1
|
Maraslioglu-Sperber A, Pizzi E, Fisch JO, Kattler K, Ritter T, Friauf E. Molecular and functional profiling of cell diversity and identity in the lateral superior olive, an auditory brainstem center with ascending and descending projections. Front Cell Neurosci 2024; 18:1354520. [PMID: 38846638 PMCID: PMC11153811 DOI: 10.3389/fncel.2024.1354520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/15/2024] [Indexed: 06/09/2024] Open
Abstract
The lateral superior olive (LSO), a prominent integration center in the auditory brainstem, contains a remarkably heterogeneous population of neurons. Ascending neurons, predominantly principal neurons (pLSOs), process interaural level differences for sound localization. Descending neurons (lateral olivocochlear neurons, LOCs) provide feedback into the cochlea and are thought to protect against acoustic overload. The molecular determinants of the neuronal diversity in the LSO are largely unknown. Here, we used patch-seq analysis in mice at postnatal days P10-12 to classify developing LSO neurons according to their functional and molecular profiles. Across the entire sample (n = 86 neurons), genes involved in ATP synthesis were particularly highly expressed, confirming the energy expenditure of auditory neurons. Two clusters were identified, pLSOs and LOCs. They were distinguished by 353 differentially expressed genes (DEGs), most of which were novel for the LSO. Electrophysiological analysis confirmed the transcriptomic clustering. We focused on genes affecting neuronal input-output properties and validated some of them by immunohistochemistry, electrophysiology, and pharmacology. These genes encode proteins such as osteopontin, Kv11.3, and Kvβ3 (pLSO-specific), calcitonin-gene-related peptide (LOC-specific), or Kv7.2 and Kv7.3 (no DEGs). We identified 12 "Super DEGs" and 12 genes showing "Cluster similarity." Collectively, we provide fundamental and comprehensive insights into the molecular composition of individual ascending and descending neurons in the juvenile auditory brainstem and how this may relate to their specific functions, including developmental aspects.
Collapse
Affiliation(s)
- Ayse Maraslioglu-Sperber
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Erika Pizzi
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Jonas O. Fisch
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Kathrin Kattler
- Genetics/Epigenetics Group, Department of Biological Sciences, Saarland University, Saarbrücken, Germany
| | - Tamara Ritter
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Eckhard Friauf
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| |
Collapse
|
2
|
Hong J, Dai P, Liang H, Sun G, Qi W, Bi Y. Extrasynaptic distribution of NMDA receptors in cochlear inner hair cell afferent signaling complex. J Chem Neuroanat 2024; 137:102417. [PMID: 38570170 DOI: 10.1016/j.jchemneu.2024.102417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/30/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
OBJECTIVE The distribution and role of NMDA receptors is unclear in the afferent signaling complex of the cochlea. The present study aimed to examine the distribution of NMDA receptors in cochlear afferent signaling complex of the adult mouse, and their relationship with ribbon synapses of inner hair cells (IHCs) and GABAergic efferent terminals of the lateral olivocochlear (LOC). METHODS Immunofluorescence staining in combination with confocal microscopy was used to investigate the distribution of glutamatergic NMDA and AMPA receptors in afferent terminals of SGNs, and their relationship with ribbon synapses of IHCs and GABAergic efferent terminals of LOC. RESULTS Terminals with AMPA receptors along with Ribbons of IHC formed afferent synapses in the basal pole of IHCs, and those with NMDA receptors were mainly distributed longitudinally in the IHCs nuclei region. Significant difference was found in the distribution of NMDA and AMPA receptors in IHC afferent signaling complex (P<0.05). Some GABAergic terminals colocalized with NMDA receptors at the IHC nucleus region (P>0.05). CONCLUSION There is significant difference in the distribution of NMDA and AMPA receptors in cochlear afferent signaling complex. NMDA receptors are present in the extra-synaptic region of ribbon synapses of IHCs, and they are related to GABA efferent terminals of the afferent signaling complex.
Collapse
Affiliation(s)
- Juan Hong
- Department of Otorhinolaryngology, Huashan Hospital of Fudan University, Shanghai 200040, China.
| | - Peidong Dai
- ENT Institute, Eye & ENT Hospital of Fudan University; NHC Hearing Medicine Key Laboratory (Fudan University), Shanghai 200031, China
| | - Huazheng Liang
- Monash Suzhou Research Institute, Suzhou Industrial Park, Jiangsu, China
| | - Guangbin Sun
- Department of Otorhinolaryngology, Huashan Hospital of Fudan University, Shanghai 200040, China
| | - Weidong Qi
- Department of Otorhinolaryngology, Huashan Hospital of Fudan University, Shanghai 200040, China
| | - Yong Bi
- Department of Neurology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China.
| |
Collapse
|
3
|
Selvakumar D, Drescher MJ, Deckard NA, Ramakrishnan NA, Morley BJ, Drescher DG. Dopamine D1A directly interacts with otoferlin synaptic pathway proteins: Ca2+ and phosphorylation underlie an NSF-to-AP2mu1 molecular switch. Biochem J 2017; 474:79-104. [PMID: 27821621 PMCID: PMC6310132 DOI: 10.1042/bcj20160690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/15/2016] [Accepted: 11/07/2016] [Indexed: 11/17/2022]
Abstract
Dopamine receptors regulate exocytosis via protein-protein interactions (PPIs) as well as via adenylyl cyclase transduction pathways. Evidence has been obtained for PPIs in inner ear hair cells coupling D1A to soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE)-related proteins snapin, otoferlin, N-ethylmaleimide-sensitive factor (NSF), and adaptor-related protein complex 2, mu 1 (AP2mu1), dependent on [Ca2+] and phosphorylation. Specifically, the carboxy terminus of dopamine D1A was found to directly bind t-SNARE-associated protein snapin in teleost and mammalian hair cell models by yeast two-hybrid (Y2H) and pull-down assays, and snapin directly interacts with hair cell calcium-sensor otoferlin. Surface plasmon resonance (SPR) analysis, competitive pull-downs, and co-immunoprecipitation indicated that these interactions were promoted by Ca2+ and occur together. D1A was also found to separately interact with NSF, but with an inverse dependence on Ca2+ Evidence was obtained, for the first time, that otoferlin domains C2A, C2B, C2D, and C2F interact with NSF and AP2mu1, whereas C2C or C2E do not bind to either protein, representing binding characteristics consistent with respective inclusion or omission in individual C2 domains of the tyrosine motif YXXΦ. In competitive pull-down assays, as predicted by KD values from SPR (+Ca2+), C2F pulled down primarily NSF as opposed to AP2mu1. Phosphorylation of AP2mu1 gave rise to a reversal: an increase in binding by C2F to phosphorylated AP2mu1 was accompanied by a decrease in binding to NSF, consistent with a molecular switch for otoferlin from membrane fusion (NSF) to endocytosis (AP2mu1). An increase in phosphorylated AP2mu1 at the base of the cochlear inner hair cell was the observed response elicited by a dopamine D1A agonist, as predicted.
Collapse
Affiliation(s)
- Dakshnamurthy Selvakumar
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, U.S.A
| | - Marian J Drescher
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, U.S.A.
| | - Nathan A Deckard
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, U.S.A
| | - Neeliyath A Ramakrishnan
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, U.S.A
| | - Barbara J Morley
- Boys Town National Research Hospital, Omaha, Nebraska 68131, U.S.A
| | - Dennis G Drescher
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, U.S.A
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, U.S.A
| |
Collapse
|
4
|
Le Prell CG, Dolan DF, Hughes LF, Altschuler RA, Shore SE, Bledsoe SC. Disruption of lateral olivocochlear neurons with a dopaminergic neurotoxin depresses spontaneous auditory nerve activity. Neurosci Lett 2014; 582:54-8. [PMID: 25175420 DOI: 10.1016/j.neulet.2014.08.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/09/2014] [Accepted: 08/22/2014] [Indexed: 11/28/2022]
Abstract
Neurons of the lateral olivocochlear (LOC) system project from the auditory brainstem to the cochlea, where they synapse on radial dendrites of auditory nerve fibers. Selective LOC disruption depresses sound-evoked auditory nerve activity in the guinea pig, but enhances it in the mouse. Here, LOC disruption depressed spontaneous auditory nerve activity in the guinea pig. Recordings from single auditory nerve fibers revealed a significantly reduced proportion of fibers with the highest spontaneous firing rates (SRs) and an increased proportion of neurons with lower SRs. Ensemble activity, estimated using round window noise, also decreased after LOC disruption. Decreased spontaneous activity after LOC disruption may be a consequence of reduced tonic release of excitatory transmitters from the LOC terminals in guinea pigs.
Collapse
Affiliation(s)
- Colleen G Le Prell
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL 32610 USA.
| | - David F Dolan
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Larry F Hughes
- Department of Surgery, Southern Illinois University Medical School, Springfield, IL 62794 USA
| | - Richard A Altschuler
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Susan E Shore
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Sanford C Bledsoe
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
5
|
Lauer AM, Fuchs PA, Ryugo DK, Francis HW. Efferent synapses return to inner hair cells in the aging cochlea. Neurobiol Aging 2012; 33:2892-902. [PMID: 22405044 DOI: 10.1016/j.neurobiolaging.2012.02.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 02/09/2012] [Accepted: 02/10/2012] [Indexed: 01/04/2023]
Abstract
Efferent innervation of the cochlea undergoes extensive modification early in development, but it is unclear if efferent synapses are modified by age, hearing loss, or both. Structural alterations in the cochlea affecting information transfer from the auditory periphery to the brain may contribute to age-related hearing deficits. We investigated changes to efferent innervation in the vicinity of inner hair cells (IHCs) in young and old C57BL/6 mice using transmission electron microscopy to reveal increased efferent innervation of IHCs in older animals. Efferent contacts on IHCs contained focal presynaptic accumulations of small vesicles. Synaptic vesicle size and shape were heterogeneous. Postsynaptic cisterns were occasionally observed. Increased IHC efferent innervation was associated with a smaller number of afferent synapses per IHC, increased outer hair cell loss, and elevated auditory brainstem response thresholds. Efferent axons also formed synapses on afferent dendrites but with a reduced prevalence in older animals. Age-related reduction of afferent activity may engage signaling pathways that support the return to an immature state of efferent innervation of the cochlea.
Collapse
Affiliation(s)
- Amanda M Lauer
- The Center for Hearing and Balance, Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
6
|
Matsumoto M, Nakagawa T, Kojima K, Sakamoto T, Fujiyama F, Ito J. Potential of embryonic stem cell-derived neurons for synapse formation with auditory hair cells. J Neurosci Res 2008; 86:3075-85. [DOI: 10.1002/jnr.21754] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
7
|
Darrow KN, Simons EJ, Dodds L, Liberman MC. Dopaminergic innervation of the mouse inner ear: evidence for a separate cytochemical group of cochlear efferent fibers. J Comp Neurol 2006; 498:403-14. [PMID: 16871528 PMCID: PMC1805779 DOI: 10.1002/cne.21050] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immunostaining mouse cochleas for tyrosine hydroxylase (TH) and dopamine beta-hydroxylase suggests that there is a rich adrenergic innervation throughout the auditory nerve trunk and a small dopaminergic innervation of the sensory cell areas. Surgical cuts in the brainstem confirm these dopaminergic fibers as part of the olivocochlear efferent bundle. Within the sensory epithelium, TH-positive terminals are seen only in the inner hair cell area, where they intermingle with other olivocochlear terminals expressing cholinergic markers (vesicular acetylcholine transporter; VAT). Double immunostaining suggests little colocalization of TH and VAT; quantification of terminal volumes suggests that TH-positive fibers constitute only 10-20% of the efferent innervation of the inner hair cell area. Immunostaining of mouse brainstem revealed a small population of TH-positive cells in and around the lateral superior olive. Consistent with cochlear projections, double staining for the cholinergic marker acetylcholinesterase suggested that TH-positive somata are not cholinergic and vice versa. All observations are consistent with the view that a small dopaminergic subgroup of lateral olivocochlear neurons 1) projects to the inner hair cell area, 2) is distinct from the larger cholinergic group projecting there, and 3) may correspond to lateral olivocochlear "shell" neurons described by others (Warr et al. [1997] Hear. Res 108:89-111).
Collapse
Affiliation(s)
- Keith N Darrow
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114
| | | | | | | |
Collapse
|
8
|
Francis HW, Rivas A, Lehar M, Ryugo DK. Two types of afferent terminals innervate cochlear inner hair cells in C57BL/6J mice. Brain Res 2004; 1016:182-94. [PMID: 15246854 DOI: 10.1016/j.brainres.2004.05.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2004] [Indexed: 11/28/2022]
Abstract
Afferent synapses on inner hair cells (IHC) transfer auditory information to the central nervous system (CNS). Despite the importance of these synapses for normal hearing, their response to cochlear disease and dysfunction is not well understood. The C57BL/6J mouse is a model for presbycusis and noise-induced hearing loss because of its age-related hearing loss and susceptibility to acoustic over-exposure. In this context, we sought to establish normal synaptic structure in order to better evaluate synaptic changes due to presbycusis and noise exposure. Ultrastructural analysis of IHCs and afferent terminals was performed in a normal hearing 3-month-old C57BL/6J mouse at cochlear sites corresponding to 8, 16 and 32 kHz using semi-serial sections. A stereologic survey of random sections was conducted of IHCs in 11 additional mice. Two morphologically distinct groups of afferent terminals were identified at all 3 frequency locations in 11 out of 12 animals. "Simple" endings demonstrated classic features of bouton terminals, whereas "folded" endings were larger in size and exhibited a novel morphologic feature that consisted of a fully internalized double membrane that partially divided the terminal into two compartments. In many cases, the double membrane was continuous with the outer terminal membrane as if produced by an invagination. We still must determine the generality of these observations with respect to other mouse strains.
Collapse
Affiliation(s)
- Howard W Francis
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
9
|
Abstract
The golden hamster (Mesocricetus auratus) is often used in auditory research, but little is known about the anatomical organization of its olivocochlear (OC) neurons, the source of the efferent innervation of the organ of Corti. Accordingly, we labeled the OC neurons projecting to one cochlea by means of retrograde axonal transport of FluoroGold. In four animals, all labeled OC neurons were counted and digital images of the labeling were captured and analyzed morphometrically. In one case, a 3D computer reconstruction of the bilateral distribution of OC neurons was made. The largest group of OC neurons was comprised by small, intrinsic lateral OC neurons within the ipsilateral lateral superior olivary nucleus (LSO), almost all of which (97%) were located ipsilaterally. The second largest group consisted of medial OC neurons in the ventral nucleus of the trapezoid body, 75% of which were located contralaterally. The smallest group consisted of shell neurons surrounding the LSO, 80% of which projected ipsilaterally. These three types of neurons are generally similar in morphology and distribution to those previously described in the rat and the chinchilla. However, there were several unique findings, including the fact that the hamster possesses the smallest total number of OC neurons (mean 341) of any rodent yet studied.
Collapse
Affiliation(s)
- Miguel A Sánchez-González
- Laboratorio de Neurobiología de la Audición, Departamento de Biología Celular y Patología, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | | | | |
Collapse
|
10
|
Sobkowicz HM, August BK, Slapnick SM. Synaptic arrangements between inner hair cells and tunnel fibers in the mouse cochlea. Synapse 2004; 52:299-315. [PMID: 15103696 DOI: 10.1002/syn.20026] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Hair cells, the sensory cells of the organ of Corti, receive afferent innervation from the spiral ganglion neurons and efferent innervation from the superior olivary complex. The inner and outer hair cells are innervated by distinctive fiber systems. Our electron microscopical studies demonstrate, however, that inner hair cells, in addition to their own innervation, are also synaptically engaged with the fibers destined specifically to innervate outer hair cells, within both the afferent and efferent innervation. Serial sections of the afferent tunnel fibers (destined to innervate outer hair cells) in the apical turn demonstrate that, while crossing toward the tunnel of Corti, they receive en passant synapses from inner hair cells. Each inner hair cell (in a series of five in the apical turn) was innervated by two tunnel fibers, one on each side. We show here for the first time that, in the adult, the afferent tunnel fibers receive a ribbon synapse from inner hair cells and form reciprocal contacts on their spines. Vesiculated efferent fibers from the inner pillar bundle (which carries the innervation to outer hair cells) form triadic synapses with inner hair cells and their synaptic afferent dendrites; the vesiculated terminals of the lateral olivocochlear fibers from the inner spiral bundle synapse extensively on the afferent tunnel fibers, forming triadic synapses with both afferent tunnel fibers and their synaptic inner hair cells. This intense synaptic activity involving inner hair cells and both afferent and efferent tunnel fibers, at their crossroad, implies functional connections between both inner and outer hair cells in the process of hearing.
Collapse
Affiliation(s)
- Hanna M Sobkowicz
- University of Wisconsin Neurology Department, Madison, Wisconsin 53706, USA.
| | | | | |
Collapse
|
11
|
Sobkowicz HM, Slapnick SM, August BK. Reciprocal synapses between inner hair cell spines and afferent dendrites in the organ of corti of the mouse. Synapse 2003; 50:53-66. [PMID: 12872294 DOI: 10.1002/syn.10241] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We provide, for the first time, ultrastructural evidence for the differentiation of reciprocal synapses between afferent dendrites of spiral ganglion neurons and inner hair cells. Cochlear synaptogenesis of inner hair cells in the mouse occurs in two phases: before and after the onset of hearing at 9-10 postnatal (PN) days. In the first phase, inner hair cells acquire afferent innervation (1-5 PN). Reciprocal synapses form around 9-10 PN on spinous processes emitted by inner hair cells into the dendritic terminals, predominantly in conjunction with ribbon afferent synapses. During the second phase, which lasts up to 14 PN, synaptogenesis is led by the olivocochlear fibers of the lateral bundle, which induce the formation of compound and spinous synapses. The afferent dendrites themselves also develop recurrent presynaptic spines or form mounds of synaptic vesicles apposed directly across inner hair cell ribbon synapses. Thus, in the adult 2-month mouse, afferent dendrites of spiral ganglion neurons are not only postsynaptic but also presynaptic to inner hair cells, providing a synaptic loop for an immediate feedback response. Reciprocal synapses, together with triadic, converging, and serial synapses, are an integral part of the afferent ribbon synapse complex. We define the neuronal circuitry of the inner hair cell and propose that these minicircuits form synaptic trains that provide the neurological basis for local cochlear encoding of the initial acoustic signals.
Collapse
Affiliation(s)
- Hanna M Sobkowicz
- University of Wisconsin Neurology Department, Madison, Wisconsin 53706, USA.
| | | | | |
Collapse
|
12
|
Simmons DD. Development of the inner ear efferent system across vertebrate species. JOURNAL OF NEUROBIOLOGY 2002; 53:228-50. [PMID: 12382278 DOI: 10.1002/neu.10130] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Inner ear efferent neurons are part of a descending centrifugal pathway from the hindbrain known across vertebrates as the octavolateralis efferent system. This centrifugal pathway terminates on either sensory hair cells or eighth nerve ganglion cells. Most studies of efferent development have used either avian or mammalian models. Recent studies suggest that prevailing notions of the development of efferent innervation need to be revised. In birds, efferents reside in a single, diffuse nucleus, but segregate according to vestibular or cochlear projections. In mammals, the auditory and vestibular efferents are completely separate. Cochlear efferents can be divided into at least two distinct, descending medial and lateral pathways. During development, inner ear efferents appear to be a specific motor neuron phenotype, but unlike motor neurons have contralateral projections, innervate sensory targets, and, at least in mammals, also express noncholinergic neurotransmitters. Contrary to prevailing views, newer data suggest that medial efferent neurons mature early, are mostly, if not exclusively, cholinergic, and project transiently to the inner hair cell region of the cochlea before making final synapses on outer hair cells. On the other hand, lateral efferent neurons mature later, are neurochemically heterogeneous, and project mostly, but not exclusively to the inner hair cell region. The early efferent innervation to the ear may serve an important role in the maturation of afferent responses. This review summarizes recent data on the neurogenesis, pathfinding, target selection, innervation, and onset of neurotransmitter expression in cholinergic efferent neurons.
Collapse
Affiliation(s)
- Dwayne D Simmons
- Harold W Siebens Hearing Research Center, Central Institute for the Deaf and Departments of Otolaryngology and of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, Missouri 63110, USA.
| |
Collapse
|
13
|
Khan KM, Drescher MJ, Hatfield JS, Khan AM, Drescher DG. Muscarinic receptor subtypes are differentially distributed in the rat cochlea. Neuroscience 2002; 111:291-302. [PMID: 11983315 DOI: 10.1016/s0306-4522(02)00020-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Five different genes encode the muscarinic acetylcholine receptors. The muscarinic receptor subtypes M1, M3, and M5 are typically coupled to activation of the Galpha(q/11)-phosphatidyl inositol pathway, whereas the M2 and M4 subtypes are typically linked to Galpha(i) and adenylyl cyclase inhibition. In order to localize muscarinic receptors in the rat cochlea, we applied polyclonal antibodies for subtypes M1, M2, M3, and M5, and monoclonal antibody for subtype M4 to paraffin sections. In the organ of Corti, outer hair cells exhibited strong immunoreactivity for M3 and weak immunoreactivity for M1. Deiters' cells were strongly immunoreactive to antibodies for the M1 and M2 subtypes, with weak staining observed for M3, and weaker yet for M5. Inner hair cells showed moderate immunoreactivity for the M1 subtype, weaker staining for the M5 subtype, and slight staining for the M3 subtype. Among the spiral ganglion neurons, weak to moderate immunoreactivity was detected for M3 and M5 subtypes and weak staining was observed for the M1 subtype. The efferent fibers of the intraganglionic spiral bundle were positive for M2 and M5. In the lateral wall, weak to moderate staining was detected for M5 in the stria vascularis corresponding in position to the basolateral extensions of marginal cells. Staining for M3 was observed associated with capillaries. Fibrocytes of the spiral ligament exhibited limited but selective subtype immunoreactivity. No immunoreactivity was detected in the cochlea for the M4 subtype. From the present findings we suggest that M3 is the primary muscarinic receptor subtype in outer hair cells mediating a postsynaptic response to the medial olivocochlear cholinergic efferent input. The muscarinic receptor subtypes M1, M3, and M5 appear to subserve the action of cholinergic lateral olivocochlear efferent stimulation on postsynaptic responses in type I afferents. Whether M1, M3, and M5 protein in inner hair cells indicates constitutive or vestigial expression remaining from development is unknown. M2 and M5 muscarinic receptors expressed presynaptically may modulate the efferent signal. Finally, expression by Deiters' cells of several muscarinic subtypes raises the possibility that cholinergic efferents couple to these non-sensory cells through muscarinic receptors.
Collapse
Affiliation(s)
- K M Khan
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, 259 Lande Medical Research Building, 540 E. Canfield Ave., Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
14
|
Sobkowicz HM, Slapnick SM, August BK. Differentiation of spinous synapses in the mouse organ of corti. Synapse 2002; 45:10-24. [PMID: 12112409 DOI: 10.1002/syn.10080] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The inner hair cells, the primary auditory receptors, are perceived only as a means for transfer of sound signals via the auditory nerve to the central nervous system. During initial synaptogenesis, they receive relatively few and mainly somatic synapses. However, around the onset of hearing (10-14 postnatal days in the mouse), a complex network of local spinous synapses differentiates, involving inner hair cells, their afferent dendrites, and lateral olivocochlear terminals. Inner hair cell spines participate in triadic synapses between olivocochlear terminals and afferent dendrites. Triadic synapses have not yet been confirmed in the adult. Synaptic spines of afferent dendrites form axodendritic synapses with olivocochlear terminals and somatodendritic synapses with inner hair cells. The latter are of two types: ribbon-dendritic spines and stout dendritic spines surrounded only by a crown of synaptic vesicles. Formation of spinous afferent synapses results from sprouting of dendritic filopodia that intussuscept inner hair cell cytoplasm. This process continues in the adult, indicating ongoing synaptogenesis. Spinous processes of olivocochlear synaptic terminals contact adjacent afferent dendrites, thus integrating their connectivity. They develop about 14 postnatal days, but their presence in the adult has yet to be confirmed. Differentiation of spinous synapses in the organ of Corti results in a total increase of synaptic contacts and in a complexity of synaptic arrangements and connectivity. We propose that spinous synapses provide the morphological substrate for local processing of initial auditory signals within the cochlea.
Collapse
Affiliation(s)
- Hanna M Sobkowicz
- Neurology Department, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | | | |
Collapse
|
15
|
Kennedy HJ, Meech RW. Fast Ca2+ signals at mouse inner hair cell synapse: a role for Ca2+-induced Ca2+ release. J Physiol 2002; 539:15-23. [PMID: 11850498 PMCID: PMC2290124 DOI: 10.1113/jphysiol.2001.013171] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Inner hair cells of the mammalian cochlea translate acoustic stimuli into 'phase-locked' nerve impulses with frequencies of up to at least 1 kHz. Little is known about the intracellular Ca2+ signal that links transduction to the release of neurotransmitter at the afferent synapse. Here, we use confocal microscopy to provide evidence that Ca2+-induced Ca2+ release (CICR) may contribute to the mechanism. Line scan images (2 ms repetition rate) of neonatal mouse inner hair cells filled with the fluorescent indicator FLUO-3, revealed a transient increase in intracellular Ca2+ concentration ([Ca2+]i) during brief (5-50 ms) depolarizing commands under voltage clamp. The amplitude of the [Ca2+]i transient depended upon the Ca2+ concentration in the bathing medium in the range 0-1.3 mM. [Ca2+]i transients were confined to a region near the plasma membrane at the base of the cell in the vicinity of the afferent synapses. The change in [Ca2+]i appeared uniform throughout the entire basal sub-membrane space and we were unable to observe hotspots of activity. Both the amplitude and the rate of rise of the [Ca2+]i transient was reduced by external ryanodine (20 microM), an agent that blocks Ca2+ release from the endoplasmic reticulum. Intracellular Cs+, commonly used to record at presynaptic sites, produced a similar effect. We conclude that both ryanodine and intracellular Cs+ block CICR in inner hair cells. We discuss the contribution of CICR to the measured [Ca2+]i transient, the implications for synaptic transmission at the afferent synapse and the significance of its sensitivity to intracellular Cs+.
Collapse
Affiliation(s)
- Helen J Kennedy
- Department of Physiology, University of Bristol, Bristol, BS8 1TD, UK.
| | | |
Collapse
|
16
|
Abstract
Tenascin-C is a glycoprotein of the extracellular matrix that acts in vitro as both a permissive and a nonpermissive substrate for neurite growth. We analyzed, by immunocytochemistry, the distribution of tenascin-C along neural growth pathways in the developing mouse cochlea. In the spiral lamina, tenascin-C coexists in a region where nerve bundles arborize. In the organ of Corti, tenascin-C lines the neural pathways along pillar and Deiters' cells before and during the time of nerve fiber ingrowth. By embryonic day 16, tenascin-C is abundant on the pillar side of the inner hair cell but does not accumulate on the modiolar side until about birth, a time after the arrival of afferent fibers. The synaptic zones beneath outer hair cells are strongly labeled during the time when early events in afferent synaptogenesis are progressing but not during the time of efferent synaptogenesis. At the age when most neural growth ceases, tenascin-C immunoreactivity disappears. Faint tenascin-C immunolabeling of normal hair cells, strong tenascin immunolabeling in pathological hair cells of Bronx waltzer (bv/bv) mice, and staining for beta-galactosidase, whose gene replaces tenascin in a "knockout" mouse, indicate that hair cells supply at least part of the tenascin-C. The changing composition of the extracellular matrix in the synaptic region during afferent and efferent synaptogenesis is consistent with a role for tenascin in synaptogenesis. The presence of tenascin-C along the growth routes of nerve fibers, particularly toward the outer hair cells, raises the possibility that growth cone interactions with tenascin-C helps to guide nerve fibers in the cochlea.
Collapse
Affiliation(s)
- D S Whitlon
- Audiology and Hearing Sciences Program and Institute for Neuroscience, Northwestern University, Evanston, Illinois 60208, USA.
| | | | | |
Collapse
|
17
|
Morley BJ, Li HS, Hiel H, Drescher DG, Elgoyhen AB. Identification of the subunits of the nicotinic cholinergic receptors in the rat cochlea using RT-PCR and in situ hybridization. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 53:78-87. [PMID: 9473597 DOI: 10.1016/s0169-328x(97)00272-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There are two tissues in the adult mammalian cochlea that are post-synaptic to cholinergic efferent fibers: The outer hair cells (OHCs) and the dendrites of the afferent fibers of the type I spiral ganglion cells. The unusual nicotinic-like pharmacology of cochlear cholinergic responses and the unique embryonic development of cochlear tissues suggest that the inner-ear nicotinic cholinergic receptor (nAChR) may be different from nAChRs described previously at synapses in the mammalian brain, autonomic ganglia, or skeletal muscle. In this study, we determined the mRNA expression of the alpha2-7, alpha9, and beta2-4 subunits of the nicotinic acetylcholine receptor (nAChR) family in the rat cochlea. In micro-dissected tissue from the organ of Corti, spiral ganglion, and the membranous lateral wall, we found mRNA expression of the alpha7 and alpha9 subunits in the organ of Corti and alpha5-7, and beta2 and beta3 in the spiral ganglion using RT-PCR. Employing in situ hybridization with 35S-riboprobes, we localized alpha9 in hair cells regions and alpha6, alpha7 and beta2 in the type I cells of the spiral ganglion. No evidence of nAChR subunit mRNA expression was found in supporting cells, but beta2 was expressed in type II spiral ganglion cells, which are neither cholinergic nor cholinoceptive.
Collapse
Affiliation(s)
- B J Morley
- Neurochemistry Laboratory, Boys Town National Research Hospital, 555 North 30th Street, Omaha, NE 68131, USA.
| | | | | | | | | |
Collapse
|