1
|
Dou M, Li M, Zheng Z, Chen Q, Wu Y, Wang J, Shan H, Wang F, Dai X, Li Y, Yang Z, Tan G, Luo F, Chen L, Shi YS, Wu JW, Luo XJ, Asadollahpour Nanaei H, Niyazbekova Z, Zhang G, Wang W, Zhao S, Zheng W, Wang X, Jiang Y. A missense mutation in RRM1 contributes to animal tameness. SCIENCE ADVANCES 2023; 9:eadf4068. [PMID: 37352351 PMCID: PMC10289655 DOI: 10.1126/sciadv.adf4068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/18/2023] [Indexed: 06/25/2023]
Abstract
The increased tameness to reduce avoidance of human in wild animals has been long proposed as the key step of animal domestication. The tameness is a complex behavior trait and largely determined by genetic factors. However, the underlying genetic mutations remain vague and how they influence the animal behaviors is yet to be explored. Behavior tests of a wild-domestic hybrid goat population indicate the locus under strongest artificial selection during domestication may exert a huge effect on the flight distance. Within this locus, only one missense mutation RRM1I241V which was present in the early domestic goat ~6500 years ago. Genome editing of RRM1I241V in mice showed increased tameness and sociability and reduced anxiety. These behavioral changes induced by RRM1I241V were modulated by the alternation of activity of glutamatergic synapse and some other synapse-related pathways. This study established a link between RRM1I241V and tameness, demonstrating that the complex behavioral change can be achieved by mutations under strong selection during animal domestication.
Collapse
Affiliation(s)
- Mingle Dou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi, 712100, China
| | - Ming Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi, 712100, China
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstrasse 10, Konstanz, 78457, Germany
| | - Zhuqing Zheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi, 712100, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education and College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qiuming Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi, 712100, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, 830011, China
| | - Yongji Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shannxi, 712100, China
| | - Jinxin Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi, 712100, China
| | - Huiquan Shan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi, 712100, China
| | - Fei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi, 712100, China
| | - Xuelei Dai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi, 712100, China
| | - Yunjia Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi, 712100, China
| | - Zhirui Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi, 712100, China
| | - Guanghui Tan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi, 712100, China
| | - Funong Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi, 712100, China
| | - Lei Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, Shaanxi, 710072, China
| | - Yun Stone Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Medical School, Nanjing University, Nanjing, Jiangsu, 210032, China
| | - Jiang Wei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi, 712100, China
| | - Xiong-Jian Luo
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Hojjat Asadollahpour Nanaei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi, 712100, China
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, 1983969412, Iran
| | - Zhannur Niyazbekova
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi, 712100, China
| | - Guojie Zhang
- Centre for Evolutionary and Organismal Biology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310000, China
| | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, Shaanxi, 710072, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shannxi, 712100, China
| | - Wenxin Zheng
- Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, 830011, China
| | - Xihong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi, 712100, China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shannxi, 712100, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
2
|
Zheng Z, Wang X, Li M, Li Y, Yang Z, Wang X, Pan X, Gong M, Zhang Y, Guo Y, Wang Y, Liu J, Cai Y, Chen Q, Okpeku M, Colli L, Cai D, Wang K, Huang S, Sonstegard TS, Esmailizadeh A, Zhang W, Zhang T, Xu Y, Xu N, Yang Y, Han J, Chen L, Lesur J, Daly KG, Bradley DG, Heller R, Zhang G, Wang W, Chen Y, Jiang Y. The origin of domestication genes in goats. SCIENCE ADVANCES 2020; 6:eaaz5216. [PMID: 32671210 PMCID: PMC7314551 DOI: 10.1126/sciadv.aaz5216] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/06/2020] [Indexed: 05/22/2023]
Abstract
Goat domestication was critical for agriculture and civilization, but its underlying genetic changes and selection regimes remain unclear. Here, we analyze the genomes of worldwide domestic goats, wild caprid species, and historical remains, providing evidence of an ancient introgression event from a West Caucasian tur-like species to the ancestor of domestic goats. One introgressed locus with a strong signature of selection harbors the MUC6 gene, which encodes a gastrointestinally secreted mucin. Experiments revealed that the nearly fixed introgressed haplotype confers enhanced immune resistance to gastrointestinal pathogens. Another locus with a strong signal of selection may be related to behavior. The selected alleles at these two loci emerged in domestic goats at least 7200 and 8100 years ago, respectively, and increased to high frequencies concurrent with the expansion of the ubiquitous modern mitochondrial haplogroup A. Tracking these archaeologically cryptic evolutionary transformations provides new insights into the mechanisms of animal domestication.
Collapse
Affiliation(s)
- Zhuqing Zheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xihong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Ming Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yunjia Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhirui Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaolong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiangyu Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Mian Gong
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yingwei Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jing Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yudong Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Qiuming Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Moses Okpeku
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Discipline of Genetics, School of Life Science, University of Kwazulu-Natal, Durban 4000, South Africa
| | - Licia Colli
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del S. Cuore, via Emilia Parmense n. 84, 29122, Piacenza (PC), Italy
- BioDNA–Centro di Ricerca sulla Biodiversità e sul DNA Antico, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del S. Cuore, via Emilia Parmense n. 84, 29122, Piacenza (PC), Italy
| | - Dawei Cai
- Research Center for Chinese Frontier Archaeology, Jilin University, Changchun 130012, China
| | - Kun Wang
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Shisheng Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | | | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB 76169-133, Iran
| | - Wenguang Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Tingting Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yangbin Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Naiyi Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yi Yang
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianlin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing 100193, China
- International Livestock Research Institute (ILRI), Nairobi 00100, Kenya
| | - Lei Chen
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | | | - Kevin G. Daly
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Daniel G. Bradley
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Rasmus Heller
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N 2200, Denmark
| | - Guojie Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
3
|
Hrubec TC, Yan M, Ye K, Salafia CM, Holladay SD. Valproic acid-induced fetal malformations are reduced by maternal immune stimulation with granulocyte-macrophage colony-stimulating factor or interferon-gamma. ACTA ACUST UNITED AC 2007; 288:1303-9. [PMID: 17075842 PMCID: PMC2567843 DOI: 10.1002/ar.a.20397] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Valproic acid, a drug commonly used to treat seizures and other psychiatric disorders, causes neural tube defects (NTDs) in exposed fetuses at a rate 20 times higher than in the general population. Failure of the neural tube to close during development results in exencephaly or anencephaly, as well as spina bifida. In mice, nonspecific activation of the maternal immune system can reduce fetal abnormalities caused by diverse etiologies, including diabetes-induced NTDs. We hypothesized that nonspecific activation of the maternal immune system with interferon-gamma (IFN-gamma) and granulocyte-macrophage colony-stimulating factor (GM-CSF) could reduce valproic acid (VA)-induced defects as well. Female CD-1 mice were given immune stimulant prebreeding: either IFN-gamma or GM-CSF. Approximately half of the control and immune-stimulated pregnant females were then exposed to 500 mg/kg VA on the morning of gestational day 8. The incidence of developmental defects was determined on gestational day 17 from at least eight litters in each of the following treatment groups: control, VA only, IFN-gamma only, IFN-gamma+VA, GM-CSF only, and GM-CSF+VA. The incidence of NTDs was 18% in fetuses exposed to VA alone, compared to 3.7% and 2.9% in fetuses exposed to IFN-gamma+VA, or GM-CSF+VA respectively. Ocular defects were also significantly reduced from 28.0% in VA exposed groups to 9.8% in IFN-gamma+VA and 12.5% in GM-CSF+VA groups. The mechanisms by which maternal immune stimulation prevents birth defects remain unclear, but may involve maternal or fetal production of cytokines or growth factors which protect the fetus from the dysregulatory effects of teratogens.
Collapse
Affiliation(s)
- Terry C Hrubec
- Department of Biomedical Science, E. Via Virginia College of Osteopathic Medicine, Blacksburg, Virginia 24060, USA.
| | | | | | | | | |
Collapse
|
4
|
Okada A, Fujiwara M. Molecular approaches to developmental malformations using analogous forms of valproic acid. Congenit Anom (Kyoto) 2006; 46:68-75. [PMID: 16732764 DOI: 10.1111/j.1741-4520.2006.00105.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The teratogenic potential of valproic acid has been well established both in experimental models and in human clinical studies. Evidence from many previous studies has shown that VPA is an appropriate drug model for studying chemical structure-teratogenicity relationships. Using molecular techniques of DNA microarray (GeneChip system) or quantitative real-time polymerase chain reaction with low teratogenic VPA analogs as comparative control drugs, we attempted to identify the genes involved with the molecular mechanisms of VPA teratogenicity in the neural tube and the axial skeleton of the mouse embryo. The recent development of DNA microarray enables a genome-wide approach to the identification of genes correlated with the teratogenicity of chemicals (teratogenomics). The VPA-induced changes in gene expression seen during mouse embryogenesis provides information for understanding how VPA disrupts normal embryonic development, and also provides leads for the development of safer medicines.
Collapse
Affiliation(s)
- Akinobu Okada
- Drug Safety Research Laboratories, Astellas Pharma, Yodogawa-ku, Osaka, Japan.
| | | |
Collapse
|
5
|
Okada A, Kushima K, Aoki Y, Bialer M, Fujiwara M. Identification of early-responsive genes correlated to valproic acid-induced neural tube defects in mice. ACTA ACUST UNITED AC 2005; 73:229-38. [PMID: 15799026 DOI: 10.1002/bdra.20131] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Valproic acid (VPA) causes the failure of neural tube closure in newborn mice. However, the molecular mechanism of its teratogenesis is unknown. This study was conducted to investigate the genomewide effects of VPA disruption of normal neural tube development in mice. METHODS Microarray analysis was performed on the head part of NMRI mouse embryos treated for 1 hr with VPA on gestational day (GD) 8. Subsequently, we attempted to isolate genes that changed in correlation with the teratogenic action of VPA by employing reduced teratogenic VPA analogs, valpromide (VPD) and valnoctamide (VCD), in a real-time PCR study. RESULTS Microarray results demonstrated that during neurulation, many genes, some of whose functions are known and some unknown, were either increased or decreased after VPA injection. Some genes were affected by VPD or VCD in the same way as VPA, but others were not changed by the analogs. In this way, our system identified 11 increased and 20 decreased genes. Annotation analysis revealed that the increased genes included gadd45b, ier5, per1, phfl3, pou3f1, and sox4, and the decreased genes included ccne2, ccnl, gas5, egr2, sirt1, and zfp105. CONCLUSIONS These findings demonstrate that expression changes in genes having roles in the cell cycle and apoptosis pathways of neural tube cells were strongly expected to relate to the teratogenic, but not antiepileptic, activity of VPA. Our approach has allowed the expansion of the catalog of molecules immediately affected by VPA in the developing neural tube.
Collapse
Affiliation(s)
- Akinobu Okada
- Drug Safety Research Laboratories, Astellas Pharma Inc., 2-1-6 Kashima, Yodogawa-ku, Osaka 532-8514, Japan
| | | | | | | | | |
Collapse
|
6
|
Kultima K, Nyström AM, Scholz B, Gustafson AL, Dencker L, Stigson M. Valproic acid teratogenicity: a toxicogenomics approach. ENVIRONMENTAL HEALTH PERSPECTIVES 2004; 112:1225-1235. [PMID: 15345369 PMCID: PMC1277116 DOI: 10.1289/txg.7034] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Accepted: 06/03/2004] [Indexed: 05/24/2023]
Abstract
Embryonic development is a highly coordinated set of processes that depend on hierarchies of signaling and gene regulatory networks, and the disruption of such networks may underlie many cases of chemically induced birth defects. The antiepileptic drug valproic acid (VPA) is a potent inducer of neural tube defects (NTDs) in human and mouse embryos. As with many other developmental toxicants however, the mechanism of VPA teratogenicity is unknown. Using microarray analysis, we compared the global gene expression responses to VPA in mouse embryos during the critical stages of teratogen action in vivo with those in cultured P19 embryocarcinoma cells in vitro. Among the identified VPA-responsive genes, some have been associated previously with NTDs or VPA effects [vinculin, metallothioneins 1 and 2 (Mt1, Mt2), keratin 1-18 (Krt1-18)], whereas others provide novel putative VPA targets, some of which are associated with processes relevant to neural tube formation and closure [transgelin 2 (Tagln2), thyroid hormone receptor interacting protein 6, galectin-1 (Lgals1), inhibitor of DNA binding 1 (Idb1), fatty acid synthase (Fasn), annexins A5 and A11 (Anxa5, Anxa11)], or with VPA effects or known molecular actions of VPA (Lgals1, Mt1, Mt2, Id1, Fasn, Anxa5, Anxa11, Krt1-18). A subset of genes with a transcriptional response to VPA that is similar in embryos and the cell model can be evaluated as potential biomarkers for VPA-induced teratogenicity that could be exploited directly in P19 cell-based in vitro assays. As several of the identified genes may be activated or repressed through a pathway of histone deacetylase (HDAC) inhibition and specificity protein 1 activation, our data support a role of HDAC as an important molecular target of VPA action in vivo.
Collapse
Affiliation(s)
- Kim Kultima
- Department of Pharmaceutical Biosciences, Division of Toxicology, The Biomedical Center, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
7
|
Holladay SD, Sharova LV, Punareewattana K, Hrubec TC, Gogal RM, Prater MR, Sharov AA. Maternal immune stimulation in mice decreases fetal malformations caused by teratogens. Int Immunopharmacol 2002; 2:325-32. [PMID: 11811935 DOI: 10.1016/s1567-5769(01)00183-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
For unknown reasons, non-specific stimulation of the maternal immune system in pregnant mice has what appears to be a broad-spectrum efficacy for reducing birth defects. Immune stimulation by diverse procedures has proven effective, including footpad injection with Freund's complete adjuvant (FCA), intraperitoneal (IP) injection with inert particles to activate resident macrophages, IP injection with attenuated Bacillus Calmette-Guerin (BCG), and intrauterine injection with allogeneic or zenogeneic lymphocytes. Morphologic lesions that were significantly reduced included cleft palate and associated craniofacial defects, digit and limb defects, tail malformations, and neural tube defect (NTD). Teratogenic stimuli to induce these lesions included chemical agents (2,3,7,8-tetrachlorodibenzo-p-dioxin [TCDD], ethyl carbamate [urethane], methylnitrosourea [MNU], cyclophosphamide [CP], and valproic acid [VA]), physical agents (X-rays, hyperthermia), and streptozocin (STZ)-induced diabetes mellitus. Limited information is available regarding mechanisms by which such immune stimulation reduced fetal dysmorphogenesis. The collective literature suggests the possibility that immunoregulatory cytokines of maternal origin may be the effector molecules in this phenomenon.
Collapse
Affiliation(s)
- S D Holladay
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blackshurg 24061-0442, USA.
| | | | | | | | | | | | | |
Collapse
|