1
|
Sugar-Binding Profiles of Chitin-Binding Lectins from the Hevein Family: A Comprehensive Study. Int J Mol Sci 2017; 18:ijms18061160. [PMID: 28556796 PMCID: PMC5485984 DOI: 10.3390/ijms18061160] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 04/28/2017] [Accepted: 05/21/2017] [Indexed: 01/16/2023] Open
Abstract
Chitin-binding lectins form the hevein family in plants, which are defined by the presence of single or multiple structurally conserved GlcNAc (N-acetylglucosamine)-binding domains. Although they have been used as probes for chito-oligosaccharides, their detailed specificities remain to be investigated. In this study, we analyzed six chitin-binding lectins, DSA, LEL, PWM, STL, UDA, and WGA, by quantitative frontal affinity chromatography. Some novel features were evident: WGA showed almost comparable affinity for pyridylaminated chitotriose and chitotetraose, while LEL and UDA showed much weaker affinity, and DSA, PWM, and STL had no substantial affinity for the former. WGA showed selective affinity for hybrid-type N-glycans harboring a bisecting GlcNAc residue. UDA showed extensive binding to high-mannose type N-glycans, with affinity increasing with the number of Man residues. DSA showed the highest affinity for highly branched N-glycans consisting of type II LacNAc (N-acetyllactosamine). Further, multivalent features of these lectins were investigated by using glycoconjugate and lectin microarrays. The lectins showed substantial binding to immobilized LacNAc as well as chito-oligosaccharides, although the extents to which they bound varied among them. WGA showed strong binding to heavily sialylated glycoproteins. The above observations will help interpret lectin-glycoprotein interactions in histochemical studies and glyco-biomarker investigations.
Collapse
|
2
|
Lakes-Harlan R. Lesion-induced insights in the plasticity of the insect auditory system. Front Physiol 2013; 4:48. [PMID: 23986709 PMCID: PMC3750944 DOI: 10.3389/fphys.2013.00048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 02/28/2013] [Indexed: 12/04/2022] Open
Abstract
The auditory networks of Orthoptera offer a model system uniquely suited to the study of neuronal connectivity and lesion-dependent neural plasticity. Monaural animals, following the permanent removal of one ear in nymphs or adults, adjust their auditory pathways by collateral sprouting of afferents and deafferented interneurons which connect to neurons on the contralateral side. Transient lesion of the auditory nerve allows us to study regeneration as well as plasticity processes. After crushing the peripheral auditory nerve, the lesioned afferents regrow and re-establish new synaptic connections which are relevant for auditory behavior. During this process collateral sprouting occurs in the central nervous networks, too. Interestingly, after regeneration a changed neuronal network will be maintained. These paradigms are now been used to analyze molecular mechanism in neuronal plasticity on the level of single neurons and small networks.
Collapse
Affiliation(s)
- Reinhard Lakes-Harlan
- AG Integrative Sensory Physiology, Institute for Animal Physiology, Justus-Liebig-University Gießen Gießen, Germany
| |
Collapse
|
3
|
Schmidt M, Derby CD. Cytoarchitecture and ultrastructure of neural stem cell niches and neurogenic complexes maintaining adult neurogenesis in the olfactory midbrain of spiny lobsters, Panulirus argus. J Comp Neurol 2011; 519:2283-319. [PMID: 21523781 DOI: 10.1002/cne.22657] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
New interneurons are continuously generated in small proliferation zones within neuronal somata clusters in the olfactory deutocerebrum of adult decapod crustaceans. Each proliferation zone is connected to a clump of cells containing one neural stem cell (i.e., adult neuroblast), thus forming a "neurogenic complex." Here we provide a detailed analysis of the cytoarchitecture of neurogenic complexes in adult spiny lobsters, Panulirus argus, based on transmission electron microscopy and labeling with cell-type-selective markers. The clump of cells is composed of unique bipolar clump-forming cells that collectively completely envelop the adult neuroblast and are themselves ensheathed by a layer of processes of multipolar cell body glia. An arteriole is attached to the clump of cells, but dye perfusion experiments show that hemolymph has no access to the interior of the clump of cells. Thus, the clump of cells fulfills morphological criteria of a protective stem cell niche, with clump-forming cells constituting the adult neuroblast's microenvironment together with the cell body glia processes separating it from other tissue components. Bromodeoxyuridine pulse-chase experiments with short survival times suggest that adult neuroblasts are not quiescent but rather cycle actively during daytime. We propose a cell lineage model in which an asymmetrically dividing adult neuroblast repopulates the pool of neuronal progenitor cells in the associated proliferation zone. In conclusion, as in mammalian brains, adult neurogenesis in crustacean brains is fueled by neural stem cells that are maintained by stem cell niches that preserve elements of the embryonic microenvironment and contain glial and vascular elements.
Collapse
Affiliation(s)
- Manfred Schmidt
- Neuroscience Institute and Department of Biology, Georgia State University, Atlanta, Georgia 30302-5030, USA.
| | | |
Collapse
|
4
|
Krüger S, Lakes-Harlan R. Contralateral Deafferentation Does Not Affect Regeneration Processes in the Auditory System of Schistocerca gregaria (Orthoptera). J Exp Neurosci 2011. [DOI: 10.4137/jen.s6684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The auditory system of locusts has high regeneration capacity following injury of the peripheral afferents. Regenerating auditory afferents can re-innervate their target areas even after changed neuronal pathways. Here, possible influences of contralateral deafferentation on regenerating afferents were investigated. Contralateral deafferentation was performed at different stages of the regeneration. Regeneration was triggered by crushing the tympanal nerve. The regenerated fibers showed aberrant fiber outgrowth, reduced density of terminations in the target area, the auditory neuropile and collateral sprouts crossing the midline. However, these results were not significantly influenced by the contralateral deafferentation. Therefore the bilateral symmetrical systems seem to be largely independent from each other.
Collapse
Affiliation(s)
- Silke Krüger
- AG Integrative Sinnesphysiologie, Institut für Tierphysiologie, Justus-Liebig-Universität Giessen, Wartweg 95, D-35392 Giessen, Germany
| | - Reinhard Lakes-Harlan
- AG Integrative Sinnesphysiologie, Institut für Tierphysiologie, Justus-Liebig-Universität Giessen, Wartweg 95, D-35392 Giessen, Germany
| |
Collapse
|
5
|
Krüger S, Lakes-Harlan R. Changes in the auditory neuropil after deafferentation in adult grasshoppers (Schistocerca gregaria). ARTHROPOD STRUCTURE & DEVELOPMENT 2010; 39:26-32. [PMID: 19861171 DOI: 10.1016/j.asd.2009.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 10/17/2009] [Accepted: 10/19/2009] [Indexed: 05/28/2023]
Abstract
Nervous systems are capable of structural adjustments. Such plastic changes also occur in the auditory system of the locust Schistocerca gregaria in which a deafferentation leads to compensatory mechanisms, such as collateral sprouting of interneurons. In this study we further investigated lesion related changes in the major auditory neuropil, the median ventral association center (mVAC) of the metathoracic ganglion. The auditory sensory organ of adult locusts was unilaterally extirpated and the mVAC was histologically and immunocytochemically analyzed until 20 days postoperative. Measurements of the neuropil area in transverse sections showed a decrease in size. The putative transmitter of the afferents, acetylcholine, was investigated by acetylcholinesterase histochemistry. Comparisons of staining intensities in the intact and deafferentated mVAC indicated that the amount of acetylcholinesterase in the deafferentated mVAC decreased shortly after the operation. Both, the decreases in size of the mVAC as well as that in acetylcholinesterase histochemistry were only less than 10% compared to the controls. The immunoreactivity against the neurotransmitters gamma-amino butyric acid and serotonin was not influenced by the deafferentation.
Collapse
Affiliation(s)
- Silke Krüger
- AG Integrative Sinnesphysiologie, Institut für Tierphysiologie, Justus-Liebig-Universität Giebetaen, Wartweg 95, D-35392 Giebetaen, Germany
| | | |
Collapse
|
6
|
Lectin-binding glycoproteins in the developing and adult snail CNS. Brain Struct Funct 2009; 214:67-78. [DOI: 10.1007/s00429-009-0229-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 11/01/2009] [Indexed: 10/20/2022]
|
7
|
Härtig W, Reichenbach A, Voigt C, Boltze J, Bulavina L, Schuhmann MU, Seeger J, Schusser GF, Freytag C, Grosche J. Triple fluorescence labelling of neuronal, glial and vascular markers revealing pathological alterations in various animal models. J Chem Neuroanat 2009; 37:128-38. [DOI: 10.1016/j.jchemneu.2008.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 10/15/2008] [Accepted: 10/15/2008] [Indexed: 10/21/2022]
|
8
|
Allodi S, Bressan CM, Carvalho SL, Cavalcante LA. Regionally specific distribution of the binding of anti-glutamine synthetase and anti-S100 antibodies and of Datura stramonium lectin in glial domains of the optic lobe of the giant prawn. Glia 2006; 53:612-20. [PMID: 16435368 DOI: 10.1002/glia.20317] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We previously characterized some crustacean glial cells by markers such as 2',3'-cyclic nucleotide 3'-phosphodiesterase and glial fibrillary acidic protein. Here we use antibodies against glutamine synthetase full-length molecule (anti-GS/FL), a GS C-terminal peptide (anti-GS/20aa-C), and brain S100 (anti-S100), as well as the binding of the insect glia and rat astrocytic marker Datura stramonium lectin (DSL), in the optic lobe of the prawn Macrobrachium rosenbergii. All markers label the lamina ganglionaris cartridge region (lighter: anti-GS/FL; heavier: DSL). In addition, anti-GS/FL labels superficial somata of external and internal medullas and internal chiasm cells. Both anti-GS/20aa-C and anti-S100 label heavily the glial sheaths of the lamina ganglionaris. In addition, anti-S100 binds to the perineurial glia of medullary parenchymal vessels. Western blot analyses show that both anti-GS/FL and anti-GS/20aa-C bind mostly to a band of 50-55 kDa, compatible with a long isoform of vertebrate GS, and accessorily to a possible dimer and, in the case of anti-GS/20aa-C, to an ill-defined band of intermediate mass. Binding of anti-S100 is selective for a single band of about 68 kDa but shows no protein in the weight range of the canonical S100 protein superfamily. DSL reveals two bands of about 75 and about 120 kDa, thus within the range of maximal recognition for rat astrocytes. Our results suggest that phenotype protein markers of the optic lobe glia share antigenic determinants with S100 and (a long form of) GS and that, similarly to vertebrate and insect glia, crustacean glia protein and N-glycan residue markers display regional heterogeneity.
Collapse
Affiliation(s)
- Silvana Allodi
- Departamento de Histologia e Embriologia, Instituto de Ciências Biomédicas, ICB, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | |
Collapse
|
9
|
Gibson NJ, Hildebrand JG, Tolbert LP. Glycosylation patterns are sexually dimorphic throughout development of the olfactory system in Manduca sexta. J Comp Neurol 2004; 476:1-18. [PMID: 15236463 DOI: 10.1002/cne.20178] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the moth Manduca sexta, development of the adult olfactory system depends on complex interactions between olfactory receptor neurons in the antenna, antennal-lobe neurons in the brain, and several classes of glial cells. As one approach to characterizing molecules that may play roles in these interactions, we used lectins to screen antennae and antennal lobes at different stages of adult development. We find that each of the major neural cell types has a distinct pattern of labeling by lectins. Effects of enzymatic and other treatments on lectin labeling lead us to conclude that the predominant lectin ligands are: glycosphingolipids and an O-linked, fucose-containing glycoprotein on axons of olfactory receptor neurons, O-linked glycoproteins on antennal-lobe neurons, and N-linked glycoproteins on all classes of glial cells in the primary olfactory pathway. Wheat germ agglutinin labels all olfactory axons uniformly during much of development, but labeling becomes restricted to the pheromone-responsive olfactory receptor neurons in the adult male. Succinylated WGA reveals differences in these axon classes earlier, as glomerului develop from protoglomeruli. The adult female displays a less pronounced difference in labeling of axons targeting ordinary and sexually dimorphic glomeruli. Differences in labeling of receptor axons targeted to ordinary and sexually dimorphic glomeruli may be correlated with differences in function or connectivity in different regions of the antennal lobe.
Collapse
Affiliation(s)
- Nicholas J Gibson
- Arizona Research Laboratories, Division of Neurobiology, University of Arizona, Tucson, Arizona 85721-0077, USA.
| | | | | |
Collapse
|
10
|
Liu WK, Sze SCW, Ho JCK, Liu BPL, Yu MC. Wheat germ lectin induces G2/M arrest in mouse L929 fibroblasts. J Cell Biochem 2004; 91:1159-73. [PMID: 15048871 DOI: 10.1002/jcb.10755] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Wheat germ lectin (WGA) is a cytotoxic lectin for many cell lines [Wang et al., 2000], but its underlying mechanism is not clear. In this report, we found that incubation of synchronized mouse L929 fibroblasts with WGA resulted in a dose-dependent reduction of intracellular incorporation of 3H-thymidine and MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide)-conversion activity (IC50 congruent with 0.4 microM). Fluorescein-conjugated WGA was demonstrated to transport from the cell surface into the paranuclear region of cultured L929 cells within 30 min, and subsequently evoked lipid peroxidation of plasma membrane and vacuolation in the cytoplasm of these cells. Studies with tritiated thymidine incorporation, immunofluorescence microscopy, immunoblotting analysis and flow cytometry revealed that WGA inhibited cell cycle progression after one replication, resulting in G2/M arrest and alteration of cell cycle regulatory proteins, particularly activation of p21Cip1/WAF1 and suppression of cyclin B and cdc 2. Although there was an increase of cytosolic caspase 3 and bax protein expression, no apoptotic bodies were observed by both fluorescence and transmission electron microscopy. These results suggest that WGA arrested L929 proliferation after one cell cycle in the G2/M phase through activation of the p21Cip1/WAF1 and suppression of Cyclin B-Cdc2.
Collapse
Affiliation(s)
- W K Liu
- Department of Anatomy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | | | | | | | | |
Collapse
|
11
|
Sasaki T, Yamazaki K, Yamori T, Endo T. Inhibition of proliferation and induction of differentiation of glioma cells with Datura stramonium agglutinin. Br J Cancer 2002; 87:918-23. [PMID: 12373609 PMCID: PMC2376164 DOI: 10.1038/sj.bjc.6600550] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2002] [Revised: 05/03/2002] [Accepted: 07/22/2002] [Indexed: 11/08/2022] Open
Abstract
We found that a lectin, Datura stramonium agglutinin, induced irreversible differentiation in C6 glioma cells. The differentiated cells had long processes, a low rate of proliferation and a high content of glial fibrillary acidic protein. When the medium was replaced with Datura stramonium agglutinin-free medium after 1 h, cell proliferation continued to be inhibited. Experiments with several other lectins indicated that both recognition of linear N-acetyllactosamine repeats and recognition of multiantennary units of cell-surface glycans were required for the inhibition of C6 proliferation. Proliferation of four human glial tumour cells was also inhibited by Datura stramonium agglutinin. Further, these differentiated human glial tumour cells had long processes and a high content of glial fibrillary acidic protein similar to differentiated C6 glioma cells. Taken together, these observations suggest that Datura stramonium agglutinin may be useful as a new therapy for treating glioma without side effects.
Collapse
Affiliation(s)
- T Sasaki
- Department of Glycobiology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan
| | | | | | | |
Collapse
|
12
|
Schäffer S, Lakes-Harlan R. Embryonic development of the central projection of auditory afferents (Schistocerca gregaria, Orthoptera, Insecta). JOURNAL OF NEUROBIOLOGY 2001; 46:97-112. [PMID: 11153012 DOI: 10.1002/1097-4695(20010205)46:2<97::aid-neu30>3.0.co;2-b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The auditory system of Schistocerca gregaria is a well investigated sensory network in the adult grasshopper. Here we present a first study on the embryonic development of this neuronal network. Focussing on the auditory receptor cells we show that they differentiate axonal processes at around 45% of embryonic development. These axons fasciculate with the intersegmental nerve and enter the central nervous system by 45-50% of development. First collaterals sprout into the major arborization area, the frontal auditory projection area of the metathoracic ganglion by 60%. This projection increases in density until an adult-like morphology is established by 90% of development. Furthermore, by the end of embryogenesis all three types of receptor fiber projections can be distinguished. This development is independent of a hearing ability, which develops much later during postembryonic life. The auditory projection co-develops with the fusion of neuromeres to the metathoracic ganglion, the formation of the target neuropile areas and the expression of the synapse associated molecule synapsin. Fasciclin I and Lachesin, both potential axon-guidance molecules, are expressed strongly on both, peripheral and central auditory pathways and, although much weaker, within the synaptic target area.
Collapse
Affiliation(s)
- S Schäffer
- Georg-August-Universität Göttingen, Abt. Neurobiologie, Institut für Zoologie und Anthropologie, Berliner Str. 28, 37073 Göttingen, Germany
| | | |
Collapse
|
13
|
Sasaki T, Endo T. Both cell-surface carbohydrates and protein tyrosine phosphatase are involved in the differentiation of astrocytes in vitro. Glia 2000; 32:60-70. [PMID: 10975911 DOI: 10.1002/1098-1136(200010)32:1<60::aid-glia60>3.0.co;2-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Astrocytes are important in the development and maintenance of functions of the CNS, acting in cooperation with neurons and other glial cells. The glycans on astrocyte membrane are believed to play important roles in cell-cell communication. Plant lectins are useful probes, because the lectins can bind to certain cell surface receptors and elicit cellular responses that are normally activated by endogenous ligands for those receptors. In the present study, we investigated the effect of Datura stramonium agglutinin (DSA) on astrocytes and characterized several molecular events. The addition of DSA to a culture of flat, polygonal, immature astrocytes derived from the neonatal rat cerebellum caused the cells to become stellate in shape, similar to astrocytes observed in vivo, concomitant with an increase in expression of astrocyte-specific intermediate filament (glial fibrillary acidic protein [GFAP]) and inhibition of proliferation. These results indicate that DSA binds to astrocytes and triggers differentiation. We also found a decrease in the extent of tyrosine-phosphorylation of a 38-kDa protein. To elucidate the molecular events during astrocyte differentiation, we examined the effects of various signal transduction inhibitors on the transformation from the polygonal to stellate shape (stellation). Interestingly, only tyrosine phosphatase inhibitors, orthovanadate and phenylarsine oxide, showed an inhibitory effect. Our results suggest that DSA induced astrocyte differentiation acts via tyrosine dephosphorylation.
Collapse
Affiliation(s)
- T Sasaki
- Department of Glycobiology, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo, Japan
| | | |
Collapse
|
14
|
Jacobs K, Lakes-Harlan R. Pathfinding, target recognition, and synapse formation of single regenerating fibers in the adult grasshopper Schistocerca gregaria. JOURNAL OF NEUROBIOLOGY 2000; 42:394-409. [PMID: 10699978 DOI: 10.1002/(sici)1097-4695(200003)42:4<394::aid-neu2>3.0.co;2-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
After lesion of the peripheral tympanal nerve of the adult locust (Schistocerca gregaria), sensory axons regenerate into their original target areas. We examined the individual behavior of single regenerating auditory afferents during pathway and target selection by intracellularly recording and labeling them at different times postlesion. During axotomy, spontaneous activity is not increased in either the distal or proximal part of the cells. Stimulus response properties of lesioned cells with or without regenerating axons are not influenced. Surprisingly, only 55% of sensory neurons regenerate through the lesion site and often give rise to more than one axonal fiber. Within the central nervous system, 70% of regenerated axons consistently follow an incorrect pathway to reach the correct target region. Often, one of two processes formed by a cell chooses the correct pathway, and the other the incorrect one. In the target region, regenerated axons reconstitute somatotopically ordered projections and form synapses that resemble those of intact fibers in number and structure. The regeneration process does not induce a detectable expression of antigens that are known to be expressed during neural development in these neurons. Our study clearly demonstrates that precise synaptic regeneration is possible in adult animals within a completely differentiated central nervous system, although pathfinding and formation of arborizations are disturbed in a particular and probably system-related manner. The results strongly suggest that accurate pathfinding is unlikely to be a decisive factor in target area recognition and synaptogenesis.
Collapse
Affiliation(s)
- K Jacobs
- Georg-August-Universität Göttingen, Institut für Zoologie und Anthropologie, Abt. Neurobiologie, Berliner Str. 28, 37073 Göttingen, Germany
| | | |
Collapse
|
15
|
Sasaki T, Endo T. Evidence for the presence of N‐CAM 180 on astrocytes from rat cerebellum and differences in glycan structures between N‐CAM 120 and N‐CAM 140. Glia 1999. [DOI: 10.1002/(sici)1098-1136(199912)28:3<236::aid-glia7>3.0.co;2-#] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Tasuku Sasaki
- Department of Glycobiology, Tokyo Metropolitan Institute of Gerontology, Sakaecho, Itabashi‐ku, Tokyo, Japan
| | - Tamao Endo
- Department of Glycobiology, Tokyo Metropolitan Institute of Gerontology, Sakaecho, Itabashi‐ku, Tokyo, Japan
| |
Collapse
|
16
|
Jacobs K, Otte B, Lakes-Harlan R. Tympanal receptor cells ofSchistocerca gregaria: Correlation of soma positions and dendrite attachment sites, central projections and physiologies. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1097-010x(19990215)283:3<270::aid-jez5>3.0.co;2-c] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Heinrich R, Jacobs K, Lakes-Harlan R. Tracing of a neuronal network in the locust by pressure injection of markers into a synaptic neuropil. J Neurosci Methods 1998; 80:81-9. [PMID: 9606053 DOI: 10.1016/s0165-0270(97)00205-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Central neuronal circuits of vertebrates have often been investigated using injection of markers into synaptic neuropils, whereas similar techniques have rarely been applied in invertebrates. In this study we tested several neuroanatomical tracers for their ability to mark central neuronal circuits in insects, using the well described auditory network of the locust, Locusta migratoria. After physiological localization of an auditory neuropil various tracers were pressure injected. Horseradish peroxidase, dextrans (3 and 10 kDa) and especially biocytin and neurobiotin were effectively incorporated by auditory interneurons, which resulted in their extensive labeling. Postsynaptic regions turned out to be the major, if not exclusive sites of uptake of injected markers, which is deduced from two lines of evidence: (i) for labeling of identified auditory neurons it was necessary to apply the tracer to postsynaptic sites of the neuron; (ii) only a few non-auditory neurons were labeled (probably by lesioning axons during electrode impalement). No evidence could be found for an activity dependent uptake. We conclude that pressure injection of certain tracers into synaptic areas can be used to identify central nervous circuits in insects.
Collapse
Affiliation(s)
- R Heinrich
- Zoologisches Institut, Universität Göttingen, Germany
| | | | | |
Collapse
|