1
|
Retinal Stem Cell 'Retirement Plans': Growth, Regulation and Species Adaptations in the Retinal Ciliary Marginal Zone. Int J Mol Sci 2021; 22:ijms22126528. [PMID: 34207050 PMCID: PMC8234741 DOI: 10.3390/ijms22126528] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
The vertebrate retina develops from a specified group of precursor cells that adopt distinct identities and generate lineages of either the neural retina, retinal pigmented epithelium, or ciliary body. In some species, including teleost fish and amphibians, proliferative cells with stem-cell-like properties capable of continuously supplying new retinal cells post-embryonically have been characterized and extensively studied. This region, termed the ciliary or circumferential marginal zone (CMZ), possibly represents a conserved retinal stem cell niche. In this review, we highlight the research characterizing similar CMZ-like regions, or stem-like cells located at the peripheral margin, across multiple different species. We discuss the proliferative parameters, multipotency and growth mechanisms of these cells to understand how they behave in vivo and how different molecular factors and signalling networks converge at the CMZ niche to regulate their activity. The evidence suggests that the mature retina may have a conserved propensity for homeostatic growth and plasticity and that dysfunction in the regulation of CMZ activity may partially account for dystrophic eye growth diseases such as myopia and hyperopia. A better understanding of the properties of CMZ cells will enable important insight into how an endogenous generative tissue compartment can adapt to altered retinal physiology and potentially even restore vision loss caused by retinal degenerative conditions.
Collapse
|
2
|
Becker C, Lust K, Wittbrodt J. Igf signaling couples retina growth with body growth by modulating progenitor cell division. Development 2021; 148:dev.199133. [PMID: 33722901 PMCID: PMC8077508 DOI: 10.1242/dev.199133] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/04/2021] [Indexed: 12/19/2022]
Abstract
How the body and organs balance their relative growth is of key importance for coordinating size and function. This is of particular relevance in organisms, which continue to grow over their entire life span. We addressed this issue in the neuroretina of medaka fish (Oryzias latipes), a well-studied system with which to address vertebrate organ growth. We reveal that a central growth regulator, Igf1 receptor (Igf1r), is necessary and sufficient for proliferation control in the postembryonic retinal stem cell niche: the ciliary marginal zone (CMZ). Targeted activation of Igf1r signaling in the CMZ uncouples neuroretina growth from body size control, and we demonstrate that Igf1r operates on progenitor cells, stimulating their proliferation. Activation of Igf1r signaling increases retinal size while preserving its structural integrity, revealing a modular organization in which progenitor differentiation and neurogenesis are self-organized and highly regulated. Our findings position Igf signaling as a key module for controlling retinal size and composition, with important evolutionary implications. Highlighted Article: Targeted activation of Igf1r signaling in the retinal stem cell niche increases retina size through expanding the progenitor but not stem cell population.
Collapse
Affiliation(s)
- Clara Becker
- Centre for Organismal Studies, Heidelberg University, Heidelberg 69120, Germany.,Heidelberg Biosciences International Graduate School, Heidelberg 69120, Germany
| | - Katharina Lust
- Centre for Organismal Studies, Heidelberg University, Heidelberg 69120, Germany
| | - Joachim Wittbrodt
- Centre for Organismal Studies, Heidelberg University, Heidelberg 69120, Germany
| |
Collapse
|
3
|
Stenkamp DL. Development of the Vertebrate Eye and Retina. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 134:397-414. [PMID: 26310167 DOI: 10.1016/bs.pmbts.2015.06.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The mature, functional, and healthy eye is generated by the coordinated regulatory interaction of numerous and diverse developing tissues. The neural retina of the eye must undergo the neurogenesis of multiple retinal cell types in the correct ratios and spatial patterns. This chapter provides an overview of retinal development, and includes a summary of the process of eye organogenesis, a discussion of major principles of retinal neurogenesis, and describes some of the key molecular factors critical for retinal development. Defects in many of these factors underlie diseases of the eye, and an understanding of the process of retinal development will be critical for successful future applications of regenerative therapies for eye disease.
Collapse
Affiliation(s)
- Deborah L Stenkamp
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA.
| |
Collapse
|
4
|
Fischer AJ, Bosse JL, El-Hodiri HM. Reprint of: the ciliary marginal zone (CMZ) in development and regeneration of the vertebrate eye. Exp Eye Res 2014; 123:115-20. [PMID: 24811219 DOI: 10.1016/j.exer.2014.04.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 08/25/2013] [Indexed: 10/25/2022]
Abstract
The ciliary marginal zone (CMZ) is a circumferential ring of cells found at the extreme periphery of the maturing and mature neural retina that consists of retinal stem and progenitor cells. It functions to add retinal neurons to the periphery of the neural retina in larval and adult fish, larval frogs, and birds. Additionally, the CMZ may contribute to regeneration of the damaged retina in frogs and fish. In mammals, cells from the ciliary epithelium can be induced to express retinal stem cell-like characteristics in culture but may not comprise a classically defined CMZ.
Collapse
Affiliation(s)
- Andy J Fischer
- Department of Neuroscience, The Ohio State University, USA; Graduate Program in Molecular, Cellular, and Developmental Biology, The Ohio State University, USA
| | - Jennifer L Bosse
- Graduate Program in Molecular, Cellular, and Developmental Biology, The Ohio State University, USA
| | - Heithem M El-Hodiri
- Department of Neuroscience, The Ohio State University, USA; Graduate Program in Molecular, Cellular, and Developmental Biology, The Ohio State University, USA; Department of Pediatrics, The Ohio State University, USA; Center for Molecular and Human Genetics, Nationwide Children's Research Institute, Columbus, OH, USA.
| |
Collapse
|
5
|
Fischer AJ, Bosse JL, El-Hodiri HM. The ciliary marginal zone (CMZ) in development and regeneration of the vertebrate eye. Exp Eye Res 2013; 116:199-204. [DOI: 10.1016/j.exer.2013.08.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 08/23/2013] [Accepted: 08/25/2013] [Indexed: 11/28/2022]
|
6
|
Kato S, Matsukawa T, Koriyama Y, Sugitani K, Ogai K. A molecular mechanism of optic nerve regeneration in fish: the retinoid signaling pathway. Prog Retin Eye Res 2013; 37:13-30. [PMID: 23994437 DOI: 10.1016/j.preteyeres.2013.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/30/2013] [Accepted: 07/30/2013] [Indexed: 12/20/2022]
Abstract
The fish optic nerve regeneration process takes more than 100 days after axotomy and comprises four stages: neurite sprouting (1-4 days), axonal elongation (5-30 days), synaptic refinement (35-80 days) and functional recovery (100-120 days). We screened genes specifically upregulated in each stage from axotomized fish retina. The mRNAs for heat shock protein 70 and insulin-like growth factor-1 rapidly increased in the retinal ganglion cells soon after axotomy and function as cell-survival factors. Purpurin mRNA rapidly and transiently increased in the photoreceptors and purpurin protein diffusely increased in all nuclear layers at 1-4 days after injury. The purpurin gene has an active retinol-binding site and a signal peptide. Purpurin with retinol functions as a sprouting factor for thin neurites. This neurite-sprouting effect was closely mimicked by retinoic acid and blocked by its inhibitor. We propose that purpurin works as a retinol transporter to supply retinoic acid to damaged RGCs which in turn activates target genes. We also searched for genes involved in the second stage of regeneration. The mRNA of retinoid-signaling molecules increased in retinal ganglion cells at 7-14 days after injury and tissue transglutaminase and neuronal nitric oxide synthase mRNAs, RA-target genes, increased in retinal ganglion cells at 10-30 days after injury. They function as factors for the outgrowth of thick, long neurites. Here we present a retinoid-signaling hypothesis to explain molecular events during the early stages of optic nerve regeneration in fish.
Collapse
Affiliation(s)
- Satoru Kato
- Department of Molecular Neurobiology, Graduate School of Medicine, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Japan.
| | | | | | | | | |
Collapse
|
7
|
The rod photoreceptor lineage of teleost fish. Prog Retin Eye Res 2011; 30:395-404. [PMID: 21742053 DOI: 10.1016/j.preteyeres.2011.06.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/21/2011] [Accepted: 06/23/2011] [Indexed: 11/24/2022]
Abstract
The retinas of postembryonic teleost fish continue to grow for the lifetime of the fish. New retinal cells are added continuously at the retinal margin, by stem cells residing at the circumferential germinal zone. Some of these retinal cells differentiate as Müller glia with cell bodies that reside within the inner nuclear layer. These glia retain some stem cell properties in that they carry out asymmetric cell divisions and continuously generate a population of transit-amplifying cells--the rod photoreceptor lineage--that are committed to rod photoreceptor neurogenesis. These rod progenitors progress through a stereotyped sequence of changes in gene expression as they continue to divide and migrate to the outer nuclear layer. Now referred to as rod precursors, they undergo terminal mitoses and then differentiate as rods, which are inserted into the existing array of rod and cone photoreceptors. The rod lineage displays developmental plasticity, as rod precursors can respond to the loss of rods through increased proliferation, resulting in rod replacement. The stem cells of the rod lineage, Müller glia, respond to acute damage of other retinal cell types by increasing their rate of proliferation. In addition, the Müller glia in an acutely damaged retina dedifferentiate and become multipotent, generating new, functional neurons. This review focuses on the cells of the rod lineage and includes discussions of experiments over the last 30 years that led to their identification and characterization, and the discovery of the stem cells residing at the apex of the lineage. The plasticity of cells of the rod lineage, their relationships to cone progenitors, and the applications of this information for developing future treatments for human retinal disorders will also be discussed.
Collapse
|
8
|
Koriyama Y, Homma K, Sugitani K, Higuchi Y, Matsukawa T, Murayama D, Kato S. Upregulation of IGF-I in the goldfish retinal ganglion cells during the early stage of optic nerve regeneration. Neurochem Int 2007; 50:749-56. [PMID: 17363112 DOI: 10.1016/j.neuint.2007.01.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 01/19/2007] [Accepted: 01/22/2007] [Indexed: 10/23/2022]
Abstract
Goldfish retinal ganglion cells (RGCs) can regrow their axons after optic nerve injury. However, the reason why goldfish RGCs can regenerate after nerve injury is largely unknown at the molecular level. To investigate regenerative properties of goldfish RGCs, we divided the RGC regeneration process into two components: (1) RGC survival, and (2) axonal elongation processes. To characterize the RGC survival signaling pathway after optic nerve injury, we investigated cell survival/death signals such as Bcl-2 family members in the goldfish retina. Amounts of phospho-Akt (p-Akt) and phospho-Bad (p-Bad) in the goldfish retina rapidly increased four- to five-fold at the protein level by 3-5 days after nerve injury. Subsequently, Bcl-2 levels increased 1.7-fold, accompanied by a slight reduction in caspase-3 activity 10-20 days after injury. Furthermore, level of insulin-like growth factor-I (IGF-I), which activates the phosphatidyl inositol-3-kinase (PI3K)/Akt system, increased 2-3 days earlier than that of p-Akt in the goldfish retina. The cellular localization of these molecular changes was limited to RGCs. IGF-I treatment significantly induced phosphorylation of Akt, and strikingly induced neurite outgrowth in the goldfish retina in vitro. On the contrary, addition of the PI3K inhibitor wortmannin, and IGF-I antibody inhibited Akt phosphorylation and neurite outgrowth in an explant culture. Thus, we demonstrated, for the first time, the signal cascade for early upregulation of IGF-I, leading to RGC survival and axonal regeneration in adult goldfish retinas through PI3K/Akt system after optic nerve injury. The present data strongly indicate that IGF-I is one of the most important molecules for controlling regeneration of RGCs after optic nerve injury.
Collapse
Affiliation(s)
- Yoshiki Koriyama
- Department of Molecular Neurobiology, Graduate School of Medicine, Kanazawa University, Kanazawa 920-8640, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The retinas of teleost fish have long been of interest to developmental neurobiologists for their persistent plasticity during growth, life history changes, and response to injury. Because the vertebrate retina is a highly conserved tissue, the study of persistent plasticity in teleosts has provided insights into mechanisms for postembryonic retinal neurogenesis in mammals. In addition, in the past 10 years there has been an explosion in the use of teleost fish-zebrafish (Danio rerio) in particular-to understand the mechanisms of embryonic retinal neurogenesis in a model vertebrate with genetic resources. This review summarizes the key features of teleost retinal neurogenesis that make it a productive and interesting experimental system, and focuses on the contributions to our knowledge of retinal neurogenesis that uniquely required or significantly benefited from the use of a fish model system.
Collapse
Affiliation(s)
- Deborah L Stenkamp
- Department of Biological Sciences, University of Idaho, Moscow, Idaho 83844, USA
| |
Collapse
|
10
|
Smith A, Chan SJ, Gutiérrez J. Autoradiographic and immunohistochemical localization of insulin-like growth factor-I receptor binding sites in brain of the brown trout, Salmo trutta. Gen Comp Endocrinol 2005; 141:203-13. [PMID: 15804507 DOI: 10.1016/j.ygcen.2004.12.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Revised: 11/26/2004] [Accepted: 12/16/2004] [Indexed: 11/22/2022]
Abstract
Insulin-like growth factor-I (IGF-I), a peptide closely related to insulin, is known to play crucial roles in brain development. While the central sites of action of IGF-I in higher vertebrates are now well established, surprisingly little is known in the teleost model where the brain undergoes continual, indeterminate, growth. In this study, we have mapped the distribution of putative IGF-I receptor (IGF-IR) binding sites in the brain of the brown trout using both ligand binding in vitro autoradiography and immunohistochemistry. The presence of IGF binding proteins (IGFBPs) was further studied by competitive inhibition using unlabelled IGF-I and des-(1-3)-IGF-I. In both juvenile and adult trout brain, [125I]IGF-I binding was highest in cerebellum and optic tectum, both regions of the teleost brain known to grow the most actively throughout life. At the cellular level, IGF-IR immunoreactivity was confirmed on cell bodies and dendrites, particularly of larger presumptive neurons including purkinje cells and dendritic fibres throughout the molecular layer of the cerebellum. Abundant IGF-IR expression in hypothalamic regions may further be related to neuron growth while a possible hypophysiotropic role will require further investigation. Competitive inhibition studies employing des-(1-3)-IGF-I also suggest IGFBPs are present in all regions exhibiting high [125I]IGF-I ligand binding and confirms the presence of this important regulatory component of the IGF-I system in the teleost brain. The importance of the IGF-I system in brain development, particularly in regions such as the cerebellum, together with the continual lifetime growth of the fish central nervous system, suggest the teleost brain is an extremely useful site for studying the actions of IGF-I in relation to neuron proliferation, growth, and survival in an adult brain.
Collapse
Affiliation(s)
- Alastair Smith
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | | | | |
Collapse
|
11
|
Abstract
The insulin-like growth factor (IGF) system plays a central role in the neuroendocrine regulation of growth in all vertebrates. Evidence from studies in a variety of vertebrate species suggest that this growth factor complex, composed of ligands, receptors, and high-affinity binding proteins, evolved early during vertebrate evolution. Among nonmammalian vertebrates, IGF signaling has been studied most extensively in fish, particularly teleosts of commercial importance. The unique life history characteristics associated with their primarily aquatic existence has fortuitously led to the identification of novel functions of the IGF system that are not evident from studies in mammals and other tetrapod vertebrates. Furthermore, the emergence of the zebrafish as a preferred model for development genetics has spawned progress in determining the requirements for IGF signaling during vertebrate embryonic development. This review is intended as a summary of our understanding of IGF signaling, as revealed through research into the expression, function, and evolution of IGF ligands, receptors, and binding proteins in fish.
Collapse
Affiliation(s)
- Antony W Wood
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan-Ann Arbor, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
12
|
Yurco P, Cameron DA. Responses of Müller glia to retinal injury in adult zebrafish. Vision Res 2004; 45:991-1002. [PMID: 15695184 DOI: 10.1016/j.visres.2004.10.022] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Revised: 10/09/2004] [Accepted: 10/20/2004] [Indexed: 11/24/2022]
Abstract
In an effort to identify the cellular events that enable neuronal regeneration in the vertebrate retina, the identity and characteristics of mitotic and apoptotic cells were examined in lesioned retinas of adult zebrafish. Following lesion a complex spatiotemporal pattern of mitosis was observed, including a delayed entry of Müller glia into the cell cycle. Characteristics of these proliferative Müller glia indicated they might serve as a stem/precursor cell of regenerated retina. The results suggested a model of retinal regeneration in which lesions are filled, in part, by a localized en place cytogenesis within intact retina surrounding the lesion site.
Collapse
Affiliation(s)
- Patrick Yurco
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| | | |
Collapse
|
13
|
Otteson DC, Cirenza PF, Hitchcock PF. Persistent neurogenesis in the teleost retina: evidence for regulation by the growth-hormone/insulin-like growth factor-I axis. Mech Dev 2002; 117:137-49. [PMID: 12204254 DOI: 10.1016/s0925-4773(02)00188-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Based on results from previous studies (J. Comp. Neurol. 394 (1998) 386, 395), it was hypothesized that the persistent neurogenesis in the retina of teleost fish is modulated by insulin-like growth factor-I (IGF-I), which, in turn, is regulated by growth hormone (GH). Two approaches were undertaken to test this hypothesis. First, a variety of techniques were used to determine if IGF-I and the IGF-I receptor (IGF-IR) are expressed in the retina. Second, GH was injected into animals to stimulate IGF-I synthesis in target tissues, and IGF-I expression and cell proliferation in the retina was quantitatively assayed. Reverse transcriptase-polymerase chain reaction, screening a retinal cDNA library and Northern analysis showed that genes encoding IGF-I and IGF-IR are expressed in the retina of goldfish. In situ hybridization showed that IGF-IR is expressed by retinal progenitors and all differentiated retinal neurons. Intraperitoneal injections of GH elevate IGF-I mRNA levels in the liver, brain and retina and produce a dose-dependent change in the proliferation of stem cells and progenitors in the retina. These data indicate that the principal components of the IGF-I signaling cascade are present in the retinas of teleosts, and we suggest these elements mediate the persistent, growth-associated neurogenesis in this tissue.
Collapse
Affiliation(s)
- D C Otteson
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
14
|
Fruchtman S, McVey DC, Borski RJ. Characterization of pituitary IGF-I receptors: modulation of prolactin and growth hormone. Am J Physiol Regul Integr Comp Physiol 2002; 283:R468-76. [PMID: 12121860 DOI: 10.1152/ajpregu.00511.2001] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There have been no studies in any vertebrate that have localized insulin-like growth factor (IGF)-I receptors in prolactin (PRL) cells or that have correlated pituitary binding to the potency of IGF-I in regulating both PRL and growth hormone (GH) secretion. We show that IGF-I binds with high affinity and specificity to the pituitary gland of hybrid striped bass (Morone saxatilis x M. chrysops). IGF-I and IGF-II were equipotent in inhibiting saturable (125)I-IGF-I binding, whereas insulin was ineffective. IGF-I binds with similar affinity to the rostral pars distalis (>95% PRL cells) as the whole pituitary gland and immunohistochemistry colocalizes IGF-I receptors and PRL in this same region. Des(1-3)IGF-I, a truncated analog of IGF-I that binds with high affinity to IGF-I receptors but weakly to IGF-I binding proteins (IGFBPs), showed a similar inhibition of saturable (125)I-IGF-I binding, but it was more potent than IGF-I in stimulating PRL and inhibiting GH release. These results are the first to localize IGF-I receptors to PRL cells, correlate IGF-I binding to its efficacy in regulating GH and PRL secretion, as well as demonstrate that IGFBPs may play a significant role in modulating the disparate actions of IGF-I on PRL and GH secretion.
Collapse
Affiliation(s)
- Shira Fruchtman
- Department of Zoology, North Carolina State University, Raleigh 27695-7617, USA
| | | | | |
Collapse
|
15
|
Kubota R, Hokoc JN, Moshiri A, McGuire C, Reh TA. A comparative study of neurogenesis in the retinal ciliary marginal zone of homeothermic vertebrates. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2002; 134:31-41. [PMID: 11947935 DOI: 10.1016/s0165-3806(01)00287-5] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The retina of many fish and amphibians grows throughout life, roughly matching the overall growth of the animal. The new retinal cells are continually added at the anterior margin of the retina, in a circumferential zone of cells, known as the ciliary marginal zone, or CMZ. Recently, Fischer and Reh [Dev. Biol. 220 (2000) 197] have found that new neurons are added to the retina of the chicken via proliferation and subsequent differentiation of neurons and glia at the retinal margin in a zone highly reminiscent of the CMZ of lower vertebrates. In addition, other groups have reported that putative retinal stem cells could be isolated from the ciliary margin of the adult mouse. In light of these findings, we have re-investigated the eyes of three additional species to determine whether other homeothermic vertebrates also possess CMZ cells and whether we could detect evidence for addition of neurons at the retinal margin in mature animals. We examined one additional avian species, the quail, one marsupial, the opposum, and one mammal, the mouse. We find that the CMZ cells have been gradually diminished during vertebrate evolution. The quail has a reduced CMZ as compared to the chicken, while the opposum has only a few cells likely related to the CMZ and we failed to find evidence of CMZ cells at the margin of the mouse retina.
Collapse
Affiliation(s)
- R Kubota
- Departments of Ophthalmology, Biological Structure, and the Neurobiology and Behavior Program, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|