Lorente-Cánovas B, Marín F, Corral-San-Miguel R, Hidalgo-Sánchez M, Ferrán JL, Puelles L, Aroca P. Multiple origins, migratory paths and molecular profiles of cells populating the avian interpeduncular nucleus.
Dev Biol 2011;
361:12-26. [PMID:
22019302 DOI:
10.1016/j.ydbio.2011.09.032]
[Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 09/26/2011] [Accepted: 09/27/2011] [Indexed: 01/22/2023]
Abstract
The interpeduncular nucleus (IP) is a key limbic structure, highly conserved evolutionarily among vertebrates. The IP receives indirect input from limbic areas of the telencephalon, relayed by the habenula via the fasciculus retroflexus. The function of the habenulo-IP complex is poorly understood, although there is evidence that in rodents it modulates behaviors such as learning and memory, avoidance, reward and affective states. The IP has been an important subject of interest for neuroscientists, and there are multiple studies about the adult structure, chemoarchitecture and its connectivity, with complex results, due to the presence of multiple cell types across a variety of subnuclei. However, the ontogenetic origins of these populations have not been examined, and there is some controversy about its location in the midbrain-anterior hindbrain area. To address these issues, we first investigated the anteroposterior (AP) origin of the IP complex by fate-mapping its neuromeric origin in the chick, discovering that the IP develops strictly within isthmus and rhombomere 1. Next, we studied the dorsoventral (DV) positional identity of subpopulations of the IP complex. Our results indicate that there are at least four IP progenitor domains along the DV axis. These specific domains give rise to distinct subtypes of cell populations that target the IP with variable subnuclear specificity. Interestingly, these populations can be characterized by differential expression of the transcription factors Pax7, Nkx6.1, Otp, and Otx2. Each of these subpopulations follows a specific route of migration from its source, and all reach the IP roughly at the same stage. Remarkably, IP progenitor domains were found both in the alar and basal plates. Some IP populations showed rostrocaudal restriction in their origins (isthmus versus anterior or posterior r1 regions). A tentative developmental model of the structure of the avian IP is proposed. The IP emerges as a plurisegmental and developmentally heterogeneous formation that forms ventromedially within the isthmus and r1. These findings are relevant since they help to understand the highly complex chemoarchitecture, hodology and functions of this important brainstem structure.
Collapse