1
|
Quillet R, Gutierrez-Mecinas M, Polgár E, Dickie AC, Boyle KA, Watanabe M, Todd AJ. Synaptic circuits involving gastrin-releasing peptide receptor-expressing neurons in the dorsal horn of the mouse spinal cord. Front Mol Neurosci 2023; 16:1294994. [PMID: 38143564 PMCID: PMC10742631 DOI: 10.3389/fnmol.2023.1294994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/13/2023] [Indexed: 12/26/2023] Open
Abstract
The superficial dorsal horn (SDH) of the spinal cord contains a diverse array of neurons. The vast majority of these are interneurons, most of which are glutamatergic. These can be assigned to several populations, one of which is defined by expression of gastrin-releasing peptide receptor (GRPR). The GRPR cells are thought to be "tertiary pruritoceptors," conveying itch information to lamina I projection neurons of the anterolateral system (ALS). Surprisingly, we recently found that GRPR-expressing neurons belong to a morphological class known as vertical cells, which are believed to transmit nociceptive information to lamina I ALS cells. Little is currently known about synaptic circuits engaged by the GRPR cells. Here we combine viral-mediated expression of PSD95-tagRFP fusion protein with super-resolution microscopy to reveal sources of excitatory input to GRPR cells. We find that they receive a relatively sparse input from peptidergic and non-peptidergic nociceptors in SDH, and a limited input from A- and C-low threshold mechanoreceptors on their ventral dendrites. They receive synapses from several excitatory interneuron populations, including those defined by expression of substance P, neuropeptide FF, cholecystokinin, neurokinin B, and neurotensin. We investigated downstream targets of GRPR cells by chemogenetically exciting them and identifying Fos-positive (activated) cells. In addition to lamina I projection neurons, many ALS cells in lateral lamina V and the lateral spinal nucleus were Fos-positive, suggesting that GRPR-expressing cells target a broader population of projection neurons than was previously recognised. Our findings indicate that GRPR cells receive a diverse synaptic input from various types of primary afferent and excitatory interneuron, and that they can activate ALS cells in both superficial and deep regions of the dorsal horn.
Collapse
Affiliation(s)
- Raphaëlle Quillet
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | | | - Erika Polgár
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | - Allen C. Dickie
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | - Kieran A. Boyle
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Andrew J. Todd
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
2
|
Gutierrez-Mecinas M, Kókai É, Polgár E, Quillet R, Titterton HF, Weir GA, Watanabe M, Todd AJ. Antibodies Against the Gastrin-releasing Peptide Precursor Pro-Gastrin-releasing Peptide Reveal Its Expression in the Mouse Spinal Dorsal Horn. Neuroscience 2023; 510:60-71. [PMID: 36581131 DOI: 10.1016/j.neuroscience.2022.12.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/24/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Gastrin-releasing peptide (GRP) in the spinal dorsal horn acts on the GRP receptor, and this signalling mechanism has been strongly implicated in itch. However, the source of GRP in the dorsal horn is not fully understood. For example, the BAC transgenic mouse line GRP::GFP only captures around 25% of GRP-expressing cells, and Grp mRNA is found in several types of excitatory interneuron. A major limitation in attempts to identify GRP-expressing neurons has been that antibodies against GRP cross-react with other neuropeptides, including some that are expressed by primary afferents. Here we have developed two antibodies raised against different parts of the precursor protein, pro-GRP. We show that labelling is specific, and that the antibodies do not cross-react with neuropeptides in primary afferents. Immunoreactivity was strongest in the superficial laminae, and the two antibodies labelled identical structures, including glutamatergic axons and cell bodies. The pattern of pro-GRP-immunoreactivity varied among different neurochemical classes of excitatory interneuron. Cell bodies and axons of all GRP-GFP cells were labelled, confirming reliability of the antibodies. Among the other populations, we found the highest degree of co-expression (>50%) in axons of NPFF-expressing cells, while this was somewhat lower (10-20%) in cells that expressed substance P and NKB, and much lower (<10%) in other classes. Our findings show that these antibodies reliably detect GRP-expressing neurons and axons, and that in addition to the GRP-GFP cells, excitatory interneurons expressing NPFF or substance P are likely to be the main source of GRP in the spinal dorsal horn.
Collapse
Affiliation(s)
- Maria Gutierrez-Mecinas
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Éva Kókai
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Erika Polgár
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Raphaëlle Quillet
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Heather F Titterton
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Greg A Weir
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo 060-8638, Japan
| | - Andrew J Todd
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
3
|
Kókai É, Alsulaiman WAA, Dickie AC, Bell AM, Goffin L, Watanabe M, Gutierrez-Mecinas M, Todd AJ. Characterisation of deep dorsal horn projection neurons in the spinal cord of the Phox2a::Cre mouse line. Mol Pain 2022; 18:17448069221119614. [PMID: 36000342 PMCID: PMC9445510 DOI: 10.1177/17448069221119614] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Projection neurons belonging to the anterolateral system (ALS) underlie the perception of pain, skin temperature and itch. Many ALS cells are located in laminae III-V of the dorsal horn and the adjacent lateral white matter. However, relatively little is known about the excitatory synaptic input to these deep ALS cells, and therefore about their engagement with the neuronal circuitry of the region. We have used a recently developed mouse line, Phox2a::Cre, to investigate a population of deep dorsal horn ALS neurons known as "antenna cells", which are characterised by dense innervation from peptidergic nociceptors, and to compare these with other ALS cells in the deep dorsal horn and lateral white matter. We show that these two classes differ, both in the density of excitatory synapses, and in the source of input at these synapses. Peptidergic nociceptors account for around two-thirds of the excitatory synapses on the antenna cells, but for only a small proportion of the input to the non-antenna cells. Conversely, boutons with high levels of VGLUT2, which are likely to originate mainly from glutamatergic spinal neurons, account for only ∼5% of the excitatory synapses on antenna cells, but for a much larger proportion of the input to the non-antenna cells. VGLUT1 is expressed by myelinated low-threshold mechanoreceptors and corticospinal axons, and these innervate both antenna and non-antenna cells. However, the density of VGLUT1 input to the non-antenna cells is highly variable, consistent with the view that these neurons are functionally heterogeneous.
Collapse
Affiliation(s)
- Éva Kókai
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Wafa AA Alsulaiman
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Allen C Dickie
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Andrew M Bell
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Luca Goffin
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo, Japan
| | - Maria Gutierrez-Mecinas
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Andrew J Todd
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
4
|
Cell type–specific super-resolution imaging reveals an increase in calcium-permeable AMPA receptors at spinal peptidergic terminals as an anatomical correlate of inflammatory pain. Pain 2019; 160:2641-2650. [DOI: 10.1097/j.pain.0000000000001672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Merighi A. The histology, physiology, neurochemistry and circuitry of the substantia gelatinosa Rolandi (lamina II) in mammalian spinal cord. Prog Neurobiol 2018; 169:91-134. [PMID: 29981393 DOI: 10.1016/j.pneurobio.2018.06.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 06/07/2018] [Accepted: 06/30/2018] [Indexed: 02/06/2023]
Abstract
The substantia gelatinosa Rolandi (SGR) was first described about two centuries ago. In the following decades an enormous amount of information has permitted us to understand - at least in part - its role in the initial processing of pain and itch. Here, I will first provide a comprehensive picture of the histology, physiology, and neurochemistry of the normal SGR. Then, I will analytically discuss the SGR circuits that have been directly demonstrated or deductively envisaged in the course of the intensive research on this area of the spinal cord, with particular emphasis on the pathways connecting the primary afferent fibers and the intrinsic neurons. The perspective existence of neurochemically-defined sets of primary afferent neurons giving rise to these circuits will be also discussed, with the proposition that a cross-talk between different subsets of peptidergic fibers may be the structural and functional substrate of additional gating mechanisms in SGR. Finally, I highlight the role played by slow acting high molecular weight modulators in these gating mechanisms.
Collapse
Affiliation(s)
- Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, I-10095 Grugliasco (TO), Italy.
| |
Collapse
|
6
|
Substance P-expressing excitatory interneurons in the mouse superficial dorsal horn provide a propriospinal input to the lateral spinal nucleus. Brain Struct Funct 2018; 223:2377-2392. [PMID: 29497838 PMCID: PMC5968060 DOI: 10.1007/s00429-018-1629-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/14/2018] [Indexed: 01/19/2023]
Abstract
The superficial dorsal horn (laminae I and II) of the spinal cord contains numerous excitatory and inhibitory interneurons, and recent studies have shown that each of these groups can be divided into several neurochemically distinct populations. Although it has long been known that some neurons in this region have intersegmental (propriospinal) axonal projections, there have been conflicting reports concerning the number of propriospinal cells and the extent of their axons. In addition, little is known about the neurochemical phenotype of propriospinal neurons or about the termination pattern of their axons. In the present study we show, using retrograde tracing, that around a third of lamina I-II neurons in the lumbar enlargement project at least five segments cranially. Substance P-expressing excitatory neurons are over-represented among these cells, accounting for one-third of the propriospinal neurons. In contrast, inhibitory interneurons and excitatory PKCγ neurons are both under-represented among the retrogradely labelled cells. By combining viral vector-mediated Cre-dependent anterograde tracing with immunocytochemistry, we provide evidence that the lateral spinal nucleus (LSN), rather than the superficial dorsal horn, is the main target for axons belonging to propriospinal substance P-expressing neurons. These findings help to resolve the discrepancies between earlier studies and have implications for the role of the LSN in pain mechanisms.
Collapse
|
7
|
Preprotachykinin A is expressed by a distinct population of excitatory neurons in the mouse superficial spinal dorsal horn including cells that respond to noxious and pruritic stimuli. Pain 2017; 158:440-456. [PMID: 27902570 PMCID: PMC5302415 DOI: 10.1097/j.pain.0000000000000778] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Expression of the substance P precursor preprotachykinin A defines a distinct population of superficial dorsal horn excitatory neurons, many of which respond to noxious or pruritic stimuli. The superficial dorsal horn, which is the main target for nociceptive and pruritoceptive primary afferents, contains a high density of excitatory interneurons. Our understanding of their roles in somatosensory processing has been restricted by the difficulty of distinguishing functional populations among these cells. We recently defined 3 nonoverlapping populations among the excitatory neurons, based on the expression of neurotensin, neurokinin B, and gastrin-releasing peptide. Here we identify and characterise another population: neurons that express the tachykinin peptide substance P. We show with immunocytochemistry that its precursor protein (preprotachykinin A, PPTA) can be detected in ∼14% of lamina I-II neurons, and these are concentrated in the outer part of lamina II. Over 80% of the PPTA-positive cells lack the transcription factor Pax2 (which determines an inhibitory phenotype), and these account for ∼15% of the excitatory neurons in this region. They are different from the neurotensin, neurokinin B, or gastrin-releasing peptide neurons, although many of them contain somatostatin, which is widely expressed among superficial dorsal horn excitatory interneurons. We show that many of these cells respond to noxious thermal and mechanical stimuli and to intradermal injection of pruritogens. Finally, we demonstrate that these cells can also be identified in a knock-in Cre mouse line (Tac1Cre), although our findings suggest that there is an additional population of neurons that transiently express PPTA. This population of substance P–expressing excitatory neurons is likely to play an important role in the transmission of signals that are perceived as pain and itch.
Collapse
|
8
|
Abstract
This study suggests that 5% of lamina I neurons are projection cells, which most express the neurokinin 1 receptor, and that these can generally be distinguished from interneurons based on their larger size. The anterolateral tract (ALT), which originates from neurons in lamina I and the deep dorsal horn, represents a major ascending output through which nociceptive information is transmitted to brain areas involved in pain perception. Although there is detailed quantitative information concerning the ALT in the rat, much less is known about this system in the mouse, which is increasingly being used for studies of spinal pain mechanisms because of the availability of genetically modified lines. The aim of this study was therefore to determine the extent to which information about the ALT in the rat can be extrapolated to the mouse. Our results suggest that as in the rat, most lamina I ALT projection neurons in the lumbar enlargement can be retrogradely labelled from the lateral parabrachial area, that the majority of these cells (∼90%) express the neurokinin 1 receptor (NK1r), and that these are larger than other NK1r-expressing neurons in this lamina. This means that many lamina I spinoparabrachial cells can be identified in NK1r-immunostained sections from animals that have not received retrograde tracer injections. However, we also observed certain species differences, in particular we found that many spinoparabrachial cells in laminae III and IV lack the NK1r, meaning that they cannot be identified based solely on the expression of this receptor. We also provide evidence that the majority of spinoparabrachial cells are glutamatergic and that some express substance P. These findings will be important for studies designed to unravel the complex neuronal circuitry that underlies spinal pain processing.
Collapse
|
9
|
Gutierrez-Mecinas M, Furuta T, Watanabe M, Todd AJ. A quantitative study of neurochemically defined excitatory interneuron populations in laminae I-III of the mouse spinal cord. Mol Pain 2016; 12:12/0/1744806916629065. [PMID: 27030714 PMCID: PMC4946630 DOI: 10.1177/1744806916629065] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/10/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Excitatory interneurons account for the majority of neurons in laminae I-III, but their functions are poorly understood. Several neurochemical markers are largely restricted to excitatory interneuron populations, but we have limited knowledge about the size of these populations or their overlap. The present study was designed to investigate this issue by quantifying the neuronal populations that express somatostatin (SST), neurokinin B (NKB), neurotensin, gastrin-releasing peptide (GRP) and the γ isoform of protein kinase C (PKCγ), and assessing the extent to which they overlapped. Since it has been reported that calretinin- and SST-expressing cells have different functions, we also looked for co-localisation of calretinin and SST. RESULTS SST, preprotachykinin B (PPTB, the precursor of NKB), neurotensin, PKCγ or calretinin were detected with antibodies, while cells expressing GRP were identified in a mouse line (GRP-EGFP) in which enhanced green fluorescent protein (EGFP) was expressed under control of the GRP promoter. We found that SST-, neurotensin-, PPTB- and PKCγ-expressing cells accounted for 44%, 7%, 12% and 21% of the neurons in laminae I-II, and 16%, 8%, 4% and 14% of those in lamina III, respectively. GRP-EGFP cells made up 11% of the neuronal population in laminae I-II. The neurotensin, PPTB and GRP-EGFP populations showed very limited overlap, and we estimate that between them they account for ~40% of the excitatory interneurons in laminae I-II. SST which is expressed by ~60% of excitatory interneurons in this region, was found in each of these populations, as well as in cells that did not express any of the other peptides. Neurotensin and PPTB were often found in cells with PKCγ, and between them, constituted around 60% of the PKCγ cells. Surprisingly, we found extensive co-localisation of SST and calretinin. CONCLUSIONS These results suggest that cells expressing neurotensin, NKB or GRP form largely non-overlapping sets that are likely to correspond to functional populations. In contrast, SST is widely expressed by excitatory interneurons that are likely to be functionally heterogeneous.
Collapse
Affiliation(s)
- Maria Gutierrez-Mecinas
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Takahiro Furuta
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo, Japan
| | - Andrew J Todd
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
10
|
Gutierrez-Mecinas M, Watanabe M, Todd AJ. Expression of gastrin-releasing peptide by excitatory interneurons in the mouse superficial dorsal horn. Mol Pain 2014; 10:79. [PMID: 25496164 PMCID: PMC4320531 DOI: 10.1186/1744-8069-10-79] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/02/2014] [Indexed: 01/31/2023] Open
Abstract
Background Gastrin-releasing peptide (GRP) and its receptor have been shown to play an important role in the sensation of itch. However, although GRP immunoreactivity has been detected in the spinal dorsal horn, there is debate about whether this originates from primary afferents or local excitatory interneurons. We therefore examined the relation of GRP immunoreactivity to that seen with antibodies that label primary afferent or excitatory interneuron terminals. We tested the specificity of the GRP antibody by preincubating with peptides with which it could potentially cross-react. We also examined tissue from a mouse line in which enhanced green fluorescent protein (EGFP) is expressed under control of the GRP promoter. Results GRP immunoreactivity was seen in both primary afferent and non-primary glutamatergic axon terminals in the superficial dorsal horn. However, immunostaining was blocked by pre-incubation of the antibody with substance P, which is present at high levels in many nociceptive primary afferents. EGFP+ cells in the GRP-EGFP mouse did not express Pax2, and their axons contained the vesicular glutamate transporter 2 (VGLUT2), indicating that they are excitatory interneurons. In most cases, their axons were also GRP-immunoreactive. Multiple-labelling immunocytochemical studies indicated that these cells did not express either of the preprotachykinin peptides, and that they generally lacked protein kinase Cγ, which is expressed by a subset of the excitatory interneurons in this region. Conclusions These results show that GRP is expressed by a distinct population of excitatory interneurons in laminae I-II that are likely to be involved in the itch pathway. They also suggest that the GRP immunoreactivity seen in primary afferents in previous studies may have resulted from cross-reaction of the GRP antibody with substance P or the closely related peptide neurokinin A.
Collapse
Affiliation(s)
| | | | - Andrew J Todd
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
11
|
Saeed AW, Ribeiro-da-Silva A. De novo expression of neurokinin-1 receptors by spinoparabrachial lamina I pyramidal neurons following a peripheral nerve lesion. J Comp Neurol 2013; 521:1915-28. [PMID: 23172292 DOI: 10.1002/cne.23267] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 09/07/2012] [Accepted: 11/09/2012] [Indexed: 01/07/2023]
Abstract
Lamina I of the spinal dorsal horn is a major site of integration and transmission to higher centers of nociceptive information from the periphery. One important primary afferent population that transmits such information to the spinal cord expresses substance P (SP). These fibers terminate in contact with lamina I projection neurons that express the SP receptor, also known as the neurokinin-1 receptor (NK-1r). Three types of lamina I projection neurons have been described: multipolar, fusiform, and pyramidal. Most neurons of the first two types are thought to be nociceptive and express the NK-1r, whereas most pyramidal neurons are nonnociceptive and do not express the NK-1r. In this immunocytochemical and behavioral study, we induced a neuropathic pain-like condition in the rat by means of a polyethylene cuff placed around in the sciatic nerve. We document that this lesion led to a de novo expression of NK-1r on pyramidal neurons as well as a significant increase in SP-immunoreactive innervation onto these neurons. These phenotypic changes were evident at the time of onset of neuropathic pain-related behavior. Additionally, we show that, after a noxious stimulus (intradermal capsaicin injection), these NK-1r on pyramidal neurons were internalized, providing evidence that these neurons become responsive to peripheral noxious stimulation. We suggest that the changes following nerve lesion in the phenotype and innervation pattern of pyramidal neurons are of significance for neuropathic pain and/or limb temperature regulation.
Collapse
Affiliation(s)
- Abeer W Saeed
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | |
Collapse
|
12
|
Jin L, Jin BQ, Song CJ, Zhang Y. Murine Monoclonal Antibodies Generated Against Mouse/Rat Hemokinin-1. Hybridoma (Larchmt) 2009; 28:259-67. [DOI: 10.1089/hyb.2009.0009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Liang Jin
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Bo-quan Jin
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Chao-jun Song
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Yu Zhang
- Department of Immunology, Peking University Health Science Centre, Bei Jing, China
| |
Collapse
|
13
|
Almarestani L, Waters SM, Krause JE, Bennett GJ, Ribeiro-da-Silva A. De novo expression of the neurokinin 1 receptor in spinal lamina I pyramidal neurons in polyarthritis. J Comp Neurol 2009; 514:284-95. [PMID: 19296480 DOI: 10.1002/cne.22024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Spinal lamina I (LI) neurons play a major role in the transmission and integration of pain-related information that is relayed to higher centers. Alterations in the excitability of these neurons influence chronic pain development, and expression of the neurokinin 1 receptor (NK-1r) is thought to play a major role in such changes. Novel expression of NK-1r may underlie hyperexcitability in new populations of LI neurons. LI projection neurons can be classified morphologically into fusiform, pyramidal, and multipolar cells, differing in their functional properties, with the pyramidal type being nonnociceptive. In agreement with this, we have shown that spinoparabrachial pyramidal neurons seldom express NK-1r, in contrast with the other two cell types. In this study we investigated in the rat the long-term changes in NK-1r expression by spinoparabrachial LI neurons following the unilateral injection in the hindpaw plantar surface of complete Freund's adjuvant (CFA). Cholera toxin subunit B (CTb) was injected unilaterally into the parabrachial nucleus. Our results revealed that, ipsilaterally, pyramidal neurons were seldom immunoreactive for NK-1r both in saline-injected and in CFA-injected rats, up to 10 days post-CFA. However, a considerable number of pyramidal cells were immunoreactive for NK-1r at 15, 21, and 30 days post-CFA. Our data raise the possibility -- which needs to be confirmed by electrophysiology -- that most LI projection neurons of the pyramidal type are likely nonnociceptive in naive animals but might become nociceptive following the development of arthritis.
Collapse
Affiliation(s)
- L Almarestani
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
14
|
Polgár E, Thomson S, Maxwell DJ, Al-Khater K, Todd AJ. A population of large neurons in laminae III and IV of the rat spinal cord that have long dorsal dendrites and lack the neurokinin 1 receptor. Eur J Neurosci 2007; 26:1587-98. [PMID: 17880393 PMCID: PMC2635481 DOI: 10.1111/j.1460-9568.2007.05793.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The dorsal horn of the rat spinal cord contains a population of large neurons with cell bodies in laminae III or IV, that express the neurokinin 1 receptor (NK1r) and have long dorsal dendrites that branch extensively within the superficial laminae. In this study, we have identified a separate population of neurons that have similar dendritic morphology, but lack the NK1r. These cells also differ from the NK1r-expressing neurons in that they have significantly fewer contacts from substance P-containing axons and are not retrogradely labelled following injection of tracer into the caudal ventrolateral medulla. We also provide evidence that these cells do not belong to the postsynaptic dorsal column pathway or the spinothalamic tract. It is therefore likely that these cells do not have supraspinal projections. They may provide a route through which information transmitted by C fibres that lack neuropeptides is conveyed to deeper laminae. The present findings demonstrate the need for caution when attempting to classify neurons solely on the basis of somatodendritic morphology.
Collapse
Affiliation(s)
- Erika Polgár
- Spinal Cord Group, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | | | |
Collapse
|
15
|
Wang WF, Yang YS, Peng LH, Sun G. Alternation of substance P-containing neural pathways in a rat model of irritable bowel syndrome with rectal distension. ACTA ACUST UNITED AC 2007; 7:211-8. [PMID: 17054583 DOI: 10.1111/j.1443-9573.2006.00273.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Irritable bowel syndrome (IBS) is a common disorder in clinical practice, but the pathophysiology of IBS has not been completely elucidated yet. Experiments have revealed that the concentrations of some kinds of brain-gut peptides, such as substance P, were abnormal in the plasma and/or the intestinal mucosa. In order to explore further the possible role of substance P containing nerve fibers in the enteric nervous system and central nervous system, the expression of c-fos, a well-established marker of activated neural pathway, was induced to show substance P containing a neural pathway in the rat model of constipation-predominant IBS by rectal distention. METHODS The rat model was set up by intragastric instillation of 2.0 mL water at 0-4 degrees C in 20 male Wistar rats for two weeks. Both the model group and the controls underwent rectal distention under deep anesthesia. Sections containing the anatomical areas of interest were obtained and processed for c-fos protein and substance P immunohistochemistry using the strept avidin-biotin complex (SABC) method. The staining results were analyzed semi-quantitatively, using a computerized color image analyzer with two parameters: opacity density and immunoreactive areas. The statistical difference of the opacity density and immunoreactive areas between the two groups was analyzed by a t-test. Correlation analysis was used to investigate the relationship between the expression of substance P and c-fos protein of the same region in the model group. RESULTS The opacity density of substance P immunoreactive tissues in the ileocecal junction, colon, the posterior horn of the spinal cord and the hypothalamus of the model group were all significantly higher compared with those in the control group (176.6 vs 155.5, 172.3 vs 152.0, 182.1 vs 160.2, 128.3 vs 117.9; P < 0.05, respectively). Meanwhile in the ileocecal junction, colon, the posterior horn of the spinal cord and the hypothalamus of the model group, the opacity density of c-fos protein-positive tissue were all significantly higher than those of the same region in the controls (120.9 vs 109.0, 101.3 vs 92.2, 125.4 vs 88.7, 115.5 vs 88.6; P < 0.05, respectively). The distribution of c-fos protein-positive tissue is similar to that of the substance P and the analysis shows that there is close correlation between the expression of substance P and c-fos protein of the same region in the model group (r = 0.594-0.721, P < 0.05). CONCLUSIONS The expression of substance P and c-fos protein in both the enteric nervous system and the central nervous system of the constipation-predominant IBS rat model is abnormal, which suggests that an abnormal change in substance P may be involved in the pathogenesis of IBS and the substance P-containing neural pathway may be one of the neural pathways that play important role in the regulation of the gastrointestinal function.
Collapse
Affiliation(s)
- Wei Feng Wang
- Department of Gastroenterology, Chinese People's Liberation Army General Hospital, Beijing, China
| | | | | | | |
Collapse
|
16
|
Polgár E, Furuta T, Kaneko T, Todd A. Characterization of neurons that express preprotachykinin B in the dorsal horn of the rat spinal cord. Neuroscience 2006; 139:687-97. [PMID: 16446041 DOI: 10.1016/j.neuroscience.2005.12.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 11/07/2005] [Accepted: 12/03/2005] [Indexed: 11/22/2022]
Abstract
Although it is established that neurokinin B is expressed by some neurons in laminae I-III of the rat spinal dorsal horn, little is known about the proportions of cells in these laminae that express neurokinin B, or whether these are excitatory or inhibitory neurons. Neurokinin B is derived from preprotachykinin B, and we have used an antibody against preprotachykinin B to address these issues. We found that preprotachykinin B-immunoreactive neurons were present throughout laminae I-III, constituting 10-11% of the neuronal population in laminae I-II, and 4% of that in lamina III. They formed a prominent band in the ventral half of lamina II (where they made up 16% of the population) and the dorsalmost part of lamina III. The great majority (99%) of preprotachykinin B-immunoreactive axonal boutons contained the vesicular glutamate transporter 2, while none contained glutamic acid decarboxylase. Since most of these boutons are likely to be derived from local preprotachykinin B-expressing cells, these observations suggest that most of the latter are excitatory interneurons. Although 9% of preprotachykinin B-labeled axonal varicosities were substance P-immunoreactive, none contained calcitonin gene-related peptide, which is consistent with reports that neurokinin B is not expressed by primary afferent axons. Many of the preprotachykinin B-immunoreactive cells contained compounds that are present in putative excitatory neurons in laminae I-III: calbindin (84%), protein kinase Cgamma (76%) or somatostatin (31%). However, there was little or no overlap between preprotachykinin B and three other markers associated with excitatory neurons in these laminae: the mu opioid receptor MOR-1, the neurokinin 1 receptor and neurotensin. These results suggest that neurokinin B is expressed by specific populations of excitatory neurons in the superficial dorsal horn. By examining expression of Fos protein in response to intraplantar injection of formaldehyde we provide evidence that many of the preprotachykinin B cells in lamina I and the outer part of lamina II respond to noxious stimulation.
Collapse
Affiliation(s)
- E Polgár
- Spinal Cord Group, Institute of Biomedical and Life Sciences, West Medical Building, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | |
Collapse
|
17
|
Todd AJ. Chapter 6 Anatomy and neurochemistry of the dorsal horn. HANDBOOK OF CLINICAL NEUROLOGY 2006; 81:61-76. [PMID: 18808828 DOI: 10.1016/s0072-9752(06)80010-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
18
|
Hu L, Wong TP, Côté SL, Bell KFS, Cuello AC. The impact of Aβ-plaques on cortical cholinergic and non-cholinergic presynaptic boutons in alzheimer's disease-like transgenic mice. Neuroscience 2003; 121:421-32. [PMID: 14522000 DOI: 10.1016/s0306-4522(03)00394-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A previous study in our laboratory, involving early stage, amyloid pathology in 8-month-old transgenic mice, demonstrated a selective loss of cholinergic terminals in the cerebral and hippocampal cortices of doubly transgenic (APP(K670N,M671L)+PSl(M146L)) mice, an up-regulation in the single mutant APP(K670N,M671L) mice and no detectable change in the PSl(M146L) transgenics [J Neurosci 19 (1999) 2706]. The present study investigates the impact of amyloid plaques on synaptophysin and vesicular acetylcholine transporter (VAChT) immunoreactive bouton numbers in the frontal cortex of the three transgenic mouse models previously described. When compared as a whole, the frontal cortices of transgenic and control mice show no observable differences in the densities of synaptophysin-immunoreactive boutons. An individual comparison of layer V of the frontal cortex, however, shows a significant increase in density in transgenic models. Analysis of the cholinergic system alone shows significant alterations in the VAChT-immunoreactive bouton densities as evidenced by an increased density in the single (APP(K670N,M671L)) transgenics and a decreased density in the doubly transgenics (APP(K670N,M671L)+PSl(M146L)). In investigating the impact of plaque proximity on bouton density at early stages of the amyloid pathology in our doubly (APP(K670N,M671L)+PSl(M146L)) transgenic mouse line, we observed that plaque proximity reduced cholinergic pre-synaptic bouton density by 40%, and yet increased synaptophysin-immunoreactive pre-synaptic bouton density by 9.5%. Distance from plaques (up to 60 microm) seemed to have no effect on bouton density; however a significant inverse relationship was visible between plaque size and cholinergic pre-synaptic bouton density. Finally, the number of cholinergic dystrophic neurites surrounding the truly amyloid, Thioflavin-S(+) plaque core, was disproportionately large with respect to the incidence of cholinergic boutons within the total pre-synaptic bouton population. Confocal and electron microscopic observations confirmed the preferential infiltration of dystrophic cholinergic boutons into fibrillar amyloid aggregates. We therefore hypothesize that extracellular Abeta aggregation preferentially affects cholinergic terminations prior to progression onto other neurotransmitter systems. This is supported by the observable presence of non-cholinergic sprouting, which may be representative of impending neuritic degeneration.
Collapse
Affiliation(s)
- L Hu
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Quebec, Montreal, Canada H3G 1Y6
| | | | | | | | | |
Collapse
|
19
|
Simmons AM, Chapman JA. Metamorphic changes in GABA immunoreactivity in the brainstem of the bullfrog, Rana catesbeiana. BRAIN, BEHAVIOR AND EVOLUTION 2003; 60:189-206. [PMID: 12457079 DOI: 10.1159/000066701] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We examined immunoreactivity for gamma-aminobutyric acid (GABA) in auditory and vestibular brainstem nuclei of the bullfrog, Rana catesbeiana, across metamorphosis, a developmental period featuring significant anatomical and functional remodeling of the nervous system. In the early larval period, GABA-immunoreactive cell somata were visible in the vestibular nucleus complex and the torus semicircularis, as well as in the spinal cord, cerebellum and optic tectum. Fiber bundles such as the medial longitudinal fasciculus and the lemnsical pathways also exhibited intense label at these early stages. In contrast, only diffuse neuropil label was visible in the dorsolateral nucleus and the superior olivary nucleus at the same stages. This diffuse immunoreactivity became progressively more reduced over larval development, and stained somata were visible in these medullary nuclei by metamorphic climax stages. In the torus semicircularis, the numbers of labeled somata in both the developing laminar and principal nuclei increased over metamorphic development, and became progressively more organized into distinct layers. The adult pattern of GABA-like immunoreactivity in the auditory brainstem was reached by metamorphic climax stages, coincident with the maturation of the opercularis system, and preceding the final development of the external tympanum and the tympanic conduction pathway. The relatively earlier maturation of vestibular, compared to auditory, areas in the medulla might reflect the behavioral importance of vestibular-mediated motor reactions during tadpole life. The distribution of GABA in auditory brainstem nuclei in both developing and adult frogs is comparable to that observed in mammals and birds.
Collapse
|
20
|
Ramien M, Ruocco I, Cuello AC, St-Louis M, Ribeiro-Da-Silva A. Parasympathetic nerve fibers invade the upper dermis following sensory denervation of the rat lower lip skin. J Comp Neurol 2003; 469:83-95. [PMID: 14689474 DOI: 10.1002/cne.10998] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The sympathetic division of the autonomic nervous system is known to play a role in the genesis of neuropathic pain. In the skin of the rat lower lip (hairy skin), sympathetic and parasympathetic fibers normally innervate the same blood vessels in the lower dermis but do not occur in the upper dermis. However, we have shown that sympathetic fiber migration into the upper dermis occurs following mental nerve lesions (Ruocco et al. [2000] J. Comp. Neurol. 422:287-296). As sensory denervation has a dramatic effect on sympathetic fiber innervation patterns in the rat lower lip skin, we decided to investigate the possible changes in the other autonomic fiber type in the skin-the parasympathetic fiber. Sensory denervation of the rat lower lip was achieved by bilateral transection of the mental nerve, and animals were allowed to recover for 1-8 weeks. Lower lip tissue was processed for double-labeling light microscopic immunocytochemistry (ICC), using antibodies against substance P (SP), which labels a subpopulation of peptidergic sensory fibers, and against the vesicular acetycholine transporter (VAChT), as a marker for parasympathetic fibers. In sham-operated rats, SP-immunoreactive (IR) sensory fibers were found in the epidermis and upper and lower dermal regions, whereas VAChT-IR fibers were confined to the lower dermis. Mental nerve lesions induced the gradual disappearance of SP-IR fibers from all skin layers accompanied by the progressive migration of VAChT-IR fibers into the upper dermis. Cholinergic fiber migration was evident by the second week post surgery, and the ectopic innervation of the upper dermis by these fibers persisted even at the last time point studied (8 weeks) when SP-IR fibers have completely regrown. VAChT-IR fibers were observed in the upper dermis, well above the opening of the sebaceous glands into the hair follicles. These results show that considerable changes occur in the innervation patterns of parasympathetic fibers following mental nerve lesions.
Collapse
Affiliation(s)
- Michele Ramien
- Department of Pharmacology & Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | | | | | | | | |
Collapse
|
21
|
Todd AJ, Hughes DI, Polgár E, Nagy GG, Mackie M, Ottersen OP, Maxwell DJ. The expression of vesicular glutamate transporters VGLUT1 and VGLUT2 in neurochemically defined axonal populations in the rat spinal cord with emphasis on the dorsal horn. Eur J Neurosci 2003; 17:13-27. [PMID: 12534965 DOI: 10.1046/j.1460-9568.2003.02406.x] [Citation(s) in RCA: 357] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two vesicular glutamate transporters, VGLUT1 and VGLUT2, have recently been identified, and it has been reported that they are expressed by largely nonoverlapping populations of glutamatergic neurons in the brain. We have used immunocytochemistry with antibodies against both transporters, together with markers for various populations of spinal neurons, in an attempt to identify glutamatergic interneurons in the dorsal horn of the mid-lumbar spinal cord of the rat. The great majority (94-100%) of nonprimary axonal boutons that contained somatostatin, substance P or neurotensin, as well as 85% of those that contained enkephalin, were VGLUT2-immunoreactive, which suggests that most dorsal horn neurons that synthesize these peptides are glutamatergic. In support of this, we found that most somatostatin- and enkephalin-containing boutons (including somatostatin-immunoreactive boutons that lacked calcitonin gene-related peptide and were therefore probably derived from local interneurons) formed synapses at which AMPA receptors were present. We also investigated VGLUT expression in central terminals of primary afferents. Myelinated afferents were identified with cholera toxin B subunit; most of those in lamina I were VGLUT2-immunoreactive, whereas all those in deeper laminae were VGLUT1-immunoreactive, and some (in laminae III-VI) appeared to contain both transporters. However, peptidergic primary afferents that contained substance P or somatostatin (most of which are unmyelinated), as well as nonpeptidergic C fibres (identified with Bandeiraea simplicifolia isolectin B4) showed low levels of VGLUT2-immunoreactivity, or were not immunoreactive with either VGLUT antibody. As all primary afferents are thought to be glutamatergic, this raises the possibility that unmyelinated afferents, most of which are nociceptors, express a different vesicular glutamate transporter.
Collapse
Affiliation(s)
- A J Todd
- Spinal Cord Group, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The anatomical distribution of Substance P (SP) has been investigated since the development of antibodies against it in the 1970s. Although initial studies were performed with antibodies that also recognised the other endogenous neurokinins, most of the initial descriptions are surprisingly still valid today. In this review, we provide an integrated overview of the pathways containing SP in the central and peripheral nervous systems. The highest densities of SP immunoreactivity occur in the superficial dorsal horn of the spinal cord, in the substantia nigra and in the medial amygdaloid nucleus. In the peripheral nervous system, SP occurs in high concentrations in small diameter primary sensory fibres and in the enteric nervous system. SP is extensively co-localised with classical transmitters and other neuropeptides. In the spinal cord, SP immunoreactive axonal boutons are preferentially presynaptic to neurons expressing the SP receptor, suggesting that the neurokinin acts at a short distance from the release site. In contrast, in the periphery, the situation probably differs in the autonomic ganglia, where the targets are directly innervated by SP, and in other peripheral territories, where SP has to diffuse through the connective tissue to reach the structures expressing the receptor.
Collapse
Affiliation(s)
- A Ribeiro-da-Silva
- Department of Pharmacology, McGill University, Montreal, Quebec, Canada.
| | | |
Collapse
|
23
|
Chapter VI Neurokinin receptors in the CNS. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0924-8196(00)80008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|