic axons terminate within intrapancreatic ganglia, islet and acini. This histological result strongly suggests that intrapancreatic serotonergic nerves could affect to the pancreatic endocrine and exocrine secretion. Thus, this study was aimed to investigate whether intrapancreatic serotonergic nerves could affect pancreatic exocrine secretion and an action mechanism of the intrapancreatic serotonergic nerves. The rats were anesthetized with a single injection of urethane. The median line and the abdominal aorta was carefully dissected and cannulated with PE-50 tubing just above the celiac artery, and then tightly ligated just below the superior mesenteric artery. The pancreatic duct was also cannulated with Tygon microbore tubing. With the addition of serotonin, pancreatic volume flow and amylase output were significantly inhibited electrical field stimulation (EFS). On the other hand, pancreatic volume flow and amylase output were significantly elevated in EFS with the addition of spiperone. EFS application, however, pancreatic volume flow and amylase output had no significant change in cholecystokinin (CCK) alone when serotonin was applied under a 5.6 mM glucose background. Pancreatic volume flow and amylase output under 18 mM glucose background were significantly elevated in CCK plus serotonin than in CCK alone. These data suggest that intrapancreatic serotonergic nerves play an inhibitory role in pancreatic exocrine secretion and an important role in the insulin action or release.
Collapse
Affiliation(s)
- Zheng Er Jiang
- Department of Physiology, College of Nursing, Yanbian University, Yanji 133000, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Jeyarajah S, Papagrigoriadis S. Review article: the pathogenesis of diverticular disease--current perspectives on motility and neurotransmitters. Aliment Pharmacol Ther 2011; 33:789-800. [PMID: 21306406 DOI: 10.1111/j.1365-2036.2011.04586.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Low-fibre diet, structural abnormalities and ageing are traditional aetiological factors implicated in the development of diverticular disease. More recently, motility disorders are implicated in its causation leading to speculation that neurotransmitters play a role in mediating these disturbances. AIMS To draw together studies on the role of neurotransmitters in the development of diverticular disease and its symptoms. METHODS Medline, GoogleScholar and Pubmed were searched for evidence on this subject using the terms neurotransmitters, motility, diverticular disease and pathogenesis. Articles relevant to the subject were cited and linked references were also reviewed. RESULTS Serotonin, which has been found to be an excitatory colonic neurotransmitter, has been found in early studies to be increased in colonic enterochromaffin cells. Acetylcholine, which is thought to be an excitatory neurotransmitter and cholinergic activity, has also seen to be increased in diverticular disease. These findings may suggest that an increase in excitatory neurotransmitters may result in the hypersegmentation thought to cause pulsion diverticula. Similarly, a decrease in nitric oxide which is inhibitory is found. CONCLUSIONS There is some evidence that neurotransmitters may play a role in the motility disturbances seen in diverticular disease; however, a clear role is yet to be ascertained.
Collapse
Affiliation(s)
- S Jeyarajah
- Department of Colorectal Surgery, Kings College Hospital, Denmark Hill, London, UK.
| | | |
Collapse
|
27
|
Kaneko K, Iwasaki M, Yoshikawa M, Ohinata K. Orally administered soymorphins, soy-derived opioid peptides, suppress feeding and intestinal transit via gut mu(1)-receptor coupled to 5-HT(1A), D(2), and GABA(B) systems. Am J Physiol Gastrointest Liver Physiol 2010; 299:G799-805. [PMID: 20616303 DOI: 10.1152/ajpgi.00081.2010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We previously reported that soymorphins, mu-opioid agonist peptides derived from soy beta-conglycinin beta-subunit, have anxiolytic-like activity. The aim of this study was to investigate the effects of soymorphins on food intake and gut motility, along with their mechanism. We found that soymorphins decreases food intake after oral administration in fasted mice. Orally administered soymorphins suppressed small intestinal transit at lower dose than that of anorexigenic activity. Suppression of food intake and small intestinal transit after oral administration of soymorphins was inhibited by naloxone or naloxonazine, antagonists of mu- or mu(1)-opioid receptor, respectively, after oral but not intraperitoneal administration. The inhibitory activities of small intestinal transit by soymorphins were also inhibited by WAY100135, raclopride, or saclofen, antagonists for serotonin 5-HT(1A), dopamine D(2), or GABA(B) receptor, respectively. We then examined the order of activation of 5-HT(1A), D(2), and GABA(B) receptors, using their agonists and antagonists. The inhibitory effect of 8-hydroxy-2-dipropylaminotetralin hydrobromide, a 5-HT(1A) agonist, after oral administration on small intestinal transit was blocked by raclopride or saclofen. Bromocriptine, a D(2) agonist-induced small intestinal transit suppression, was inhibited by saclofen, but not by WAY100135. Baclofen, a GABA(B) agonist-induced small intestinal transit suppression, was not blocked by WAY100135 or raclopride. These results suggest that 5-HT(1A) activation elicits D(2) followed by GABA(B) activations in small intestinal motility. We conclude that orally administered soymorphins suppress food intake and small intestinal transit via mu(1)-opioid receptor coupled to 5-HT(1A), D(2), and GABA(B) systems.
Collapse
|
28
|
Gwynne RM, Bornstein JC. Synaptic transmission at functionally identified synapses in the enteric nervous system: roles for both ionotropic and metabotropic receptors. Curr Neuropharmacol 2010; 5:1-17. [PMID: 18615154 DOI: 10.2174/157015907780077141] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 11/28/2006] [Accepted: 12/04/2006] [Indexed: 12/18/2022] Open
Abstract
Digestion and absorption of nutrients and the secretion and reabsorption of fluid in the gastrointestinal tract are regulated by neurons of the enteric nervous system (ENS), the extensive peripheral nerve network contained within the intestinal wall. The ENS is an important physiological model for the study of neural networks since it is both complex and accessible. At least 20 different neurochemically and functionally distinct classes of enteric neurons have been identified in the guinea pig ileum. These neurons express a wide range of ionotropic and metabotropic receptors. Synaptic potentials mediated by ionotropic receptors such as the nicotinic acetylcholine receptor, P2X purinoceptors and 5-HT(3) receptors are seen in many enteric neurons. However, prominent synaptic potentials mediated by metabotropic receptors, like the P2Y(1) receptor and the NK(1) receptor, are also seen in these neurons. Studies of synaptic transmission between the different neuron classes within the enteric neural pathways have shown that both ionotropic and metabotropic synaptic potentials play major roles at distinct synapses within simple reflex pathways. However, there are still functional synapses at which no known transmitter or receptor has been identified. This review describes the identified roles for both ionotropic and metabotropic neurotransmission at functionally defined synapses within the guinea pig ileum ENS. It is concluded that metabotropic synaptic potentials act as primary transmitters at some synapses. It is suggested identification of the interactions between different synaptic potentials in the production of complex behaviours will require the use of well validated computer models of the enteric neural circuitry.
Collapse
Affiliation(s)
- R M Gwynne
- Department of Physiology, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | |
Collapse
|
29
|
Foong JPP, Parry LJ, Gwynne RM, Bornstein JC. 5-HT(1A), SST(1), and SST(2) receptors mediate inhibitory postsynaptic potentials in the submucous plexus of the guinea pig ileum. Am J Physiol Gastrointest Liver Physiol 2010; 298:G384-94. [PMID: 20007849 PMCID: PMC2838515 DOI: 10.1152/ajpgi.00438.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Vasoactive intestinal peptide (VIP) immunoreactive neurons are important secretomotor neurons in the submucous plexus. They are the only submucosal neurons to receive inhibitory inputs and exhibit both noradrenergic and nonadrenergic inhibitory synaptic potentials (IPSPs). The former are mediated by alpha(2)-adrenoceptors, but the receptors mediating the latter have not been identified. We used standard intracellular recording, RT-PCR, and confocal microscopy to test whether 5-HT(1A), SST(1), and/or SST(2) receptors mediate nonadrenergic IPSPs in VIP submucosal neurons in guinea pig ileum in vitro. The specific 5-HT(1A) receptor antagonist WAY 100135 (1 microM) reduced the amplitude of IPSPs, an effect that persisted in the presence of the alpha(2)-adrenoceptor antagonist idazoxan (2 microM), suggesting that 5-HT might mediate a component of the IPSPs. Confocal microscopy revealed that there were many 5-HT-immunoreactive varicosities in close contact with VIP neurons. The specific SSTR(2) antagonist CYN 154806 (100 nM) and a specific SSTR(1) antagonist SRA 880 (3 microM) each reduced the amplitude of nonadrenergic IPSPs and hyperpolarizations evoked by somatostatin. In contrast with the other antagonists, CYN 154806 also reduced the durations of nonadrenergic IPSPs. Effects of WAY 100135 and CYN 154806 were additive. RT-PCR revealed gene transcripts for 5-HT(1A), SST(1), and SST(2) receptors in stripped submucous plexus preparations consistent with the pharmacological data. Although the involvement of other neurotransmitters or receptors cannot be excluded, we conclude that 5-HT(1A), SST(1), and SST(2) receptors mediate nonadrenergic IPSPs in the noncholinergic (VIP) secretomotor neurons. This study thus provides the tools to identify functions of enteric neural pathways that inhibit secretomotor reflexes.
Collapse
Affiliation(s)
| | - Laura J. Parry
- 2Zoology, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
30
|
Gayer CP, Basson MD. The effects of mechanical forces on intestinal physiology and pathology. Cell Signal 2009; 21:1237-44. [PMID: 19249356 PMCID: PMC2715958 DOI: 10.1016/j.cellsig.2009.02.011] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 02/17/2009] [Indexed: 12/18/2022]
Abstract
The epithelial and non-epithelial cells of the intestinal wall experience a myriad of physical forces including strain, shear, and villous motility during normal gut function. Pathologic conditions alter these forces, leading to changes in the biology of these cells. The responses of intestinal epithelial cells to forces vary with both the applied force and the extracellular matrix proteins with which the cells interact, with differing effects on proliferation, differentiation, and motility, and the regulation of these effects involves similar but distinctly different signal transduction mechanisms. Although normal epithelial cells respond to mechanical forces, malignant gastrointestinal epithelial cells also respond to forces, most notably by increased cell adhesion, a critical step in tumor metastasis. This review will focus on the phenomenon of mechanical forces influencing cell biology and the mechanisms by which the gut responds these forces in both the normal as well as pathophysiologic states when forces are altered. Although more is known about epithelial responses to force, information regarding mechanosensitivity of vascular, neural, and endocrine cells within the gut wall will also be discussed, as will, the mechanism by which forces can regulate epithelial tumor cell adhesion.
Collapse
|
31
|
Chalazonitis A, Pham TD, Li Z, Roman D, Guha U, Gomes W, Kan L, Kessler JA, Gershon MD. Bone morphogenetic protein regulation of enteric neuronal phenotypic diversity: relationship to timing of cell cycle exit. J Comp Neurol 2009; 509:474-92. [PMID: 18537141 DOI: 10.1002/cne.21770] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The effects of bone morphogenetic protein (BMP) signaling on enteric neuron development were examined in transgenic mice overexpressing either the BMP inhibitor, noggin, or BMP4 under control of the neuron specific enolase (NSE) promoter. Noggin antagonism of BMP signaling increased total numbers of enteric neurons and those of subpopulations derived from precursors that exit the cell cycle early in neurogenesis (serotonin, calretinin, calbindin). In contrast, noggin overexpression decreased numbers of neurons derived from precursors that exit the cell cycle late (gamma-aminobutyric acid, tyrosine hydroxylase [TH], dopamine transporter, calcitonin gene-related peptide, TrkC). The numbers of TH- and TrkC-expressing neurons were increased by overexpression of BMP4. These observations are consistent with the idea that phenotypic expression in the enteric nervous system (ENS) is determined, in part, by the number of proliferative divisions neuronal precursors undergo before their terminal mitosis. BMP signaling may thus regulate enteric neuronal phenotypic diversity by promoting the exit of precursors from the cell cycle. BMP2 increased the numbers of TH- and TrkC-expressing neurons developing in vitro from immunoselected enteric crest-derived precursors; BMP signaling may thus also specify or promote the development of dopaminergic TrkC/NT-3-dependent neurons. The developmental defects in the ENS of noggin-overexpressing mice caused a relatively mild disturbance of motility (irregular rapid transit and increased stool frequency, weight, and water content). Although the function of the gut thus displays a remarkable tolerance for ENS defects, subtle functional abnormalities in motility or secretion may arise when ENS defects short of aganglionosis occur during development.
Collapse
Affiliation(s)
- Alcmène Chalazonitis
- Deparment of Pathology & Cell Biology, Columbia University, New York, New York 10032, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Albay R, Chen A, Anderson GM, Tatevosyan M, Janusonis S. Relationships among body mass, brain size, gut length, and blood tryptophan and serotonin in young wild-type mice. BMC PHYSIOLOGY 2009; 9:4. [PMID: 19321004 PMCID: PMC2671477 DOI: 10.1186/1472-6793-9-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2008] [Accepted: 03/25/2009] [Indexed: 11/10/2022]
Abstract
Background The blood hyperserotonemia of autism is one of the most consistent biological findings in autism research, but its causes remain unclear. A major difficulty in understanding this phenomenon is the lack of information on fundamental interactions among the developing brain, gut, and blood in the mammalian body. We therefore investigated relationships among the body mass, the brain mass, the volume of the hippocampal complex, the gut length, and the whole-blood levels of tryptophan and 5-hydroxytryptamine (5-HT, serotonin) in young, sexually immature wild-type mice. Results Three-dimensional reconstructions of the hippocampal complex were obtained from serial, Nissl-stained sections and the gut was allowed to attain its maximal relaxed length prior to measurements. The tryptophan and 5-HT concentrations in the blood were assessed with high-performance liquid chromatography (HPLC) and the sex of mice was confirmed by genotyping. Statistical analysis yielded information about correlative relationships among all studied variables. It revealed a strong negative correlation between blood 5-HT concentration and body mass and a strong negative correlation between the brain mass/body mass ratio and gut length. Also, a negative correlation was found between the volume of the hippocampal complex and blood tryptophan concentration. Conclusion The study provides information on the covariance structure of several central and peripheral variables related to the body serotonin systems. In particular, the results indicate that body mass should be included as a covariate in studies on platelet 5-HT levels and they also suggest a link between brain growth and gut length.
Collapse
Affiliation(s)
- Ricardo Albay
- Department of Psychology, University of California, Santa Barbara, California, USA.
| | | | | | | | | |
Collapse
|
33
|
von Schnurbein J, Lahr G, Posovszky C, Debatin KM, Wabitsch M. Novel homozygous AIRE mutation in a German patient with severe APECED. J Pediatr Endocrinol Metab 2008; 21:1003-9. [PMID: 19209622 DOI: 10.1515/jpem.2008.21.10.1003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a rare autosomal recessive disorder typically presenting with chronic mucocutaneous candidiasis, hypoparathyroidism, and adrenal failure variably accompanied by other symptoms. APECED is caused by a mutation in the autoimmune regulator gene (AIRE). Today over 60 different mutations are known world-wide, most of them localized in exons 2, 8, and 10. We report here a German girl with rheumatoid factor positive arthritis, chronic mucocutaneous candidiasis, autoimmune hepatitis, chronic diarrhea, vitiligo, hypothyroidism, hypoparathyroidism, and adrenal failure who is homozygous for a novel mutation at the end of exon 3 of the AIRE gene (c.462G>A), within the conserved splice donor sequence. This mutation probably introduces a frameshift after amino acid 154 (p.Pro154fs) by skipping exon 4. In addition, we analyzed five other family members out of three generations for the AIRE gene mutation and for polymorphisms in the cytotoxic T lymphocyte antigen 4 (CTLA4) gene region and lymphoid protein tyrosine phosphatase (PTPN22) gene, which are associated with the occurrence of sporadic autoimmune Addison's disease, type 1 diabetes mellitus, and generalized vitiligo.
Collapse
Affiliation(s)
- J von Schnurbein
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany.
| | | | | | | | | |
Collapse
|
34
|
Janusonis S. Origin of the blood hyperserotonemia of autism. Theor Biol Med Model 2008; 5:10. [PMID: 18498654 PMCID: PMC2488334 DOI: 10.1186/1742-4682-5-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 05/22/2008] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Research in the last fifty years has shown that many autistic individuals have elevated serotonin (5-hydroxytryptamine, 5-HT) levels in blood platelets. This phenomenon, known as the platelet hyperserotonemia of autism, is considered to be one of the most well-replicated findings in biological psychiatry. Its replicability suggests that many of the genes involved in autism affect a small number of biological networks. These networks may also play a role in the early development of the autistic brain. RESULTS We developed an equation that allows calculation of platelet 5-HT concentration as a function of measurable biological parameters. It also provides information about the sensitivity of platelet 5-HT levels to each of the parameters and their interactions. CONCLUSION The model yields platelet 5-HT concentrations that are consistent with values reported in experimental studies. If the parameters are considered independent, the model predicts that platelet 5-HT levels should be sensitive to changes in the platelet 5-HT uptake rate constant, the proportion of free 5-HT cleared in the liver and lungs, the gut 5-HT production rate and its regulation, and the volume of the gut wall. Linear and non-linear interactions among these and other parameters are specified in the equation, which may facilitate the design and interpretation of experimental studies.
Collapse
Affiliation(s)
- Skirmantas Janusonis
- Department of Psychology, University of California, Santa Barbara, CA 93106-9660, USA.
| |
Collapse
|
35
|
Serotonin pharmacology in the gastrointestinal tract: a review. Naunyn Schmiedebergs Arch Pharmacol 2008; 377:181-203. [PMID: 18398601 DOI: 10.1007/s00210-008-0276-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Accepted: 02/15/2008] [Indexed: 12/17/2022]
Abstract
Serotonin (5-hydroxytryptamine or 5-HT) plays a critical physiological role in the regulation of gastrointestinal (GI) function. 5-HT dysfunction may also be involved in the pathophysiology of a number of functional GI disorders, such as chronic constipation, irritable bowel syndrome and functional dyspepsia. This article describes the role of 5-HT in the enteric nervous system (ENS) of the mammalian GI tract and the receptors with which it interacts. Existing serotonergic therapies that have proven effective in the treatment of GI functional disorders and the potential of drugs currently in development are also highlighted. Advances in our understanding of the physiological and pathophysiological roles of 5-HT in the ENS and the identification of selective receptor ligands bodes well for the future development of more efficacious therapies for patients with functional GI disorders.
Collapse
|
36
|
Delesalle C, Deprez P, Schuurkes JAJ, Lefebvre RA. Contractile effects of 5-hydroxytryptamine and 5-carboxamidotryptamine in the equine jejunum. Br J Pharmacol 2006; 147:23-35. [PMID: 16230998 PMCID: PMC1615837 DOI: 10.1038/sj.bjp.0706431] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The use of human prokinetic drugs in colic horses leads to inconsistent results. This might be related to differences in gastrointestinal receptor populations. The motor effects of 5-hydroxytryptamine (5-HT; serotonin) on the equine mid-jejunum were therefore studied. Longitudinal muscle preparations were set up for isotonic measurement. 5-HT induced tonic contractions with superimposed phasic activity; these responses were not influenced by tetrodotoxin and atropine, suggesting a non-neurogenic, non-cholinergic pathway. The 5-HT receptor antagonists GR 127935 (5-HT(1B,D)), ketanserin (5-HT(2A)), SB 204741 (5-HT(2B)), RS 102221 (5-HT(2C)), granisetron (5-HT(3)), GR 113808 (5-HT(4)) and SB 269970 (5-HT(7)) had no influence on the 5-HT-induced response; the 5-HT(1A) receptor antagonists NAN 190 (pK(b)=8.13+/-0.06) and WAY 100635 (pK(b)=8.69+/-0.07), and the 5-HT(1,2,5,6,7) receptor antagonist methysergide concentration-dependently inhibited the 5-HT-induced contractile response. The 5-HT(1,7) receptor agonist 5-carboxamidotryptamine (5-CT) induced a contractile response similar to that of 5-HT; its effect was not influenced by tetrodotoxin and atropine, and SB 269970, but antagonised by WAY 100635. 8-OHDPAT, buspiron and flesinoxan, which are active at rat and human 5-HT(1A) receptors, had no contractile influence. These results suggest that the contractile effect of 5-HT in equine jejunal longitudinal muscle is due to interaction with muscular 5-HT receptors, which cannot be characterised between the actually known classes of 5-HT receptors.
Collapse
Affiliation(s)
- Cathérine Delesalle
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | | | | | | |
Collapse
|
37
|
Love JA, Yi E, Smith TG. Autonomic pathways regulating pancreatic exocrine secretion. Auton Neurosci 2006; 133:19-34. [PMID: 17113358 DOI: 10.1016/j.autneu.2006.10.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2006] [Revised: 09/14/2006] [Accepted: 10/03/2006] [Indexed: 11/24/2022]
Abstract
The parasympathetic (PNS) and sympathetic (SNS) and nervous systems densely innervate the exocrine pancreas. Efferent PNS pathways, consisting of central dorsal motor nucleus of the vagus (DMV) and peripheral pancreatic neurons, stimulate exocrine secretion. The DMV integrates cortical (olfactory, gustatory) and gastric, and intestinal vagal afferent input to determine central PNS outflow during cephalic, gastric and intestinal phases of exocrine secretion. Pancreatic neurons integrate DMV input with peripheral enteric, sympathetic, and, possibly, afferent axon reflexes to determine final PNS input to all exocrine effectors. Gut and islet hormones appear to modulate both central and peripheral PNS pathways. Preganglionic sympathetic neurons in the intermediolateral (IML) column of the spinal cord receive inputs from brain centers, some shared with the PNS, and innervate postganglionic neurons, mainly in prevertebral ganglia. Sympathetic innervation of the exocrine pancreas is primarily indirect, and inhibits secretion by decreasing blood flow and inhibiting transmission in pancreatic ganglia. Interactions between SNS and PNS pathways appear to occur in brain, spinal cord, pancreatic and prevertebral ganglia, and at neuroeffector synapses. Thus, the PNS and SNS pathways regulating the exocrine pancreas are directly or indirectly antagonistic at multiple sites: the state of exocrine secretion reflects the balance of these influences. Despite over a century of study, much remains to be understood about the connections of specific neurons forming pancreatic pathways, their processes of neurotransmission, and how disruption of these pathways contributes to pancreatic disease.
Collapse
Affiliation(s)
- Jeffrey A Love
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, USA.
| | | | | |
Collapse
|
38
|
Janusonis S, Anderson GM, Shifrovich I, Rakic P. Ontogeny of brain and blood serotonin levels in 5-HT receptor knockout mice: potential relevance to the neurobiology of autism. J Neurochem 2006; 99:1019-31. [PMID: 16981893 DOI: 10.1111/j.1471-4159.2006.04150.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The most consistent neurochemical finding in autism has been elevated group mean levels of blood platelet 5-hydroxytryptamine (5-HT, serotonin). The origin and significance of this platelet hyperserotonemia remain poorly understood. The 5-HT(1A) receptor plays important roles in the developing brain and is also expressed in the gut, the main source of platelet 5-HT. Post-natal tissue levels of 5-HT, 5-hydroxyindoleacetic acid (5-HIAA) and tryptophan were examined in the brain, duodenum and blood of 5-HT(1A) receptor-knockout and wild-type mice. At 3 days after birth, the knockout mice had lower mean brain 5-HT levels and normal mean platelet 5-HT levels. Also, at 3 days after birth, the mean tryptophan levels in the brain, duodenum and blood of the knockout mice were around 30% lower than those of the wild-type mice. By 2 weeks after birth, the mean brain 5-HT levels of the knockout mice normalized, but their mean platelet 5-HT levels became 24% higher than normal. The possible causes of these dynamic shifts were explored by examining correlations between central and peripheral levels of 5-HT, 5-HIAA and tryptophan. The results are discussed in relation to the possible role of 5-HT in the ontogeny of autism.
Collapse
Affiliation(s)
- Skirmantas Janusonis
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, USA.
| | | | | | | |
Collapse
|
39
|
Liu M, Geddis MS, Wen Y, Setlik W, Gershon MD. Expression and function of 5-HT4 receptors in the mouse enteric nervous system. Am J Physiol Gastrointest Liver Physiol 2005; 289:G1148-63. [PMID: 16037544 DOI: 10.1152/ajpgi.00245.2005] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The aim of the current study was to identify enteric 5-HT(4) splice variants, locate enteric 5-HT(4) receptors, determine the relationship, if any, of the 5-HT(4) receptor to 5-HT(1P) activity, and to ascertain the function of 5-HT(4) receptors in enteric neurophysiology. 5-HT(4a), 5-HT(4b), 5-HT(4e), and 5-HT(4f) isoforms were found in mouse brain and gut. The ratio of 5-HT(4) expression to that of the neural marker, synaptophysin, was higher in gut than in brain but was similar in small and large intestines. Submucosal 5-HT(4) expression was higher than myenteric. Although transcripts encoding 5-HT(4a) and 5-HT(4b) isoforms were more abundant, those encoding 5-HT(4e) and 5-HT(4f) were myenteric plexus specific. In situ hybridization revealed the presence of transcripts encoding 5-HT(4) receptors in subsets of enteric neurons, interstitial cells of Cajal, and smooth muscle cells. IgY antibodies to mouse 5-HT(4) receptors were raised, affinity purified, and characterized. Nerve fibers in the circular muscle and the neuropil in ganglia of both plexuses were highly 5-HT(4) immunoreactive, although only a small subset of neurons contained 5-HT(4) immunoreactivity. No 5-HT(4)-immunoreactive nerves were detected in the mucosa. 5-HT and 5-HT(1P) agonists evoked a G protein-mediated long-lasting inward current that was neither mimicked by 5-HT(4) agonists nor blocked by 5-HT(4) antagonists. In contrast, the 5-HT(4) agonists renzapride and tegaserod increased the amplitudes of nicotinic evoked excitatory postsynaptic currents. Enteric neuronal 5-HT(4) receptors thus are presynaptic and probably exert their prokinetic effects by strengthening excitatory neurotransmission.
Collapse
Affiliation(s)
- Mintsai Liu
- Dept. of Anatomy and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | | | | | | | | |
Collapse
|
40
|
Janusonis S. Statistical distribution of blood serotonin as a predictor of early autistic brain abnormalities. Theor Biol Med Model 2005; 2:27. [PMID: 16029508 PMCID: PMC1199627 DOI: 10.1186/1742-4682-2-27] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Accepted: 07/19/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A wide range of abnormalities has been reported in autistic brains, but these abnormalities may be the result of an earlier underlying developmental alteration that may no longer be evident by the time autism is diagnosed. The most consistent biological finding in autistic individuals has been their statistically elevated levels of 5-hydroxytryptamine (5-HT, serotonin) in blood platelets (platelet hyperserotonemia). The early developmental alteration of the autistic brain and the autistic platelet hyperserotonemia may be caused by the same biological factor expressed in the brain and outside the brain, respectively. Unlike the brain, blood platelets are short-lived and continue to be produced throughout the life span, suggesting that this factor may continue to operate outside the brain years after the brain is formed. The statistical distributions of the platelet 5-HT levels in normal and autistic groups have characteristic features and may contain information about the nature of this yet unidentified factor. RESULTS The identity of this factor was studied by using a novel, quantitative approach that was applied to published distributions of the platelet 5-HT levels in normal and autistic groups. It was shown that the published data are consistent with the hypothesis that a factor that interferes with brain development in autism may also regulate the release of 5-HT from gut enterochromaffin cells. Numerical analysis revealed that this factor may be non-functional in autistic individuals. CONCLUSION At least some biological factors, the abnormal function of which leads to the development of the autistic brain, may regulate the release of 5-HT from the gut years after birth. If the present model is correct, it will allow future efforts to be focused on a limited number of gene candidates, some of which have not been suspected to be involved in autism (such as the 5-HT4 receptor gene) based on currently available clinical and experimental studies.
Collapse
Affiliation(s)
- Skirmantas Janusonis
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06520-8001, USA.
| |
Collapse
|
41
|
Janusonis S. Serotonergic paradoxes of autism replicated in a simple mathematical model. Med Hypotheses 2005; 64:742-50. [PMID: 15694691 DOI: 10.1016/j.mehy.2004.09.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Accepted: 09/05/2004] [Indexed: 10/26/2022]
Abstract
The biological causes of autism are unknown. Since the early 1960s, the most consistent pathophysiological finding in autistic individuals has been their statistically elevated blood 5-hydroxytryptamine (5-HT, serotonin) levels. However, many autistic individuals have normal blood 5-HT levels, so this finding has been difficult to interpret. The serotonin transporter (SERT) controls 5-HT uptake by blood platelets and has been implicated in autism, but recent studies have found no correlation between SERT polymorphisms and autism. Finally, autism is considered a brain disorder, but studies have so far failed to find consistent serotonergic abnormalities in autistic brains. A simple mathematical model may account for these paradoxes, if one assumes that autism is associated with the failure of a molecular mechanism that both regulates 5-HT release from gut enterochromaffin cells and mediates 5-HT signaling in the brain. Some 5-HT receptors may play such a dual role. While the failure of such a mechanism may lead to consistent abnormalities of synaptic transmission with no alteration of brain 5-HT levels, its effects on blood 5-HT levels may appear paradoxical.
Collapse
Affiliation(s)
- Skirmantas Janusonis
- Department of Neurobiology, Yale University School of Medicine, P.O. Box 208001, New Haven, CT 06520-8001, USA.
| |
Collapse
|
42
|
Abstract
OBJECTIVES Norepinephrine (NE), dopamine (DA), epinephrine (Epi), and 5-hydroxytryptamine (5-HT) all modulate pancreatic exocrine secretion, yet their concentrations in specific tissues of the exocrine pancreas are unknown. METHODS Concentrations of catecholamines and 5-HT in rabbit pancreatic ganglia, acini, ducts and ampullae, and arteries and veins were measured using HPLC. RESULTS Concentrations of NE in ganglia from the head/neck region were significantly higher than those from the body (1620 +/- 220 vs. 778 +/- 179 pmol/mg protein). Acini contained little NE, DA, or 5-HT (9 +/- 2, 0.9 +/- 0.2, 13 +/- 5 pmol/mg protein). Ducts and ampullae contained NE (314 +/- 74 and 156 +/- 24 pmol/mg protein), DA (43 +/- 14 and 13 +/- 4 pmol/mg protein), Epi (63 +/- 29 and 39 +/- 6 pmol/mg protein), and 5-HT (696 +/- 151 and 3563 +/- 288 pmol/mg protein). Arteries and veins contained the highest concentrations of NE (1962 +/- 463 and 736 +/- 80 pmol/mg protein, respectively). CONCLUSIONS Pancreatic ganglia and blood vessels, rather than acini, are the main sites of noradrenergic sympathetic innervation of the rabbit exocrine pancreas. These nerves preferentially target ganglionic transmission in the head/neck versus the body. Serotonergic nerves provide little or no innervation of rabbit pancreatic ganglia or acini.
Collapse
Affiliation(s)
- Eunyoung Yi
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi 39216-4505, USA
| | | | | | | |
Collapse
|
43
|
Ansorge M, Tanneberger C, Davies B, Theuring F, Kusserow H. Analysis of the murine 5-HT receptor gene promoter in vitro and in vivo. Eur J Neurosci 2004; 20:363-74. [PMID: 15233746 DOI: 10.1111/j.1460-9568.2004.03472.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The expression level of the 5-HT(1A) receptor gene (htr1a) in the central nervous system (CNS) is implicated in the aetiology and treatment of anxiety disorders and depression. Previous studies of the murine htr1a have revealed that its proximal promoter is GC rich and TATA-less. Several functional transcription factor binding sites, including MAZ and SP1 recognition sequences, have been identified. To further analyse the promoter of this receptor gene, additional upstream sequence information extending to -5.5 kb of the murine htr1a was generated and promoter fragments extending to -20 kb were analysed for activity in cell culture and transgenic animals. Promoter fragments greater than 4.5 kb in length were active in 5-HT(1A) receptor mRNA positive cells and inactive in 5-HT(1A) receptor mRNA negative cells. Smaller fragments were not able to confer this specificity. In agreement, using additive transgenesis to drive LacZ expression in vivo, CNS specific reporter gene expression was found with these longer constructs. Transgene expression in the 4.5- and 20-kb mouse lines resembled the endogenous htr1a expression pattern, whereas the 5.5-kb mouse lines surprisingly revealed strongly reduced expression. None of the three constructs was prone to confer ectopic expression, however, variation of expression between the transgenic lines was observed. Using colocalization studies we analysed the degree of concurrence of transgenic and endogenous htr1a expression brought about by these three different constructs. The highest degrees of colocalization were observed in mice harbouring the 20-kb construct, suggesting a large promoter fragment is required to faithfully direct transgene expression in a 5-HT(1A) receptor like pattern.
Collapse
Affiliation(s)
- Mark Ansorge
- Institute for Pharmacology and Toxicology, Charité University Hospital, Dorotheenstrasse 94, D 10117 Berlin, Germany
| | | | | | | | | |
Collapse
|
44
|
Johnson PJ, Bornstein JC. Neurokinin-1 and -3 receptor blockade inhibits slow excitatory synaptic transmission in myenteric neurons and reveals slow inhibitory input. Neuroscience 2004; 126:137-47. [PMID: 15145080 DOI: 10.1016/j.neuroscience.2004.03.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2004] [Indexed: 11/24/2022]
Abstract
Recent studies have shown that tachykinins mediate slow synaptic transmission to myenteric AH (afterhyperpolarising) neurons via neurokinin-3 receptors (NK(3)R). This study investigated a similar role for neurokinin-1 receptors (NK(1)R) and compared the effect of selective receptor antagonists on non-cholinergic slow excitatory post-synaptic potentials (EPSPs) recorded in myenteric AH neurons of the guinea-pig ileum. Slow EPSPs evoked by electrical stimulation of circumferentially oriented presynaptic nerves were mimicked by application of senktide, an NK(3)R agonist. [Sar(9),Met(O(2))(11)]-substance P, an NK(1)R agonist, depolarised a smaller number of neurons. SR142801, a selective NK(3)R antagonist (100 nM), inhibited slow EPSPs and responses to senktide, but had no effect on depolarisations evoked by forskolin, an activator of adenylate cyclase. SR140333, a selective NK(1)R antagonist, inhibited slow EPSPs in a subset of neurons and blocked responses to [Sar(9),Met(O(2))(11)]-substance P, but not to senktide or forskolin. Slow EPSPs that were predominantly mediated by NK(1)R had significantly shorter latencies than those due to activation of NK(3)R. After blockade of slow EPSPs, slow hyperpolarizing responses to presynaptic nerve stimulation were revealed in one-third of neurons. These events, which were associated with a decrease in input resistance and blocked by tetrodotoxin, were equated with slow inhibitory postsynaptic potentials. They were abolished by the 5-hydroxytryptamine(1A) receptor antagonist 1-(2-methoxyphenyl)-4-[4-(2-phthalimido)butyl]-piperazine (NAN-190), but unaffected by phentolamine, an alpha-adrenoceptor antagonist. In conclusion, these results provide the first direct evidence that NK(1)R mediate some slow excitatory synaptic input to myenteric AH neurons, and suggest that NK(1)R and NK(3)R activate distinct signal transduction pathways. These results also demonstrate that slow inhibitory synaptic transmission, which may be mediated by 5-hydroxytryptamine, is more prevalent in the myenteric plexus than previously indicated.
Collapse
Affiliation(s)
- P J Johnson
- Department of Physiology, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | |
Collapse
|
45
|
Janssen P, Prins NH, Moreaux B, Meulemans AL, Lefebvre RA. In vivo characterization of 5-HT1A receptor-mediated gastric relaxation in conscious dogs. Br J Pharmacol 2003; 140:913-20. [PMID: 14517177 PMCID: PMC1574099 DOI: 10.1038/sj.bjp.0705507] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2003] [Revised: 08/08/2003] [Accepted: 08/18/2003] [Indexed: 11/08/2022] Open
Abstract
Accumulating data have been published emphasizing the important role of 5-hydroxytryptamine (5-HT) receptors in proximal stomach relaxation. However, a proper in vivo characterization of 5-HT receptors mediating gastric relaxation is still missing. In the current study, we focus on the in vivo characterization of 5-HT1A receptors mediating relaxation of the proximal stomach in conscious dogs. Beagle dogs were equipped with a gastric fistula. In the conscious state, volume changes within an intragastric bag were measured at constant pressure by means of a barostat. Results are presented as the maximum volume increase after treatment (mean+/-s.e.m.). All drugs were injected intravenously. The 5-HT1A receptor agonist flesinoxan (10, 50, 100 and 150 microg kg-1) induced a dose-dependent relaxation of the canine proximal stomach (50+/-10, 230+/-51, 290+/-38 and 275+/-33 ml, respectively; n=9-11). The selective 5-HT1A receptor antagonist WAY-100635 dose-dependently inhibited the flesinoxan-induced relaxation. NG-nitro-l-arginine methyl ester did not affect this relaxation, suggesting that nitrergic nerves are not involved. After supradiaphragmatic vagotomy, the baseline of the intragastric volume was larger compared to that before vagotomy (317+/-50 vs 142+/-28 ml, respectively; n=5). Compensation for this by either reduction of the intraballoon pressure or infusion of a contractile dose of bethanechol did not establish a condition in which flesinoxan was able to relax the stomach. In contrast, nitroprusside induced a significant gastric relaxation when tone was increased by bethanechol. It is concluded that flesinoxan induces proximal gastric relaxation in conscious dogs via 5-HT1A receptors. The response is mediated through a vagal pathway without involvement of nitrergic nerves.
Collapse
Affiliation(s)
- P Janssen
- Heymans Institute of Pharmacology, Ghent University, Ghent, Belgium.
| | | | | | | | | |
Collapse
|
46
|
Hansen MB. The enteric nervous system III: a target for pharmacological treatment. PHARMACOLOGY & TOXICOLOGY 2003; 93:1-13. [PMID: 12828568 DOI: 10.1034/j.1600-0773.2003.930101.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The past decade has seen major advances in the pharmacological understanding of the nervous system of the gastrointestinal tract, the enteric nervous system, and its importance for gut functions in several states of disease. Indeed, the enteric nervous system has become a promising target in the treatment of many gastrointestinal symptoms and disorders. Some of these new therapeutic concepts, such as botulinum toxin for achalasia and serotonergic drugs for functional bowel diseases, are already in clinical use. This paper is part 3 of three Minireviews in Pharmacology & Toxicology, and presents the neurogastrointestinal pharmacological therapeutic options in gastrointestinal pain, functional gastrointestinal disorders, inflammatory bowel diseases, cancer and related conditions with focus on future drug targets. The diagnosis of gastrointestinal neuropathy, the role of serotonin and related neuroendocrine transmitters, serotonergic drugs, and neurotrophic factors in neurogastrointestinal pharmacology will be addressed in this context.
Collapse
Affiliation(s)
- Mark Berner Hansen
- Department of Gastrointestinal Surgery K, H:S Bispebjerg Hospital, University of Copenhagen, DK-2400 Copenhagen NV, Denmark.
| |
Collapse
|
47
|
Abstract
Exocrine pancreatic secretion is regulated by hormone-hormonal and neural-hormonal interactions involving several regulatory peptides and neurotransmitter from the gut, the pancreas and the vagus nerve. The roles of the gastrointestinal peptides including secretin, CCK, neurotensin, motilin, PYY and pancreatic islet hormones including insulin, pancreatic polypeptide and somatostatin have been established. Interactions among secretin, CCK and neurotensin produce synergistic stimulatory effect. Motilin modulates the cyclic pattern of pancreatic secretion while local insulin provides a permissive role for the action of secretin and CCK at physiological concentration. Somatostatin, PYY and pancreatic polypeptide are inhibitory regulators, acting either on the release of secretin and CCK or on the action of the two stimulatory hormones. The vagal afferent-efferent pathway mediates the actions of many of these regulatory peptides, particularly of secretin and CCK. Acetylcholine and nitric oxide are the neurotransmitters known to mediate the actions of secretin and CCK. Serotonin (5-HT) released from enterochromaffin cells in the intestinal mucosa and nerve terminals of the enteric nervous system and intrapancreatic nerves may be involved in both stimulatory and inhibitory mechanism through its various receptor subtypes. 5-HT also mediates the action of secretin and CCK. The regulatory roles of neuropeptides, PACP and GRP, are now established, whereas those of others are being uncovered. Pancreatic juice provides both positive and negative feedback regulation of pancreatic secretion through mediation of both secretin- and CCK-releasing peptides. Three CCK-releasing peptides have been purified: monitor peptide from pancreatic juice, diazepam-binding inhibitor from porcine intestine, and luminal CCK-releasing factor from rat intestinal secretion. All have been shown to stimulate CCK release and pancreatic enzyme secretion. Pancreatic phospholipase A2 from pancreatic juice and intestinal secretion appears to function as a secretin-releasing peptide. However, the detailed map of neurohormonal regulatory pathways of exocrine pancreatic secretion is yet to be constructed.
Collapse
Affiliation(s)
- W Y Chey
- Rochester Institute for Digestive Diseases and Sciences, 222 Alexander Street, Suite 3100, Rochester, NY 14607, USA.
| | | |
Collapse
|
48
|
Fiorica-Howells E, Hen R, Gingrich J, Li Z, Gershon MD. 5-HT(2A) receptors: location and functional analysis in intestines of wild-type and 5-HT(2A) knockout mice. Am J Physiol Gastrointest Liver Physiol 2002; 282:G877-93. [PMID: 11960784 DOI: 10.1152/ajpgi.00435.2001] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The distribution and function of the 5-hydroxytryptamine (5-HT(2A)) receptor were investigated in the intestines of wild-type (5-HT(2A) +/+) and knockout (5-HT(2A) -/-) mice. In 5-HT(2A) +/+ mice, rats, and guinea pigs, 5-HT(2A) receptor immunoreactivity was found on circular and longitudinal smooth muscle cells, neurons, enterocytes, and Paneth cells. Muscular 5-HT(2A) receptors were concentrated in caveolae; neuronal 5-HT(2A) receptors were found intracellularly and on the plasma membranes of nerve cell bodies and axons. Neuronal 5-HT(2A) immunoreactivity was detected as early as E14 in ganglia, intravillus nerves, and the deep muscle plexus. The 5-HT(2A) -/- colon did not express 5-HT(2A) receptors and did not contract in response to exogenous 5-HT. 5-HT(2A) -/- enterocytes were smaller, Paneth cells fewer, and muscle layers thinner (and showed degeneration) compared with those of 5-HT(2A) +/+ littermates. The 5-HT(2A) receptor may thus be required for the maintenance and/or development of enteric neuroeffectors and other enteric functions, although gastrointestinal and colonic transit times in 5-HT(2A) -/- and +/+ mice did not differ significantly.
Collapse
MESH Headings
- Animals
- Enterocytes/chemistry
- Enterocytes/pathology
- Enterocytes/ultrastructure
- Female
- Fetus/cytology
- Gastric Emptying/physiology
- Gastrointestinal Motility/physiology
- Immunohistochemistry
- Intestines/chemistry
- Intestines/innervation
- Intestines/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Immunoelectron
- Muscle, Smooth/chemistry
- Muscle, Smooth/innervation
- Muscle, Smooth/pathology
- Myenteric Plexus/chemistry
- Myenteric Plexus/ultrastructure
- Paneth Cells/chemistry
- Paneth Cells/pathology
- Rats
- Rats, Sprague-Dawley
- Receptor, Serotonin, 5-HT2A
- Receptors, Serotonin/analysis
- Receptors, Serotonin/genetics
- Receptors, Serotonin/metabolism
Collapse
Affiliation(s)
- Elena Fiorica-Howells
- Department of Anatomy and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA.
| | | | | | | | | |
Collapse
|
49
|
Coelho AM, Jacob L, Fioramonti J, Bueno L. Rectal antinociceptive properties of alverine citrate are linked to antagonism at the 5-HT1A receptor subtype. J Pharm Pharmacol 2001; 53:1419-26. [PMID: 11697552 DOI: 10.1211/0022357011777783] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Serotonin (5-HT) is considered as a major mediator causing hyperalgesia and is involved in inflammatory reactions and irritable bowel syndrome. Alverine citrate may possess visceral antinociceptive properties in a rat model of rectal distension-induced abdominal contractions. This study was designed to evaluate the pharmacological properties of alverine citrate in a rat model of rectal hyperalgesia induced by 5-HTP (5-HT precursor) and by a selective 5-HT1A agonist (8-OH-DPAT) and to compare this activity with a reference 5-HT1A antagonist (WAY 100635). At 4 h after their administration, 5-HTP and 8-OH-DPAT increased the number of abdominal contractions in response to rectal distension at the lowest volume of distension (0.4 mL). When injected intraperitoneally before 8-OH-DPAT and 5-HTP, WAY 100635 (1 mg kg(-1)) blocked their nociceptive effect, but also reduced the response to the highest volume of distension (1.6 mL). Similarly, when injected intraperitoneally, alverine citrate (20 mg kg(-1)) suppressed the effect of 5-HTP, but not that of 8-OH-DPAT. However, when injected intracerebroventricularly (75 microg/rat) alverine citrate reduced 8-OH-DPAT-induced enhancement of rectal distension-induced abdominal contractions. In-vitro binding studies revealed that alverine citrate had a high affinity for 5-HT1A receptors and a weak affinity for 5-HT3 and 5-HT4 subtypes. These results suggest that 5-HTP-induced rectal hypersensitivity involves 5-TH1A receptors and that alverine citrate acts as a selective antagonist at the 5-HT1A receptor subtype to block both 5-HTP and 8-OH-DPAT-induced rectal hypersensitivity.
Collapse
Affiliation(s)
- A M Coelho
- Department of Pharmacology, Institut National de la Recherche Agronomique, Toulouse, France
| | | | | | | |
Collapse
|
50
|
Kim M, Javed NH, Yu JG, Christofi F, Cooke HJ. Mechanical stimulation activates Galphaq signaling pathways and 5-hydroxytryptamine release from human carcinoid BON cells. J Clin Invest 2001; 108:1051-9. [PMID: 11581306 PMCID: PMC200950 DOI: 10.1172/jci12467] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
5-Hydroxytryptamine (5-HT) released from enterochromaffin cells activates secretory and peristaltic reflexes necessary for lubrication and propulsion of intestinal luminal contents. The aim of this study was to identify mechanosensitive intracellular signaling pathways that regulate 5-HT release. Human carcinoid BON cells displayed 5-HT immunoreactivity associated with granules dispersed throughout the cells or at the borders. Mechanical stimulation by rotational shaking released 5-HT from BON cells or from guinea pig jejunum during neural blockade with tetrodotoxin. In streptolysin O-permeabilized cells, guanosine 5'-O- (2-thiodiphosphate) (GDP-beta-S) and a synthetic peptide derived from the COOH terminus of Galphaq abolished mechanically evoked 5-HT release, while the NH(2)-terminal peptide did not. An antisense phosphorothioated oligonucleotide targeted to a unique sequence of Galphaq abolished mechanically evoked 5-HT release and reduced Galphaq protein levels without affecting the expression of Galpha(11). Depletion and chelation of extracellular calcium did not alter mechanically evoked 5-HT release, whereas depletion of intracellular calcium stores by thapsigargin and chelation of intracellular calcium by 1,2-bis (o-Aminophenoxy) ethane-N,N,N',N'-tetraacetic acid tetra (acetoxymethyl) ester (BAPTA-AM) reduced 5-HT release. Mechanically evoked 5-HT release was inhibited by somatostatin-14 in a concentration-dependent manner. The results suggest that mechanical stimulation of enterochromaffin-derived BON cells directly or indirectly stimulates a G protein-coupled receptor that activates Galphaq, mobilizes intracellular calcium, and causes 5-HT release.
Collapse
Affiliation(s)
- M Kim
- Department of Pharmacology, The Ohio State University, College of Medicine, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|