1
|
Davies LN, Biswas S, Bullimore M, Cruickshank F, Estevez JJ, Khanal S, Kollbaum P, Marcotte-Collard R, Montani G, Plainis S, Richdale K, Simard P, Wolffsohn JS. BCLA CLEAR presbyopia: Mechanism and optics. Cont Lens Anterior Eye 2024; 47:102185. [PMID: 38796331 DOI: 10.1016/j.clae.2024.102185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2024]
Abstract
With over a billion adults worldwide currently affected, presbyopia remains a ubiquitous, global problem. Despite over a century of study, the precise mechanism of ocular accommodation and presbyopia progression remains a topic of debate. Accordingly, this narrative review outlines the lenticular and extralenticular components of accommodation together with the impact of age on the accommodative apparatus, neural control of accommodation, models of accommodation, the impact of presbyopia on retinal image quality, and both historic and contemporary theories of presbyopia.
Collapse
Affiliation(s)
- Leon N Davies
- School of Optometry, College of Health and Life Sciences, Aston University, Birmingham, UK.
| | - Sayantan Biswas
- School of Optometry, College of Health and Life Sciences, Aston University, Birmingham, UK
| | | | - Fiona Cruickshank
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Jose J Estevez
- Caring Futures Institute, College of Nursing and Health Sciences, Optometry and Vision Science, Flinders University, Adelaide, Australia; Flinders Centre for Ophthalmology, Eye and Vision Research, Department of Ophthalmology, Flinders University, Adelaide, Australia
| | - Safal Khanal
- Department of Optometry and Vision Science, The University of Alabama at Birmingham, USA
| | | | | | | | - Sotiris Plainis
- School of Optometry, College of Health and Life Sciences, Aston University, Birmingham, UK; Laboratory of Optics and Vision, School of Medicine, University of Crete, Greece
| | | | - Patrick Simard
- School of Optometry, Universite de Montreal, Montreal, Quebec, Canada
| | - James S Wolffsohn
- School of Optometry, College of Health and Life Sciences, Aston University, Birmingham, UK
| |
Collapse
|
2
|
Kim D, Park SE, Hwang J, Kang N, Jung JS, Park KM. Ultrasound biomicroscopy analysis of ciliary muscle dynamics and its relation to intra-ocular pressure after phacoemulsification in dogs. Front Vet Sci 2024; 11:1366997. [PMID: 38784657 PMCID: PMC11111888 DOI: 10.3389/fvets.2024.1366997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction This study investigates the relationship between ciliary muscle dynamics, thickness, and the regulation of intraocular pressure (IOP), focusing on the progression of cataracts and changes post-phacoemulsification. It explores how these factors impact canine ocular health, particularly in the context of cataract development and subsequent surgical intervention. Materials and methods Data was collected using Ultrasound Biomicroscopy (UBM) from dogs at the Veterinary Medical Teaching Hospital of Chungbuk National University, Korea. The study involved 57 eyes from 35 dogs, categorized into five groups: 13 normal eyes, 14 with incipient cataracts, 12 with immature cataracts, 6 with mature cataracts, and 12 post-phacoemulsification. UBM measurements assessed various ciliary muscle parameters including ciliary body axial length (CBAXL), ciliary process-sclera angle (CPSA), longitudinal fibers of ciliary muscle thickness (Lf-CMT), and longitudinal and radial fibers of ciliary muscle thickness (LRf-CMT). Results Findings indicated a decrease in CBAXL and an increase in Lf-CMT as cataracts progressed in severity. Post-phacoemulsification, there was a notable increase in CBAXL and a decrease in CPSA, Lf-CMT, and LRf-CMT, compared to both cataractous and normal eyes. Regression analysis revealed a significant positive association between CBAXL and IOP, alongside a negative association between Lf-CMT and IOP. These findings suggest that variations in ciliary muscle dynamics and thickness, as influenced by cataract progression and phacoemulsification, have distinct impacts on intraocular pressure. Discussion The study proposes that phacoemulsification leads to ciliary muscle contraction, causing an inward and anterior movement of the ciliary muscle. This movement results in the narrowing of the ciliary cleft and constriction of the unconventional outflow pathway, potentially causing an increased risk of glaucoma post-surgery. Our research contributes to understanding the anatomical and physiological changes in the canine eye following cataract surgery and underscores the importance of monitoring IOP and ciliary muscle dynamics in these patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Kyung-Mee Park
- Laboratory of Veterinary Surgery and Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
3
|
Seleem AA, Badr AH. Comparative study of the ciliary body and iris morphology in the anterior eye chamber of five different vertebrate classes. Anat Histol Embryol 2024; 53:e13052. [PMID: 38735035 DOI: 10.1111/ahe.13052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/27/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024]
Abstract
One crucial component of the optical system is the ciliary body (CB). This body secretes the aqueous humour, which is essential to maintain the internal eye pressure as well as the clearness of the lens and cornea. The histological study was designed to provide the morphological differences of CB and iris in the anterior eye chambers of the following vertebrate classes: fish (grass carp), amphibians (Arabian toad), reptiles (semiaquatic turtle, fan-footed gecko, ocellated skink, Egyptian spiny-tailed lizard, Arabian horned viper), birds (common pigeon, common quail, common kestrel), and mammals (BALB/c mouse, rabbit, golden hamster, desert hedgehog, lesser Egyptian jerboa, Egyptian fruit bat). The results showed distinct morphological appearances of the CB and iris in each species, ranging from fish to mammals. The present comparative study concluded that the morphological structure of the CB and iris is the adaptation of species to either their lifestyle or survival in specific habitats.
Collapse
Affiliation(s)
- Amin A Seleem
- Biology Department, Faculty of Science, Taibah University, Al Madinah Almunawwarah, Saudi Arabia
- Zoology Department, Faculty of Science, Sohag University, Sohag, Egypt
| | - Amira H Badr
- Zoology Department, Faculty of Science, Sohag University, Sohag, Egypt
| |
Collapse
|
4
|
Jonas JB, Jonas RA, Jonas SB, Panda-Jonas S. Ciliary body size in chronic angle-closure glaucoma. Sci Rep 2023; 13:16914. [PMID: 37805618 PMCID: PMC10560213 DOI: 10.1038/s41598-023-44085-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023] Open
Abstract
To examine the size of the ciliary body stroma (CBS) in dependence of the morphology of the anterior chamber angle in enucleated human eyes, we histomorphometrically examined human enucleated eyes. The study included 107 eyes (with a mean axial length of 25.1 ± 2.8 mm (range 21.0-36.0 mm). The anterior chamber angle was open in 68 eyes and it was closed and endothelialized in 39 eyes. The maximal CBS width (541 ± 210 µm versus 59 ± 179 µm; P < 0.001) and the minimal CBS width (214 ± 107 µm versus 17 ± 55 µm; P < 0.001) and maximal ciliary muscle height (593 ± 557 µm versus 293 ± 111 µm; P = 0.001) were significantly smaller in the angle-closure group than in the open-angle group. Maximal CBS width increased with presence of an open anterior chamber angle (beta: 0.82; B: 517; 95% CI 435, 599; P < 0.001) and longer axial length (beta: 0.17; B: 18.2; 95% CI 4.2, 32.2; P = 0.01). Minimal CBS width increased with the presence of an open anterior chamber angle (beta: 0.48; B: 131; 95% CI 80.4, 181; P < 0.001) and a larger maximal ciliary muscle height (beta: 0.33; B: 0.28; 95% CI 0.12, 0.44; P = 0.001). Maximal ciliary muscle height correlated with the maximal CBS height (beta: 0.35; B: 0.53; 95% CI 0.25, 0.81; P < 0.001). The findings suggest that the CBS size is markedly smaller in eyes with a chronically closed endothelialized anterior chamber angle than in eyes with open angles. The tightening of the angle in eyes with angle-closure may prevent the access of aqueous humor not only to the trabecular meshwork but also to the ciliary body and may reduce the uveoscleral or uveovortex outflow pathway.
Collapse
Affiliation(s)
- Jost B Jonas
- Department of Ophthalmology, Medical Faculty Mannheim, University Heidelberg, Kutzerufer 1, 68167, Mannheim, Germany.
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland.
- Singapore Eye Research Institute, Singapore, Singapore.
| | - Rahul A Jonas
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | | | | |
Collapse
|
5
|
Owusu E, Shasteen NM, Mitchell GL, Bailey MD, Kao CY, Toole AJ, Richdale K, Kulp MT. Impact of accommodative insufficiency and accommodative/vergence therapy on ciliary muscle thickness in the eye. Ophthalmic Physiol Opt 2023; 43:947-953. [PMID: 37184092 DOI: 10.1111/opo.13155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 05/16/2023]
Abstract
PURPOSE Recent evidence suggests that the ciliary muscle apical fibres are most responsive to accommodative load; however, the structure of the ciliary muscle in individuals with accommodative insufficiency is unknown. This study examined ciliary muscle structure in individuals with accommodative insufficiency (AI). We also determined the response of the ciliary muscle to accommodative/vergence therapy and increasing accommodative demands to investigate the muscle's responsiveness to workload. METHODS Subjects with AI were enrolled and matched by age and refractive error with subjects enrolled in another ciliary muscle study as controls. Anterior segment optical coherence tomography was used to measure the ciliary muscle thickness (CMT) at rest (0D), maximum thickness (CMTMAX) and over the area from 0.75 mm (CMT0.75) to 3 mm (CMT3) posterior to the scleral spur of the right eye. For those with AI, the ciliary muscle was also measured at increasing levels of accommodative demand (2D, 4D and 6D), both before and after accommodative/vergence therapy. RESULTS Sixteen subjects with AI (mean age = 17.4 years, SD = 8.0) were matched with 48 controls (mean age = 17.8 years, SD = 8.2). On average, the controls had 52-72 μm thicker ciliary muscles in the apical region at 0D than those with AI (p = 0.03 for both CMTMAX and CMT 0.75). Differences in thickness between the groups in other regions of the muscle were not statistically significant. After 8 weeks of accommodative/vergence therapy, the CMT increased by an average of 22-42 μm (p ≤ 0.04 for all), while AA increased by 7D (p < 0.001). CONCLUSIONS This study demonstrated significantly thinner apical ciliary muscle thickness in those with AI and that the ciliary muscle can thicken in response to increased workload. This may explain the mechanism for improvement in signs and symptoms with accommodative/vergence therapy.
Collapse
Affiliation(s)
- Emmanuel Owusu
- College of Optometry, The Ohio State University, Columbus, Ohio, USA
| | | | - G Lynn Mitchell
- College of Optometry, The Ohio State University, Columbus, Ohio, USA
| | - Melissa D Bailey
- College of Optometry, The Ohio State University, Columbus, Ohio, USA
| | - Chiu-Yen Kao
- Department of Mathematical Sciences, Claremont McKenna College, Claremont, California, USA
| | - Andrew J Toole
- College of Optometry, The Ohio State University, Columbus, Ohio, USA
| | - Kathryn Richdale
- College of Optometry, The Ohio State University, Columbus, Ohio, USA
| | - Marjean T Kulp
- College of Optometry, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
6
|
Jia WN, Wang QY, Niu LL, Chen ZX, Jiang YX. Morphometric assessment of the ciliary body in patients with Marfan syndrome and ectopia lentis: A quantitative study using ultrasound biomicroscopy: Ciliary body morphology in Marfan syndrome and ectopia lentis. Am J Ophthalmol 2023; 251:24-31. [PMID: 36948371 DOI: 10.1016/j.ajo.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/28/2023] [Accepted: 03/05/2023] [Indexed: 03/24/2023]
Abstract
PURPOSE To explore the biometric characteristics of the ciliary body in patients with Marfan syndrome (MFS) and ectopia lentis (EL). DESIGN Cross-sectional study. METHODS Seventy-two consecutive MFS patients with EL and 72 non-disease controls were recruited. Ciliary body biometric parameters such as ciliary muscle cross-sectional area at 2000 μm from the scleral spur (CMA2000), ciliary muscle thickness at 1000 μm from the scleral spur (CMT1000), and maximum ciliary body thickness (CBTmax) were measured from multiple directions with ultrasound biomicroscopy (UBM). The relationship between ciliary body parameters and other ocular characteristics was also evaluated. RESULTS Average CMA2000, CMT1000, and CBTmax were 0.692 ± 0.015 mm2, 0.405 ± 0.010 mm, and 0.855±0.023 mm in MFS eyes, respectively, and were significantly smaller than controls (all p < 0.001). The prevalence of ciliary body thinning was 22.2% in the MFS group versus 0 in controls (p < 0.001); eyes with more severe EL had smaller CMA2000 (p = 0.050), thinner CMT1000 (p = 0.022) and shorter CBTmax (p = 0.015). Patients with microspherophakia (MSP) had even smaller CMA2000 (p = 0.033) and CMT1000 (p = 0.044) than those without MSP. The most common subluxation direction was in the superonasal quadrant (25, 39.7%), which probably correlates with the thinnest CMT1000 in the inferotemporal quadrant (p = 0.005). CONCLUSIONS MFS patients with EL had thinner ciliary muscles, shorter ciliary processes, and a higher prevalence of ciliary body thinning, especially those with MSP. Both the extent and direction of subluxation were associated with ciliary body biometry.
Collapse
Affiliation(s)
- Wan-Nan Jia
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China
| | - Qian-Yi Wang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China
| | - Ling-Ling Niu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China
| | - Ze-Xu Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China.
| | - Yong-Xiang Jiang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China.
| |
Collapse
|
7
|
Yaïci R, Geerling G. [Tonometry: Review and Perspectives]. Klin Monbl Augenheilkd 2022. [PMID: 36395813 DOI: 10.1055/a-1967-2645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Reliable and repeated IOP measurement are essential in the diagnosis and treatment of glaucoma. In this first part of this review, besides the physiological basics, contact tonometry will be presented, which is both the first instrumental method with the indentation tonometers and the gold standard with the Goldmann applanation tonometer. Both methods and subsequently developments will be discussed.
Collapse
|
8
|
Yaïci R, Geerling G. Tonometrie: Rückblick und Ausblick (Teil 1). AUGENHEILKUNDE UP2DATE 2022. [DOI: 10.1055/a-1641-4156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
ZusammenfassungDer intraokulare Druck (IOD) ist ein wichtiger physikalischer Parameter der
Physiologie des Auges. Ein erhöhter IOD wurde früh als Ätiologie für
Augenerkrankungen vermutet. In diesem 1. Teil des Beitrags wird neben den
physiologischen Grundlagen die Kontakttonometrie vorgestellt, die sowohl die
erste instrumentelle Methode mit den Indentationstonometern als auch den
Goldstandard mit dem Goldmann-Applanationstonometer darstellt.
Collapse
|
9
|
Read JCA, Kaspiris-Rousellis C, Wood TS, Wu B, Vlaskamp BNS, Schor CM. Seeing the future: Predictive control in neural models of ocular accommodation. J Vis 2022; 22:4. [PMID: 35925580 PMCID: PMC9363677 DOI: 10.1167/jov.22.9.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Ocular accommodation is the process of adjusting the eye's crystalline lens so as to bring the retinal image into sharp focus. The major stimulus to accommodation is therefore retinal defocus, and in essence, the job of accommodative control is to send a signal to the ciliary muscle which will minimize the magnitude of defocus. In this article, we first provide a tutorial introduction to control theory to aid vision scientists without this background. We then present a unified model of accommodative control that explains properties of the accommodative response for a wide range of accommodative stimuli. Following previous work, we conclude that most aspects of accommodation are well explained by dual integral control, with a “fast” or “phasic” integrator enabling response to rapid changes in demand, which hands over control to a “slow” or “tonic” integrator which maintains the response to steady demand. Control is complicated by the sensorimotor latencies within the system, which delay both information about defocus and the accommodation changes made in response, and by the sluggish response of the motor plant. These can be overcome by incorporating a Smith predictor, whereby the system predicts the delayed sensory consequences of its own motor actions. For the first time, we show that critically-damped dual integral control with a Smith predictor accounts for adaptation effects as well as for the gain and phase for sinusoidal oscillations in demand. In addition, we propose a novel proportional-control signal to account for the power spectrum of accommodative microfluctuations during steady fixation, which may be important in hunting for optimal focus, and for the nonlinear resonance observed for low-amplitude, high-frequency input. Complete Matlab/Simulink code implementing the model is provided at https://doi.org/10.25405/data.ncl.14945550.
Collapse
Affiliation(s)
- Jenny C A Read
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,
| | | | - Toby S Wood
- School of Mathematics, Statistics & Physics, Newcastle University, Newcastle upon Tyne, UK.,
| | - Bing Wu
- Quantified Experience, Magic Leap Inc, Plantation, FL, USA.,
| | | | - Clifton M Schor
- Herbert Wertheim School of Optometry and Vision Science, University of California at Berkeley, Berkeley, CA, USA.,
| |
Collapse
|
10
|
Ren J, Gao X, Chen L, Lin H, Liu Y, Zhou Y, Liao Y, Xie C, Zuo C, Lin M. Characteristics of the Ciliary Body in Healthy Chinese Subjects Evaluated by Radial and Transverse Imaging of Ultrasound Biometric Microscopy. J Clin Med 2022; 11:jcm11133696. [PMID: 35806981 PMCID: PMC9267437 DOI: 10.3390/jcm11133696] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 12/27/2022] Open
Abstract
Background: The imaging and analysis of the ciliary body (CB) are valuable in many potential clinical applications. This study aims to demonstrate the anatomy characteristics of CB using radial and transverse imaging of ultrasound biometric microscopy (UBM) in healthy Chinese subjects, and to explore the determining factors. Methods: Fifty-four eyes of 30 healthy Chinese subjects were evaluated. Clinical data, including age, body mass index (BMI), intraocular pressure (IOP), axial length (AL), and lens thickness (LT), were collected. Radial and transverse UBM measurements of the ciliary body were performed. Anterior chamber depth (ACD), ciliary sulcus diameter (CSD), ciliary process length (CPL), ciliary process density (CPD), ciliary process area (CPA), ciliary muscle area (CMA), ciliary body area (CBA), ciliary body thickness (CBT0, CBT1, and CBTmax), anterior placement of ciliary body (APCB), and trabecular-ciliary angle (TCA) of four (superior, nasal, inferior, and temporal) quadrants were measured. Results: The average CPL was 0.513 ± 0.074 mm, and the average CPA was 0.890 ± 0.141 mm2. CPL and CPA tended to be longer and larger in the superior quadrant (p < 0.001) than in the other three quadrants. Average CPL was significantly correlated with AL (r = 0.535, p < 0.001), ACD (r = 0.511, p < 0.001), and LT (r = −0.512, p < 0.001). Intraclass correlation coefficient (ICC) scores were high for CPL (0.979), CPD (0.992), CPA (0.966), CMA (0.963), and CBA (0.951). Conclusions: In healthy Chinese subjects, CPL was greatest in the superior quadrant, followed by the inferior, temporal, and nasal quadrants, and CPA was largest in the superior quadrant, followed by the tempdoral, inferior, and nasal quadrants. Transverse UBM images can be used to measure the anatomy of the ciliary process with relatively good repeatability and reliability.
Collapse
Affiliation(s)
- Jiawei Ren
- State Key Laboratory of Ophthalmology, Guangzhou 510060, China; (J.R.); (X.G.); (L.C.); (H.L.); (Y.L.); (Y.Z.); (Y.L.); (C.X.)
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xinbo Gao
- State Key Laboratory of Ophthalmology, Guangzhou 510060, China; (J.R.); (X.G.); (L.C.); (H.L.); (Y.L.); (Y.Z.); (Y.L.); (C.X.)
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Liming Chen
- State Key Laboratory of Ophthalmology, Guangzhou 510060, China; (J.R.); (X.G.); (L.C.); (H.L.); (Y.L.); (Y.Z.); (Y.L.); (C.X.)
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Huishan Lin
- State Key Laboratory of Ophthalmology, Guangzhou 510060, China; (J.R.); (X.G.); (L.C.); (H.L.); (Y.L.); (Y.Z.); (Y.L.); (C.X.)
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yao Liu
- State Key Laboratory of Ophthalmology, Guangzhou 510060, China; (J.R.); (X.G.); (L.C.); (H.L.); (Y.L.); (Y.Z.); (Y.L.); (C.X.)
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yuying Zhou
- State Key Laboratory of Ophthalmology, Guangzhou 510060, China; (J.R.); (X.G.); (L.C.); (H.L.); (Y.L.); (Y.Z.); (Y.L.); (C.X.)
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yunru Liao
- State Key Laboratory of Ophthalmology, Guangzhou 510060, China; (J.R.); (X.G.); (L.C.); (H.L.); (Y.L.); (Y.Z.); (Y.L.); (C.X.)
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Chunzi Xie
- State Key Laboratory of Ophthalmology, Guangzhou 510060, China; (J.R.); (X.G.); (L.C.); (H.L.); (Y.L.); (Y.Z.); (Y.L.); (C.X.)
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Chengguo Zuo
- State Key Laboratory of Ophthalmology, Guangzhou 510060, China; (J.R.); (X.G.); (L.C.); (H.L.); (Y.L.); (Y.Z.); (Y.L.); (C.X.)
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
- Correspondence: (C.Z.); (M.L.)
| | - Mingkai Lin
- State Key Laboratory of Ophthalmology, Guangzhou 510060, China; (J.R.); (X.G.); (L.C.); (H.L.); (Y.L.); (Y.Z.); (Y.L.); (C.X.)
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
- Correspondence: (C.Z.); (M.L.)
| |
Collapse
|
11
|
Zhang X, Wu Q, Wen T, Zhao H, Tian Q, Xu J, Tang G, Li R, Guo X, Song J, Bi H. In vivo analysis of ciliary muscle in myopic Chinese young adults using ArcScan Insight ® 100. Ophthalmic Physiol Opt 2022; 42:559-570. [PMID: 35261043 DOI: 10.1111/opo.12965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To analyse the morphological characteristics of the ciliary muscle (CM) and to explore its relationship with different ocular biometric parameters in myopic young Chinese adults. METHODS This observational, cross-sectional study included 50 right eyes from 50 myopic adults. The CM area (CMA), CM thickness (CMT) and CM length (CML) were measured using the ArcScan Insight® 100. CMT was determined at three points: 1.0 mm (CMT-1), 2.0 mm (CMT-2) and 3.0 mm (CMT-3) posterior to the scleral spur. CML was measured on the scleral (CMLs) and vitreous (CMLv) aspects. The spherical equivalent refraction (SER), axial length (AL) and subfoveal choroidal thickness (SFCT) were examined to determine their associations with CM parameters (CMA, CML and CMT). RESULTS The mean SER and AL were -4.39 ± 2.29 D and 25.61 ± 1.15 mm, respectively. Compared with the nasal CMA, CML and CMT (CMT-1, CMT-2 and CMT-3) findings, the temporal CM parameters (CMA, CMLs, CMLv, CMT-1, CMT-2 and CMT-3) were found to be significantly thicker (all p < 0.001, except CMLv and CMT-1; p < 0.01). The nasal CMA was associated with the average corneal curvature (r = 0.30, p = 0.03) and SER (r = -0.30, p = 0.04). Nasal and temporal CMT-2 were negatively correlated with SER (r = -0.33 and -0.32, respectively, both p < 0.05). There was no correlation between CM parameters (except nasal CMLs, r = 0.31, p = 0.03) and SFCT, or between CM parameters and either the AL or anterior chamber depth (all p > 0.05). CONCLUSION These results suggest that there is temporal versus nasal asymmetry of the CM. CMA, CMT or CML did not vary with axial growth of the eye. The CM is not simply stretched as the eye elongates in myopic young adults.
Collapse
Affiliation(s)
- Xiuyan Zhang
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qiuxin Wu
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, China.,Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tiancai Wen
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haiqiang Zhao
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingmei Tian
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Xu
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guodong Tang
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Runkuan Li
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, China.,Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoxiao Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, China.,Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jike Song
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, China.,Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
12
|
Fernández-Vigo JI, Kudsieh B, Shi H, De-Pablo-Gómez-de-Liaño L, Fernández-Vigo JÁ, García-Feijóo J. Diagnostic imaging of the ciliary body: Technologies, outcomes, and future perspectives. Eur J Ophthalmol 2021; 32:75-88. [PMID: 34233517 DOI: 10.1177/11206721211031409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The ciliary body (CB) is part of the uvea and is a complex, highly specialized structure with multiple functions and significant relationships with nearby structures. Its functions include the aqueous humor (AH) production in the ciliary processes, the regulation of the AH output through the uveoscleral pathway, and accommodation, which depends on the ciliary muscle. Also, the CB is an important determinant of angle width as it forms part of the ciliary sulcus. Until recently, knowledge of the CB was based on histological studies. However, this structure can currently be assessed in vivo using imaging techniques such as ultrasound biomicroscopy (UBM) and optical coherence tomography (OCT). Both techniques have shown good reproducibility of their measurements allowing for quantification of CB dimensions and their localization. In effect, studies have shown a larger CB in myopia and its diminishing size with age. Swept-source OCT devices offer fast, non-invasive high-resolution imaging allowing the identification of multiple structures. UBM requires contact and is uncomfortable for the patient. However, this technique offers deeper imaging and therefore remains the gold standard for assessing the posterior chamber, ciliary processes, or zonula. The clinical utility of CB imaging includes its assessment in different types of glaucoma such as angle-closure, malignant or plateau iris. Diagnostic CB imaging is also invaluable for the assessment of ciliochoroidal detachment when suspected, the position after the implantation of a pre-crystalline or sulcus-sutured lenses, diagnosis or monitoring of cysts or tumors, sclerotomies after retinal surgery, intermediate uveitis, or accommodation.
Collapse
Affiliation(s)
- José Ignacio Fernández-Vigo
- Department of Ophthalmology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria (IdISSC), Madrid, Spain.,Centro Internacional de Oftalmología Avanzada, Madrid, Spain
| | - Bachar Kudsieh
- Centro Internacional de Oftalmología Avanzada, Madrid, Spain.,Department of Ophthalmology, Hospital Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Hang Shi
- Department of Ophthalmology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria (IdISSC), Madrid, Spain.,Centro Internacional de Oftalmología Avanzada, Madrid, Spain
| | - Lucía De-Pablo-Gómez-de-Liaño
- Centro Internacional de Oftalmología Avanzada, Madrid, Spain.,Department of Ophthalmology, Hospital 12 de Octubre, Madrid, Spain
| | - José Ángel Fernández-Vigo
- Centro Internacional de Oftalmología Avanzada, Madrid, Spain.,Centro Internacional de Oftalmología Avanzada, Badajoz, Spain.,Department of Ophthalmology, Universidad de Extremadura, Badajoz, Spain
| | - Julián García-Feijóo
- Department of Ophthalmology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria (IdISSC), Madrid, Spain
| |
Collapse
|
13
|
Bertrand JA, Woodward DF, Sherwood JM, Wang JW, Overby DR. The role of EP 2 receptors in mediating the ultra-long-lasting intraocular pressure reduction by JV-GL1. Br J Ophthalmol 2020; 105:1610-1616. [PMID: 33239414 DOI: 10.1136/bjophthalmol-2020-317762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/23/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND A single application of JV-GL1 substantially lowers non-human primate intraocular pressure (IOP) for about a week, independent of dose. This highly protracted effect does not correlate with its ocular biodisposition or correlate with the once-daily dosing regimen for other prostanoid EP2 receptor agonists such as trapenepag or omidenepag. The underlying pharmacological mechanism for the multiday extended activity of JV-GL1 is highly intriguing. The present studies were intended to determine EP2 receptor involvement in mediating the long-term ocular hypotensive activity of JV-GL1 by using mice genetically deficient in EP2 receptors. METHODS The protracted IOP reduction produced by JV-GL1 was investigated in C57BL/6J and EP2 receptor knock-out mice (B6.129-Ptger2tm1Brey /J; EP2KO). Both ocular normotensive and steroid-induced ocular hypertensive (SI-OHT) mice were studied. IOP was measured tonometrically under general anaesthesia. Aqueous humour outflow facility was measured ex vivo using iPerfusion in normotensive C57BL/6J mouse eyes perfused with 100 nM de-esterified JV-GL1 and in SI-OHT C57BL/6J mouse eyes that had received topical JV-GL1 (0.01%) 3 days prior. RESULTS Both the initial 1-day and the protracted multiday effects of JV-GL1 in the SI-OHT model for glaucoma were abolished by deletion of the gene encoding the EP2 receptor. Thus, JV-GL1 did not lower IOP in SI-OHT EP2KO mice, but in littermate SI-OHT EP2WT control mice, JV-GL1 statistically significantly lowered IOP for 4-6 days. CONCLUSIONS Both the 1-day and the long-term effects of JV-GL1 on IOP are entirely EP2 receptor dependent.
Collapse
Affiliation(s)
| | - David F Woodward
- Dept. of Bioengineering, Imperial College London, London, UK.,JeniVision Inc, Suite 200, Irvine, California, USA
| | | | - Jenny W Wang
- JeniVision Inc, Suite 200, Irvine, California, USA
| | - Darryl R Overby
- Dept. of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
14
|
Does anisometropia affect the ciliary muscle thickness? An ultrasound biomicroscopy study. Int Ophthalmol 2020; 40:3393-3402. [PMID: 33083933 DOI: 10.1007/s10792-020-01625-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/17/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE To compare the ciliary muscle thickness (CMT) of the normal fellow eye to that of the amblyopic eye using ultrasound biomicroscopy (UBM) in patients with unilateral anisometropic amblyopia. METHODS Thirty patients with unilateral anisometropic amblyopia were involved. The patients were divided into two groups: 19 hyperopic and 11 myopic. Axial length (AL) was measured with optic biometry and anterior chamber depth (ACD), iris area, and CMT were measured with UBM. RESULTS The mean age was 34.10 ± 6.61 years. The mean spherical difference between two eyes was 2.59 diopter (D) in hyperopic patients and 3.77D in myopic patients. In the hyperopic patients, nasal CMT1(nCMT), temporal CMT1(tCMT), tCMT2, and tCMT3 values were statistically thinner in amblyopic eyes than healthy eyes (p = 0.036, p = 0.003, p = 0.023, p = 0.005, respectively). ACD values were statistically lower in amblyopic eyes (2.78 ± 0.26 mm) than healthy eyes (2.90 ± 0.21 mm) (p < 0.001). In the myopic patients, nCMT1, nCMT2, nCMT3, tCMT1, tCMT2, and tCMT3 values were statistically thicker in amblyopic eyes than healthy eyes (p = 0.003, p = 0.003, p = 0.005, p = 0.003, p = 0.003, p = 0.019, respectively). ACD values were statistically higher in amblyopic eyes (3.20 ± 0.30 mm) than healthy eyes (3.06 ± 0.29 mm) (p = 0.004). Also, there was no significant difference in the iris area between the amblyopic and normal eyes of the myopic and hyperopic patients (p > 0.05). CONCLUSIONS Amblyopic eyes in patients with unilateral myopic anisometropia have thicker CMT and deeper ACD than healthy eyes. Conversely, amblyopic eyes in patients with unilateral hyperopic anisometropia have thinner CMT and shorter ACD than healthy eyes. There is a positive correlation between AL and CMT.
Collapse
|
15
|
Chen Y, Gao J, Li L, Sellitto C, Mathias RT, Donaldson PJ, White TW. The Ciliary Muscle and Zonules of Zinn Modulate Lens Intracellular Hydrostatic Pressure Through Transient Receptor Potential Vanilloid Channels. Invest Ophthalmol Vis Sci 2020; 60:4416-4424. [PMID: 31639828 PMCID: PMC6808041 DOI: 10.1167/iovs.19-27794] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Purpose Lenses have an intracellular hydrostatic pressure gradient to drive fluid from central fiber cells to surface epithelial cells. Pressure is regulated by a feedback control system that relies on transient receptor potential vanilloid (TRPV)1 and TRPV4 channels. The ciliary muscle transmits tension to the lens through the zonules of Zinn. Here, we have examined if ciliary muscle tension influenced the lens intracellular hydrostatic pressure gradient. Methods We measured the ciliary body position and intracellular hydrostatic pressures in mouse lenses while pharmacologically causing relaxation or contraction of the ciliary muscle. We also used inhibitors of TRPV1 and TRPV4, in addition to phosphoinositide 3-kinase (PI3K) p110α knockout mice and immunostaining of phosphorylated protein kinase B (Akt), to determine how changes in ciliary muscle tension resulted in altered hydrostatic pressure. Results Ciliary muscle relaxation increased the distance between the ciliary body and the lens and caused a decrease in intracellular hydrostatic pressure that was dependent on intact zonules and could be blocked by inhibition of TRPV4. Ciliary contraction moved the ciliary body toward the lens and caused an increase in intracellular hydrostatic pressure and Akt phosphorylation that required intact zonules and was blocked by either inhibition of TRPV1 or genetic deletion of the p110α catalytic subunit of PI3K. Conclusions These results show that the hydrostatic pressure gradient within the lens was influenced by the tension exerted on the lens by the ciliary muscle through the zonules of Zinn. Modulation of the gradient of intracellular hydrostatic pressure in the lens could alter the water content, and the gradient of refractive index.
Collapse
Affiliation(s)
- Yadi Chen
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Junyuan Gao
- Renaissance Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, New York, United States
| | - Leping Li
- Renaissance Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, New York, United States
| | - Caterina Sellitto
- Renaissance Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, New York, United States
| | - Richard T Mathias
- Renaissance Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, New York, United States
| | - Paul J Donaldson
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Thomas W White
- Renaissance Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, New York, United States
| |
Collapse
|
16
|
Reyes-Resina I, Awad Alkozi H, del Ser-Badia A, Sánchez-Naves J, Lillo J, Jiménez J, Pintor J, Navarro G, Franco R. Expression of Melatonin and Dopamine D 3 Receptor Heteromers in Eye Ciliary Body Epithelial Cells and Negative Correlation with Ocular Hypertension. Cells 2020; 9:cells9010152. [PMID: 31936298 PMCID: PMC7016594 DOI: 10.3390/cells9010152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/23/2019] [Accepted: 01/02/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Experiments in the late nineties showed an inverse relationship in the eye levels of melatonin and dopamine, thereby constituting an example of eye parameters that are prone to circadian variations. The underlying mechanisms are not known but these relevant molecules act via specific cell surface dopamine and melatonin receptors. This study investigated whether these receptors formed heteromers whose function impact on eye physiology. We performed biophysical assays to identify interactions in heterologous systems. Particular heteromer functionality was detected using Gi coupling, MAPK activation, and label-free assays. The expression of the heteroreceptor complexes was assessed using proximity ligation assays in cells producing the aqueous humor and human eye samples. Dopamine D3 receptors (D3Rs) were identified in eye ciliary body epithelial cells. We discovered heteromers formed by D3R and either MT1 (MT1R) or MT2 (MT2R) melatonin receptors. Heteromerization led to the blockade of D3R-Gi coupling and regulation of signaling to the MAPK pathway. Heteromer expression was negatively correlated with intraocular hypertension. CONCLUSIONS Heteromers likely mediate melatonin and dopamine actions in structures regulating intraocular pressure. Significant expression of D3R-MT1R and D3R-MT1R was associated with normotensive conditions, whereas expression diminished in a cell model of hypertension. A clear trend of expression reduction was observed in samples from glaucoma cases. The trend was marked but no statistical analysis was possible as the number of available eyes was 2.
Collapse
Affiliation(s)
- Irene Reyes-Resina
- Department of Biochemistry and Molecular Biomedicine, School of Biology, Universitat de Barcelona, 08028 Barcelona, Spain;
- Neuroplasticity Research Group, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
- Centro de Investigación en Red, Enfermedades Neurodegenerativas, CiberNed, Instituto de Salud Carlos III, 28029 Madrid, Spain; (A.d.S.-B.); (J.J.)
- Correspondence: (I.R.-R.); (G.N.); or (R.F.); Tel.: +34-934021208 (I.R.-R. & G.N.)
| | - Hanan Awad Alkozi
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, University Complutense of Madrid, 28037 Madrid, Spain; (H.A.A.); (J.P.)
| | - Anna del Ser-Badia
- Centro de Investigación en Red, Enfermedades Neurodegenerativas, CiberNed, Instituto de Salud Carlos III, 28029 Madrid, Spain; (A.d.S.-B.); (J.J.)
- Department de Bioquímica i Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Juan Sánchez-Naves
- Department of Ophthalmology, Balearic Islands Institute of Ophthalmology, 07013 Palma de Mallorca, Mallorca, Spain;
| | - Jaume Lillo
- Department of Biochemistry and Molecular Biomedicine, School of Biology, Universitat de Barcelona, 08028 Barcelona, Spain;
- Centro de Investigación en Red, Enfermedades Neurodegenerativas, CiberNed, Instituto de Salud Carlos III, 28029 Madrid, Spain; (A.d.S.-B.); (J.J.)
| | - Jasmina Jiménez
- Centro de Investigación en Red, Enfermedades Neurodegenerativas, CiberNed, Instituto de Salud Carlos III, 28029 Madrid, Spain; (A.d.S.-B.); (J.J.)
| | - Jesús Pintor
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, University Complutense of Madrid, 28037 Madrid, Spain; (H.A.A.); (J.P.)
| | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegenerativas, CiberNed, Instituto de Salud Carlos III, 28029 Madrid, Spain; (A.d.S.-B.); (J.J.)
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, 08027 Barcelona, Spain
- Correspondence: (I.R.-R.); (G.N.); or (R.F.); Tel.: +34-934021208 (I.R.-R. & G.N.)
| | - Rafael Franco
- Centro de Investigación en Red, Enfermedades Neurodegenerativas, CiberNed, Instituto de Salud Carlos III, 28029 Madrid, Spain; (A.d.S.-B.); (J.J.)
- School of Chemistry, Universitat de Barcelona, 08028 Barcelona, Spain
- Correspondence: (I.R.-R.); (G.N.); or (R.F.); Tel.: +34-934021208 (I.R.-R. & G.N.)
| |
Collapse
|
17
|
How many aqueous humor outflow pathways are there? Surv Ophthalmol 2019; 65:144-170. [PMID: 31622628 DOI: 10.1016/j.survophthal.2019.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 09/29/2019] [Accepted: 10/04/2019] [Indexed: 12/31/2022]
Abstract
The aqueous humor (AH) outflow pathways definition is still matter of intense debate. To date, the differentiation between conventional (trabecular meshwork) and unconventional (uveoscleral) pathways is widely accepted, distinguishing the different impact of the intraocular pressure on the AH outflow rate. Although the conventional route is recognized to host the main sites for intraocular pressure regulation, the unconventional pathway, with its great potential for AH resorption, seems to act as a sort of relief valve, especially when the trabecular resistance rises. Recent evidence demonstrates the presence of lymphatic channels in the eye and proposes that they may participate in the overall AH drainage and intraocular pressure regulation, in a presumably adaptive fashion. For this reason, the uveolymphatic route is increasingly thought to play an important role in the ocular hydrodynamic system physiology. As a result of the unconventional pathway characteristics, hydrodynamic disorders do not develop until the adaptive routes cannot successfully counterbalance the increased AH outflow resistance. When their adaptive mechanisms fail, glaucoma occurs. Our review deals with the standard and newly discovered AH outflow routes, with particular attention to the importance they may have in opening new therapeutic strategies in the treatment of ocular hypertension and glaucoma.
Collapse
|
18
|
Wagner S, Zrenner E, Strasser T. Emmetropes and myopes differ little in their accommodation dynamics but strongly in their ciliary muscle morphology. Vision Res 2019; 163:42-51. [PMID: 31401218 DOI: 10.1016/j.visres.2019.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/23/2019] [Accepted: 08/05/2019] [Indexed: 11/29/2022]
Abstract
Previous work suggested an association between near vision and myopia. We therefore investigated the accommodation process in emmetropes and myopes regarding morphologic changes of the ciliary muscle (CM) and power changes of the lens for different accommodation demands. The temporal CM of 18 emmetropic and 20 myopic students was imaged via anterior segment optical coherence tomography during far and near accommodation (2.5D, 3D, 4D). Additionally, accommodation dynamics to the stimuli pattern far-near-far (15 s each; 2.5D, 3D, 4D) were recorded with eccentric infrared photorefraction. OCT images were processed using custom-developed software facilitating the analysis of selective CM thickness (CMT) readings and CMT profiles. Anterior CMT readings were significantly smaller in myopes. Starting at 1.4 mm posterior to the scleral spur (SP), myopic CM became thicker than emmetropic. Anterior CMT changes (ΔCMT) continuously increased with accommodation demand in myopes while emmetropic ΔCMT only increased from 2.5D to 3D. Compared to emmetropes, myopes showed smaller ΔCMT but increased CM movement relative to SP. There were no significant differences between the groups for accommodation changes from far to near vision and vice versa, velocity, microfluctuations, power spectra or lag of accommodation. At 4 D, larger ΔCMT were associated with lower lens changes for disaccommodation. While CM shape, movement, and thickness showed distinct differences depending on refractive error, emmetropes and myopes did not differ in their dynamic accommodation. Further analysis is necessary to evaluate whether the CM's anatomical shape or predispositions in its intramuscular constituents are causative factors in myopigenesis.
Collapse
Affiliation(s)
- Sandra Wagner
- Institute for Ophthalmic Research, Eberhard Karls University Tuebingen, Elfriede-Aulhorn-Str. 7, 72076 Tuebingen, Germany.
| | - Eberhart Zrenner
- Institute for Ophthalmic Research, Eberhard Karls University Tuebingen, Elfriede-Aulhorn-Str. 7, 72076 Tuebingen, Germany; Werner Reichardt Centre for Integrative Neuroscience (CIN) Tuebingen, Otfried-Mueller-Str. 25, 72076 Tuebingen, Germany
| | - Torsten Strasser
- Institute for Ophthalmic Research, Eberhard Karls University Tuebingen, Elfriede-Aulhorn-Str. 7, 72076 Tuebingen, Germany
| |
Collapse
|
19
|
Wagner S, Schaeffel F, Zrenner E, Straßer T. Prolonged nearwork affects the ciliary muscle morphology. Exp Eye Res 2019; 186:107741. [PMID: 31336108 DOI: 10.1016/j.exer.2019.107741] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 11/25/2022]
Abstract
There is evidence for a possible link between myopia development and near vision. We investigated the effect of prolonged nearwork on ciliary muscle (CM) morphology and accommodation in 18 myopic and 17 emmetropic subjects (age 19 to 25). The CM was imaged during far (0.25 D) and near vision (4 D) using optical coherence tomography (OCT), and accommodation to a step pulse (0.25 D - 4 D - 0.25 D, 15 s each) was assessed by eccentric infrared photorefraction before and after a 30-min reading task at 25 cm. OCT images were analyzed using a custom-developed semi-automatic segmentation algorithm to determine CM thickness (CMT) profiles and selective CMT readings. Accommodation was assessed using a non-linear model. On average, the CM got thinner after nearwork, predominantly at 0.0-1.4 mm posterior to the scleral spur in emmetropes, and at 1.0-1.9 mm in myopes. Selective CMT readings confirmed a significant thinning after nearwork (univariate ANOVA F1,66 = 26.313, p < 0.001), without any influence of the subjects' refractive state (F1,66 = 1.887, p = 0.174) or the target distance (F1,66 = 0.014, p = 0.907). The mean accommodation response for targets at infinity was significantly increased after nearwork (F1,32 = 7.775, p = 0.009), with a larger myopic shift in myopes (F1,32 = 11.310, p = 0.002). No change in velocity of accommodation was found. Sharing properties of striated muscles, the CM was expected to increase its thickness, but the opposite was found. Previous studies suggesting sustained nearwork to result in a CM spasm cannot be confirmed by the data presented here. Further research exploring the possible impact of sympathetic innervation is necessary as it is activated during intense nearwork.
Collapse
Affiliation(s)
- Sandra Wagner
- Institute for Ophthalmic Research, Eberhard Karls University Tuebingen, Elfriede-Aulhorn-Str. 7, 72076, Tuebingen, Germany.
| | - Frank Schaeffel
- Section Neurobiology of the Eye, Institute for Ophthalmic Research, Eberhard Karls University Tuebingen, Elfriede-Aulhorn-Str. 7, 72076, Tuebingen, Germany.
| | - Eberhart Zrenner
- Institute for Ophthalmic Research, Eberhard Karls University Tuebingen, Elfriede-Aulhorn-Str. 7, 72076, Tuebingen, Germany; Werner Reichardt Centre for Integrative Neuroscience (CIN), Otfried-Mueller-Str. 25, 72076, Tuebingen, Germany.
| | - Torsten Straßer
- Institute for Ophthalmic Research, Eberhard Karls University Tuebingen, Elfriede-Aulhorn-Str. 7, 72076, Tuebingen, Germany.
| |
Collapse
|
20
|
McWilliams TG, Prescott AR, Villarejo-Zori B, Ball G, Boya P, Ganley IG. A comparative map of macroautophagy and mitophagy in the vertebrate eye. Autophagy 2019; 15:1296-1308. [PMID: 30786807 PMCID: PMC6613837 DOI: 10.1080/15548627.2019.1580509] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/11/2019] [Accepted: 01/29/2019] [Indexed: 02/08/2023] Open
Abstract
Photoreception is pivotal to our experience and perception of the natural world; hence the eye is of prime importance for most vertebrate animals to sense light. Central to visual health is mitochondrial homeostasis, and the selective autophagic turnover of mitochondria (mitophagy) is predicted to play a key role here. Despite studies that link aberrant mitophagy to ocular dysfunction, little is known about the prevalence of basal mitophagy, or its relationship to general autophagy, in the visual system. In this study, we utilize the mito-QC mouse and a closely related general macroautophagy reporter model to profile basal mitophagy and macroautophagy in the adult and developing eye. We report that ocular macroautophagy is widespread, but surprisingly mitophagy does not always follow the same pattern of occurrence. We observe low levels of mitophagy in the lens and ciliary body, in stark contrast to the high levels of general MAP1LC3-dependent macroautophagy in these regions. We uncover a striking reversal of this process in the adult retina, where mitophagy accounts for a larger degree of the macroautophagy taking place, specifically in the photoreceptor neurons of the outer nuclear layer. We also show the developmental regulation of autophagy in a variety of ocular tissues. In particular, mitophagy in the adult mouse retina is reversed in localization during the latter stages of development. Our work thus defines the landscape of mitochondrial homeostasis in the mammalian eye, and in doing so highlights the selective nature of autophagy in vivo and the specificity of the reporters used. Abbreviations: ATG: autophagy related; GFP: green fluorescent protein; LC3: microtubule associated protein 1 light chain 3; ONH: optic nerve head; ONL: outer nuclear layer; RPE: retinal pigment epithelium.
Collapse
Affiliation(s)
- Thomas G. McWilliams
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre School of Life Sciences, University of Dundee, Dundee, UK
- Translational Stem Cell Biology & Metabolism Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Finland
| | - Alan R. Prescott
- Dundee Imaging Facility, School of Life Sciences, University of Dundee, Dundee, UK
| | - Beatriz Villarejo-Zori
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Graeme Ball
- Dundee Imaging Facility, School of Life Sciences, University of Dundee, Dundee, UK
| | - Patricia Boya
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Ian G. Ganley
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
21
|
Kaufman PL, Lütjen Drecoll E, Croft MA. Presbyopia and Glaucoma: Two Diseases, One Pathophysiology? The 2017 Friedenwald Lecture. Invest Ophthalmol Vis Sci 2019; 60:1801-1812. [PMID: 31038661 PMCID: PMC6540935 DOI: 10.1167/iovs.19-26899] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Paul L. Kaufman
- Department of Ophthalmology and Visual Sciences, Wisconsin National Primate Research Center, McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | | | - Mary Ann Croft
- Department of Ophthalmology and Visual Sciences, Wisconsin National Primate Research Center, McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States
| |
Collapse
|
22
|
Zadravec P, Braunger BM, Melzer B, Kroeber M, Bösl MR, Jägle H, Schlötzer-Schrehardt U, Tamm ER. Transgenic lysyl oxidase homolog 1 overexpression in the mouse eye results in the formation and release of protein aggregates. Exp Eye Res 2019; 179:115-124. [DOI: 10.1016/j.exer.2018.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 01/08/2023]
|
23
|
Wagner S, Zrenner E, Strasser T. Ciliary muscle thickness profiles derived from optical coherence tomography images. BIOMEDICAL OPTICS EXPRESS 2018; 9:5100-5114. [PMID: 30319924 PMCID: PMC6179398 DOI: 10.1364/boe.9.005100] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 05/09/2023]
Abstract
The purpose of this study was to provide an in-depth analysis of the ciliary muscle's (CM) morphological changes during accommodation by evaluating CM thickness (CMT) profiles. The CM of 15 near-emmetropic subjects (age 20-39) was imaged via optical coherence tomography (OCT) during far (0 D) and near vision (3 D). A custom-made Java-based program was used for semi-automatic CM segmentation and thickness measurements. CMT profiles were generated to determine regions of the largest shape changes. The results revealed on average a thinning within the first 0.25 mm and a thickening from 0.36 to 1.48 mm posterior to scleral spur when accommodating from 0 to 3 D. In contrast to previous analyses, this method offers pixel-wise reconstruction of CM shapes and quantification of accommodative change across the entire muscle boundary.
Collapse
Affiliation(s)
- Sandra Wagner
- Institute for Ophthalmic Research, Eberhard Karls University Tuebingen, Elfriede-Aulhorn-Str. 7, 72076 Tuebingen, Germany
| | - Eberhart Zrenner
- Institute for Ophthalmic Research, Eberhard Karls University Tuebingen, Elfriede-Aulhorn-Str. 7, 72076 Tuebingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), Otfried-Mueller-Str. 25, 72076 Tuebingen, Germany
| | - Torsten Strasser
- Institute for Ophthalmic Research, Eberhard Karls University Tuebingen, Elfriede-Aulhorn-Str. 7, 72076 Tuebingen, Germany
| |
Collapse
|
24
|
Aktas Z, Rao H, Slauson SR, Gabelt BT, Larsen IV, Sheridan RTC, Herrnberger L, Tamm ER, Kaufman PL, Brandt CR. Proteasome Inhibition Increases the Efficiency of Lentiviral Vector-Mediated Transduction of Trabecular Meshwork. Invest Ophthalmol Vis Sci 2018; 59:298-310. [PMID: 29340644 PMCID: PMC5961099 DOI: 10.1167/iovs.17-22074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Purpose To determine if proteasome inhibition using MG132 increased the efficiency of FIV vector–mediated transduction in human trabecular meshwork (TM)-1 cells and monkey organ-cultured anterior segments (MOCAS). Methods TM-1 cells were pretreated for 1 hour with 0.5% dimethyl sulfoxide (DMSO; vehicle control) or 5 to 50 μM MG132 and transduced with FIV.GFP (green fluorescent protein)– or FIV.mCherry-expressing vector at a multiplicity of transduction (MOT) of 20. At 24 hours, cells were fixed and stained with antibodies for GFP, and positive cells were counted, manually or by fluorescence-activated cell sorting (FACS). Cells transduced with FIV.GFP particles alone were used as controls. The effect of 20 μM MG132 treatment on high- and low-dose (2 × 107 and 0.8 × 107 transducing units [TU], respectively) FIV.GFP transduction with or without MG132 was also evaluated in MOCAS using fluorescence microscopy. Vector genome equivalents in cells and tissues were quantified by quantitative (q)PCR on DNA. Results In the MG132 treatment groups, there was a significant dose-dependent increase in the percentage of transduced cells at all concentrations tested. Vector genome equivalents were also increased in TM-1 cells treated with MG132. Increased FIV.GFP expression in the TM was also observed in MOCAS treated with 20 μM MG132 and the high dose of vector. Vector genome equivalents were also significantly increased in the MOCAS tissues. Increased transduction was not seen with the low dose of virus. Conclusions Proteasome inhibition increased the transduction efficiency of FIV particles in TM-1 cells and MOCAS and may be a useful adjunct for delivery of therapeutic genes to the TM by lentiviral vectors.
Collapse
Affiliation(s)
- Zeynep Aktas
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States.,Department of Ophthalmology, Gazi University Medical Faculty, Ankara, Turkey
| | - Hongyu Rao
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Sarah R Slauson
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - B'Ann T Gabelt
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Inna V Larsen
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Rachael T C Sheridan
- UW Carbone Cancer Center Flow Cytometry Laboratory, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Leonie Herrnberger
- Institute of Human Anatomy, University of Regensburg, Regensburg, Germany
| | - Ernst R Tamm
- Institute of Human Anatomy, University of Regensburg, Regensburg, Germany
| | - Paul L Kaufman
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States.,McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Curtis R Brandt
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States.,McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States.,Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States
| |
Collapse
|
25
|
Abstract
The complement system is a vital component of the immune-priveliged human eye that is always active at a low-grade level, preventing harmful intraocular injuries caused by accumulation of turnover products and controlling pathogens to preserve eye homeostasis and vision. The complement system is a double-edged sword that is essential for protection but may also become harmful and contribute to eye pathology. Here, we review the evidence for the involvement of complement system dysregulation in age-related macular degeneration, glaucoma, uveitis, and neuromyelitis optica, highlighting the relationship between morphogical changes and complement system protein expression and regulation in these diseases. The potential benefits of complement inhibition in age-related macular degeneration, glaucoma, uveitis, and neuromyelitis optica are abundant, as are those of further research to improve our understanding of complement-mediated injury in these diseases.
Collapse
Affiliation(s)
- Camilla Mohlin
- Linnæus Center of Biomaterials Chemistry, Linnæus University, Kalmar, Sweden
| | - Kerstin Sandholm
- Linnæus Center of Biomaterials Chemistry, Linnæus University, Kalmar, Sweden
| | - Kristina N Ekdahl
- Linnæus Center of Biomaterials Chemistry, Linnæus University, Kalmar, Sweden; Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
26
|
Fayed AAEH. Ultrasound biomicroscopy value in evaluation of restoration of ciliary muscles contractility after cataract extraction. Clin Ophthalmol 2017; 11:855-859. [PMID: 28515637 PMCID: PMC5424599 DOI: 10.2147/opth.s131399] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose To assess the changes in the contractility of the ciliary muscle in eyes with presbyopia before and after phacoemulsification and intracapsular lens implantation using ultrasound biomicroscopy (UBM). Patients and methods This prospective study included 50 eyes of 30 consecutive subjects operated at the Department of Ophthalmology. Patients with any ocular disorder affecting visual acuity, corneal surface irregularities, had posterior capsular perforation or intensive postoperative corneal edema, or were <35 years of age, were excluded. A clear corneal phacoemulsification and posterior chamber intraocular lens were implanted. UBM was performed with and without instilling 2% pilocarpine. Ciliary body axial length (CBAXL), anterior chamber depth, and angle were measured before and 1 month after surgery. Results The CBAXL showed a greater contractile shortening (P<0.5), with centripetal, contractile shift of ciliary muscle mass. Conclusion After phacoemulsification and intracapsular lens implantation, ultrasonic biomicroscopy showed significant centripetal movement of the ciliary body compared with that before surgery. This shows that a lenticular sclerotic component may influence both lens movement and the contractility of the ciliary muscle and is believed to be related to the presbyopia.
Collapse
|
27
|
Boussommier-Calleja A, Li G, Wilson A, Ziskind T, Scinteie OE, Ashpole NE, Sherwood JM, Farsiu S, Challa P, Gonzalez P, Downs JC, Ethier CR, Stamer WD, Overby DR. Physical Factors Affecting Outflow Facility Measurements in Mice. Invest Ophthalmol Vis Sci 2016; 56:8331-9. [PMID: 26720486 DOI: 10.1167/iovs.15-17106] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Mice are commonly used to study conventional outflow physiology. This study examined how physical factors (hydration, temperature, and anterior chamber [AC] deepening) influence ocular perfusion measurements in mice. METHODS Outflow facility (C) and pressure-independent outflow (Fu) were assessed by multilevel constant pressure perfusion of enucleated eyes from C57BL/6 mice. To examine the effect of hydration, seven eyes were perfused at room temperature, either immersed to the limbus in saline and covered with wet tissue paper or exposed to room air. Temperature effects were examined in 12 eyes immersed in saline at 20 °C or 35 °C. Anterior chamber deepening was examined in 10 eyes with the cannula tip placed in the anterior versus posterior chamber (PC). Posterior bowing of the iris (AC deepening) was visualized by three-dimensional histology in perfusion-fixed C57BL/6 eyes and by spectral-domain optical coherence tomography in living CD1 mice. RESULTS Exposure to room air did not significantly affect C, but led to a nonzero Fu that was significantly reduced upon immersion in saline. Increasing temperature from 20 °C to 35 °C increased C by 2.5-fold, more than could be explained by viscosity changes alone (1.4-fold). Perfusion via the AC, but not the PC, led to posterior iris bowing and increased outflow. CONCLUSIONS Insufficient hydration contributes to the appearance of pressure-independent outflow in enucleated mouse eyes. Despite the large lens, AC deepening may artifactually increase outflow in mice. Temperature-dependent metabolic processes appear to influence conventional outflow regulation. Physical factors should be carefully controlled in any outflow studies involving mice.
Collapse
Affiliation(s)
| | - Guorong Li
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States
| | - Amanda Wilson
- Department of Bioengineering Imperial College London, London, United Kingdom
| | - Tal Ziskind
- Department of Bioengineering Imperial College London, London, United Kingdom
| | - Oana Elena Scinteie
- Department of Bioengineering Imperial College London, London, United Kingdom
| | - Nicole E Ashpole
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States
| | - Joseph M Sherwood
- Department of Bioengineering Imperial College London, London, United Kingdom
| | - Sina Farsiu
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States
| | - Pratap Challa
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States
| | - Pedro Gonzalez
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States
| | - J Crawford Downs
- Department of Ophthalmology, The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States
| | - C Ross Ethier
- Department of Bioengineering Imperial College London, London, United Kingdom 4Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States
| | - Darryl R Overby
- Department of Bioengineering Imperial College London, London, United Kingdom
| |
Collapse
|
28
|
Mo Y, Wang Y, Cao B, Zhang J, Ren G, Yang T. Scleral TGF-β1 and Smad3 expression is altered by TCM Bu Jing Yi Shi Tablets in guinea pigs with form-deprivation myopia. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2016. [DOI: 10.1016/j.jtcms.2016.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
29
|
The aqueous humor outflow pathways in glaucoma: A unifying concept of disease mechanisms and causative treatment. Eur J Pharm Biopharm 2015; 95:173-81. [PMID: 25957840 DOI: 10.1016/j.ejpb.2015.04.029] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/24/2015] [Accepted: 04/29/2015] [Indexed: 12/28/2022]
Abstract
Intraocular pressure (IOP) is the critical risk factor for glaucoma, a neurodegenerative disease and frequent cause of blindness worldwide. As of today, all effective strategies to treat glaucoma aim at lowering IOP. IOP is generated and maintained via the aqueous humor circulation system in the anterior eye. Aqueous humor is secreted by the ciliary processes and exits the eye through the trabecular meshwork (TM) or the uveoscleral outflow pathways. The TM outflow pathways provide resistance to aqueous humor outflow and IOP builds up in response to it. In the normal eye, the resistance is localized in the inner wall region, which comprises the juxtacanalicular connective tissue (JCT) and the inner wall endothelium of Schlemm's canal (SC). Outflow resistance in the inner wall region is lowered through the contraction of the ciliary muscle or the relaxation of contractile myofibroblasts in the posterior part of the TM and the adjacent scleral spur. Patients with primary open-angle glaucoma (POAG), the most frequent form of glaucoma, typically suffer from an abnormally high outflow resistance of the inner wall region. There is increasing evidence that the increase in TM outflow resistance in POAG is the result of a characteristic change in the biological properties of the resident cells in the JCT, which increasingly acquire the phenotype of contractile myofibroblasts. This scenario strengthens simultaneously both their actin cytoskeleton and their directly associated extracellular matrix fibrils, leads to overall stiffening of the tissue, and is modulated by transforming growth factor-β (TGF-β)/connective tissue growth factor (CTGF) signaling. Essentially comparable changes appear to occur in SC endothelial cells in glaucoma. Causative therapy concepts targeting the aqueous outflow pathways in glaucoma should aim at interfering with this process either by attenuating TM or SC stiffness, and/or by modulating TGF-β/CTGF signaling.
Collapse
|
30
|
Nishio T, Tanaka Y, Naka K. Preparation of composites of liquid-crystalline matrix of poly( p-phenylene-sulfoterephthalamide) and CaCO 3by In situmineralization. J Appl Polym Sci 2015. [DOI: 10.1002/app.41455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Takashi Nishio
- Department of Chemistry and Materials Technology; Graduate School of Science and Technology, Kyoto Institute of Technology; Goshokaido-cho, Matsugasaki Sakyo-ku Kyoto 606-8585 Japan
| | - Yuka Tanaka
- Department of Chemistry and Materials Technology; Graduate School of Science and Technology, Kyoto Institute of Technology; Goshokaido-cho, Matsugasaki Sakyo-ku Kyoto 606-8585 Japan
| | - Kensuke Naka
- Department of Chemistry and Materials Technology; Graduate School of Science and Technology, Kyoto Institute of Technology; Goshokaido-cho, Matsugasaki Sakyo-ku Kyoto 606-8585 Japan
| |
Collapse
|
31
|
Abstract
PURPOSE The purpose of this study was to develop a method for quantifying guinea pig ciliary muscle volume (CMV) and to determine its relationship to age and ocular biometric measurements. METHODS Six albino guinea pigs' eyes were collected at each of five ages (n = 30 eyes). Retinoscopy and photography were used to document refractive error, eye size, and eye shape. Serial sections through the excised eyes were made and then labeled with an α-smooth muscle actin antibody. The ciliary muscle was then visualized with an Olympus BX51 microscope, reconstructed with Stereo Investigator (MBF Bioscience), and analyzed using Neurolucida Explorer (MBF Bioscience). Full (using all sections) and partial (using a subset of sections) reconstruction methods were used to determine CMV. RESULTS There was no significant difference between the full and partial volume determination methods (p = 0.86). The mean (±SD) CMV of the 1-, 10-, 20-, 30-, and 90-day-old eyes was 0.40 (±0.16) mm, 0.48 (±0.13) mm, 0.67 (±0.15) mm, 0.86 (±0.35) mm, and 1.09 (±0.63) mm, respectively. Ciliary muscle volume was significantly correlated with log age (p = 0.001), ocular length (p = 0.003), limbal circumference (p = 0.01), and equatorial diameter (p = 0.003). It was not correlated with refractive error (p = 0.73) or eye shape (p = 0.60). Multivariate regression determined that biometric variables were not significantly associated with CMV after adjustment for age. CONCLUSIONS Three-dimensional reconstruction was an effective means of determining CMV. These data provide evidence that ciliary muscle growth occurs with age in tandem with eye size in normal albino guinea pigs. Additional work is needed to determine the relationship between CMV and abnormal ocular growth.
Collapse
|
32
|
Overby DR, Bertrand J, Schicht M, Paulsen F, Stamer WD, Lütjen-Drecoll E. The structure of the trabecular meshwork, its connections to the ciliary muscle, and the effect of pilocarpine on outflow facility in mice. Invest Ophthalmol Vis Sci 2014; 55:3727-36. [PMID: 24833737 DOI: 10.1167/iovs.13-13699] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To determine the connections between the ciliary muscle (CM), trabecular meshwork (TM), and Schlemm's canal (SC) and their innervations that allows CM contraction (by pilocarpine) to influence conventional outflow in mice. METHODS Sequential sections and whole mounts of murine corneoscleral angles were stained for elastin, α-smooth muscle actin (αSMA), vesicular acetylcholine transporter (VAChT), neuronal nitric oxide synthase (nNOS), vasoactive intestinal peptide (VIP), and tyrosine hydroxylase (TH). Elastic (EL) fibers between the CM, TM, and SC were examined in ultrathin, sequential sections from different planes. The effect of pilocarpine (100 μM) on conventional outflow facility was measured by perfusion of enucleated mouse eyes. RESULTS The mouse TM contains a three-dimensional (3D) net of EL fibers connecting the inner wall of SC to the cornea anteriorly, the ciliary body (CB) internally and the choroid and CM posteriorly. The CM bifurcates near the posterior TM, extending outer tendons to the juxtacanalicular tissue and inner wall of SC and internal connections to the lamellated TM and CB. Ciliary muscle and lamellated TM cells stain with αSMA and are innervated by VAChT-containing nerve fibers, without TH, VIP, or nNOS. Pilocarpine doubled outflow facility. CONCLUSIONS Mouse eyes resemble primate eyes not only by their well developed SC and TM, but also by their 3D EL net tethering together the TM and SC inner wall and by the tendinous insertion of the CM into this net. The increase in outflow facility following cholinergic stimulation in mice, as in primates, supports using mice for studies of aqueous humor dynamics and glaucoma.
Collapse
Affiliation(s)
- Darryl R Overby
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Jacques Bertrand
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Martin Schicht
- Department of Anatomy II, University of Erlangen-Nürnberg, Germany
| | | | - W Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States
| | | |
Collapse
|
33
|
Abstract
PURPOSE The purpose of this study was to investigate the relationships between ciliary muscle thickness (CMT), refractive error, and axial length both across subjects and between the more and less myopic eyes of adults with anisometropia. METHODS Both eyes of 29 adult subjects with at least 1.00 D of anisometropia were measured. Ciliary muscle thickness was measured at the maximum thickness (CMTMAX) and at 1.0 (CMT1), 2.0 (CMT2), and 3.0 mm (CMT3) posterior to the scleral spur, and also at the apical region (Apical CMTMAX = CMTMAX - CMT2, and Apical CMT1 = CMT1 - CMT2). Multilevel regression models were used to determine the relationship between the various CMT measures and cycloplegic refractive error or axial length, and to assess whether there are CMT differences between the more and less myopic eyes of an anisometropic adult. RESULTS CMTMAX, CMT1, CMT2, and CMT3 were negatively associated with mean refractive error (all p ≤ 0.03), and the strongest association was in the posterior region (CMT2 and CMT3). Apical CMTMAX and Apical CMT1, however, were positively associated with mean refractive error (both p < 0.0001) across subjects. Within a subject, i.e., comparing the two anisometropic eyes, there was no statistically significant difference in CMT in any region. CONCLUSIONS Similar to previous studies, across anisometropic subjects, a thicker posterior region of the ciliary muscle (CMT2 and CMT3) was associated with increased myopic refractive error. Conversely, shorter, more hyperopic eyes tended to have thicker anterior, apical fiber portions of their ciliary muscle (Apical CMTMAX and Apical CMT1). There was no difference between the two eyes for any CMT measurement, indicating that in anisometropia, an eye can grow longer and more myopic than its fellow eye without resulting in an increase in CMT.
Collapse
|
34
|
Fuchshofer R, Kuespert S, Junglas B, Tamm ER. The prostaglandin f2α analog fluprostenol attenuates the fibrotic effects of connective tissue growth factor on human trabecular meshwork cells. J Ocul Pharmacol Ther 2014; 30:237-45. [PMID: 24576038 DOI: 10.1089/jop.2013.0205] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
UNLABELLED Abstract Purpose: The trabecular meshwork (TM) outflow pathways of the aqueous humor show an increase in extracellular matrix in patients with primary open-angle glaucoma (POAG). The increase in TM extracellular matrix appears to be caused by transforming growth factor-β signaling and its downstream mediator connective-tissue growth factor (CTGF). Here we studied whether treatment with the prostaglandin F2α analog fluprostenol modulates the CTGF-mediated increase of the TM extracellular matrix. METHODS Human TM cells from 3 different donors were treated with CTGF (50 ng/mL) and/or fluprostenol (10(-6) M and 10(-7) M) and were analyzed by real-time reverse transcription polymerase chain reaction and Western blotting. Cell supernatants of the treated cells were analyzed by zymography. RESULTS Treatment with CTGF induced the expression and synthesis of CTGF, fibronectin, collagen type IV and VI, while treatment with fluprostenol alone had no effects. The effects of CTGF were blocked by 1-h pretreatment with fluprostenol in a dose-dependent manner. Treatment with fluprostenol or combined fluprostenol/CTGF induced the activity of matrix metalloproteinase 2 (MMP2) in TM cells, whereas treatment with CTGF alone had no effects on MMP2 activity. CONCLUSIONS Fluprostenol blocks the fibrotic effects of CTGF on human TM cells and increases the activity of MMP2. Both effects have the distinct potential to attenuate a CTGF-mediated increase in TM extracellular matrix in patients with POAG and any effects on TM outflow resistance that may result from that.
Collapse
Affiliation(s)
- Rudolf Fuchshofer
- Institute of Human Anatomy and Embryology, University of Regensburg , Regensburg, Germany
| | | | | | | |
Collapse
|
35
|
Abu-Hassan DW, Acott TS, Kelley MJ. The Trabecular Meshwork: A Basic Review of Form and Function. ACTA ACUST UNITED AC 2014; 2. [PMID: 25356439 DOI: 10.13188/2334-2838.1000017] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Diala W Abu-Hassan
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, Oregon, USA
| | - Ted S Acott
- Department of Biochemistry & Molecular Biology, Oregon Health & Science University, Portland, Oregon, USA
| | - Mary J Kelley
- Department of Biochemistry & Physiology, University of Jordan, Amman, Jordan
| |
Collapse
|
36
|
Funktionelle Morphologie der Abflusswege des Kammerwassers und ihre Veränderungen beim Offenwinkelglaukom. Ophthalmologe 2013; 110:1026-35. [DOI: 10.1007/s00347-012-2670-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
37
|
Peces-Peña MD, de la Cuadra-Blanco C, Vicente A, Mérida-Velasco JR. Development of the ciliary body: morphological changes in the distal portion of the optic cup in the human. Cells Tissues Organs 2013; 198:149-59. [PMID: 24061565 DOI: 10.1159/000353648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2013] [Indexed: 11/19/2022] Open
Abstract
This study seeks to determine the main events that occur in the development of the ciliary body (CB) in the 5-14th week of development. The CB develops from the distal portion of the optic cup (OC) and the neighboring mesenchyme. During the 5th week of development, 4 zones were observed in the distal portion of the OC: in zone 1, the epithelia of the outer and inner layers of the OC came into contact. This contact coincided with the appearance of mainly apical granule pigments. This zone corresponded to the anlage of the epithelial layers of the CB. In zone 2, the cells surrounded the marginal sinus and contained scarce pigment granules and nuclei in the basal position. This zone corresponded to the anlage of the iris. Zone 3 was triangular in shape and its vertex ran towards the marginal sinus and corresponded to common cell progenitors. Zone 4 corresponded to the retinal pigment epithelium anlage and the neural retina anlage. We determined the onset of the stroma and the ciliary muscle anlage at the end of the 7th week. In the 13-14th week, we observed the anlage of the orbicularis ciliaris (pars plana of the CB) and corona ciliaris (pars plicata of the CB), in addition to the anlage of the ciliary muscle. Our study, therefore, establishes a precise timetable of the development of the CB.
Collapse
Affiliation(s)
- M D Peces-Peña
- Departamento de Anatomía y Embriología Humana I, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | |
Collapse
|
38
|
Croft MA, Nork TM, McDonald JP, Katz A, Lütjen-Drecoll E, Kaufman PL. Accommodative movements of the vitreous membrane, choroid, and sclera in young and presbyopic human and nonhuman primate eyes. Invest Ophthalmol Vis Sci 2013; 54:5049-58. [PMID: 23745005 DOI: 10.1167/iovs.12-10847] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE We report, for the first time to our knowledge, dynamic movements of the vitreous membrane and peripheral choroid during accommodation, and age-related changes in the anterior sclera. METHODS We studied 11 rhesus monkeys (ages 6-27 years) and 12 human subjects (ages 19-65 years). Accommodation was induced pharmacologically in human subjects and by central electrical stimulation in the monkeys. Ultrasound biomicroscopy, endoscopy, and contrast agents were used to image various intraocular structures. RESULTS In the monkey, the anterior hyaloid membrane bows backward during accommodation in proportion to accommodative amplitude and lens thickening. A cleft exists between the pars plicata region and the anterior hyaloid membrane, and the cleft width increases during accommodation from 0.79 ± 0.01 mm to 1.01 ± 0.02 mm in young eyes (n = 2, P < 0.005), as fluid from the anterior chamber flows around the lens equator toward the cleft. In the older eyes the cleft width was 0.30 ± 0.19 mm, which during accommodation increased to 0.45 ± 0.20 mm (n = 2). During accommodation the ciliary muscle moved forward by approximately 1.0 mm, pulling forward the choroid, retina, vitreous zonule, and the neighboring vitreous interconnected with the vitreous zonule. Among the humans, in the older eyes the scleral contour bowed inward in the region of the limbus, compared to the young eyes. CONCLUSIONS The monkey anterior hyaloid bends posteriorly during accommodation in proportion to accommodative amplitude and the sclera bows inward with increasing age in both species. Future descriptions of the accommodative mechanism, and approaches to presbyopia therapy, may need to incorporate these findings.
Collapse
Affiliation(s)
- Mary Ann Croft
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53792-3220, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
PURPOSE To objectively measure changes in the human ciliary muscle dimensions in vivo after instillation of topical phenylephrine, a mydriatic and vasodilating agent. METHODS A cross-sectional study of 25 healthy young adults was conducted. Measurements of pupil size, accommodation, and ciliary muscle thickness were made both before and 30 min after instillation of 1% proparacaine and 2.5% phenylephrine. Accommodation was measured in three ways: subjectively using a push-up technique and Royal Air Force (RAF) rule, and objectively using both the Grand Seiko autorefractor and PowerRefractor. Images of the temporal ciliary muscle were acquired using the Visante Anterior Segment Optical Coherence Tomographer (OCT). Ciliary muscle images were objectively analyzed using a computer-based segmentation technique. RESULTS Amplitude of accommodation using the push-up test was reduced by about 1 D with phenylephrine (p < 0.001). Phenylephrine did not change the accommodative response to a 4 D Badal target as measured by either autorefraction or photorefraction (p > 0.30). There was statistically significant thickening of the anterior region and thinning of the posterior region of the ciliary muscle with accommodation (p < 0.001, all locations). Phenylephrine did not affect either baseline ciliary muscle thickness or the accommodative contraction of the muscle (p > 0.09). CONCLUSIONS Low-dose phenylephrine does not affect ciliary muscle dimensions, ciliary muscle contractility, or accommodative response to a 4 D near target.
Collapse
|
40
|
Buckhurst H, Gilmartin B, Cubbidge RP, Nagra M, Logan NS. Ocular biometric correlates of ciliary muscle thickness in human myopia. Ophthalmic Physiol Opt 2013; 33:294-304. [DOI: 10.1111/opo.12039] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 01/28/2013] [Indexed: 01/18/2023]
Affiliation(s)
- Hetal Buckhurst
- School of Health Professions; Peninsula Allied Health Centre; Plymouth University; Plymouth; UK
| | - Bernard Gilmartin
- School of Life & Health Sciences; Ophthalmic Research Group; Aston University; Birmingham; UK
| | - Robert P Cubbidge
- School of Life & Health Sciences; Ophthalmic Research Group; Aston University; Birmingham; UK
| | - Manbir Nagra
- School of Life & Health Sciences; Ophthalmic Research Group; Aston University; Birmingham; UK
| | - Nicola S Logan
- School of Life & Health Sciences; Ophthalmic Research Group; Aston University; Birmingham; UK
| |
Collapse
|
41
|
Richdale K, Sinnott LT, Bullimore MA, Wassenaar PA, Schmalbrock P, Kao CY, Patz S, Mutti DO, Glasser A, Zadnik K. Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye. Invest Ophthalmol Vis Sci 2013; 54:1095-105. [PMID: 23287789 DOI: 10.1167/iovs.12-10619] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To calculate age-related and per diopter (D) accommodative changes in crystalline lens and ciliary muscle dimensions in vivo in a single cohort of emmetropic human adults ages 30 to 50 years. METHODS The right eyes of 26 emmetropic adults were examined using ultrasonography, phakometry, anterior segment optical coherence tomography, and high resolution magnetic resonance imaging. Accommodation was measured both subjectively and objectively. RESULTS In agreement with previous research, older age was linearly correlated with a thicker lens, steeper anterior lens curvature, shallower anterior chamber, and lower lens equivalent refractive index (all P < 0.01). Age was not related to ciliary muscle ring diameter (CMRD) or lens equatorial diameter (LED). With accommodation, lens thickness increased (+0.064 mm/D, P < 0.001), LED decreased (-0.075 mm/D, P < 0.001), CMRD decreased (-0.105 mm/D, P < 0.001), and the ciliary muscle thickened anteriorly (+0.013 to +0.026 mm/D, P < 0.001) and thinned posteriorly (-0.011 to -0.015, P < 0.01). The changes per diopter of accommodation in LED, CMRD, and ciliary muscle thickness were not related to subject age. CONCLUSIONS The per diopter ciliary muscle contraction is age independent, even as total accommodative amplitude declines. Quantifying normal biometric dimensions of the accommodative structures and changes with age and accommodative effort will further the development of new IOLs designed to harness ciliary muscle forces.
Collapse
Affiliation(s)
- Kathryn Richdale
- College of Optometry, State University of New York, New York, NY, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
PURPOSE To investigate the morphology of the ciliary muscle during the act of accommodation in a population of children. METHODS Thirty children aged 6 to 12 years were enrolled. Accommodative response was measured through habitual correction. Height was measured as a control variable. Central axial length was measured with the IOLMaster. Four images of the temporal ciliary muscle were taken with the Visante Optical Coherence Tomographer at three different stimulus levels (0, 4, and 6 D) while accommodative response was monitored concurrently with the PowerRefractor. Accommodative response monitoring was time-matched to ciliary muscle image capture, and the mean was calculated for 5 s surrounding this time point. Four cycloplegic images of the temporal ciliary muscle were also taken. Ciliary muscle thickness measurements were made at the point of maximum thickness (CMTMAX) and at 1 mm (CMT1), 2 mm (CMT2) and 3 mm (CMT3) posterior to the sclera spur. RESULTS Increasing accommodative response was correlated with increases in the thickness of CMTMAX (p = <0.001) and CMT1 (p = <0.001) and decreases in the thickness of CMT3 (p = <0.001). Thicker values of CMTMAX under cycloplegic conditions were significantly correlated with values of CMTMAX (p = <0.001) and CMT1 (p = 0.001) while accommodating and approached significance in modeling CMT3 (p = 0.06). Mean axial length was correlated with the amount of thinning at CMT3 with accommodation (p = 0.002). Axial length was not significantly correlated with thickness values at CMTMAX (p = 0.7) or CMT1 (p = 0.6). CONCLUSIONS In a manner similar to previous adult studies, ciliary muscle thickness at CMTMAX and CMT1 increased with accommodation and CMT3 thinned with accommodation. Further investigation is necessary to determine whether CMT2 is a "fulcrum" point along the length of the ciliary muscle where the net change with accommodation is always zero or whether that point varies across subjects or with varying levels of accommodative effort.
Collapse
|
43
|
Herrnberger L, Ebner K, Junglas B, Tamm ER. The role of plasmalemma vesicle-associated protein (PLVAP) in endothelial cells of Schlemm's canal and ocular capillaries. Exp Eye Res 2012; 105:27-33. [PMID: 23063469 DOI: 10.1016/j.exer.2012.09.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 09/03/2012] [Accepted: 09/26/2012] [Indexed: 12/13/2022]
Abstract
Plasmalemma vesicle-associated protein (PLVAP, PV-1) is an endothelial protein that specifically localizes to diaphragms of fenestrae in fenestrated capillaries, and to stomatal diaphragms of caveolae. Here we investigated the localization of PLVAP in Schlemm's canal endothelium and ocular capillaries, and studied the structural effects of PLVAP deficiency. In mouse, pig and human eyes, immunoreactivity for PLVAP was present in fenestrated capillaries of choroid and ciliary processes, but not in the continuous capillaries of retina and ciliary muscle. In all three species staining for PLVAP was seen in the endothelia of the outflow vessels of aqueous humor e.g. Schlemm's canal (SC, mouse and human), aqueous plexus (AP, pig) and the scleral collector channels. Essentially comparable findings were observed when the expression of β-galactosidase was investigated in mutant heterozygous and homozygous PLVAP-deficient mice with LacZ inserted into the Plvap locus. By transmission electron microscopy, the vast majority of caveolae in SC endothelial cells showed a stomatal diaphragm. In addition, solitary fenestrae or minipores with a diaphragm were occasionally observed in SC or AP of all three species. In contrast, mutant Plvap(-/-) mice showed a complete absence of stomatal diaphragms in SC caveolae while no SC minipores were observed. Moreover, diaphragms were absent in fenestrae of endothelial cells in the capillaries of the ciliary processes or the choriocapillaris, findings which were associated with a substantial decrease in the number of fenestrae. PLVAP is expressed in endothelial cells of Schlemm's canal and is essential for the formation of diaphragms in vascular endothelial cells of the eye.
Collapse
Affiliation(s)
- Leonie Herrnberger
- Institute of Human Anatomy and Embryology, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | | | | | | |
Collapse
|
44
|
Abstract
The development of the human eye requires a coordinated interplay between cells from different origins. The optic cup which is neuroectodermal in origin and derives from the neural tube, gives rise to the neuronal retina, the retinal pigmented epithelium, the epithelial layers of ciliary body and iris, and the iris musculature. The lens which is displaced into the optic cup during development originates from the surface ectoderm. Cells of the neural crest provide the ocular mesenchyme while ocular blood vessels are of mesodermal origin. The basic morphogenetic processes of eye development are completed at the end of the second month of embryonic life. However, for correct functioning further maturation processes are required which are not completed before birth or several months after. Examples are aqueous humor circulation, maturation of cones in the foveola, myelination of optic nerve axons and completion of the retinal vasculature.
Collapse
|
45
|
Fuchshofer R, Tamm ER. The role of TGF-β in the pathogenesis of primary open-angle glaucoma. Cell Tissue Res 2011; 347:279-90. [PMID: 22101332 DOI: 10.1007/s00441-011-1274-7] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 10/24/2011] [Indexed: 01/08/2023]
Abstract
Transforming growth factor-β2 (TGF-β2) is found in increasing amounts in aqueous humor and reactive optic nerve astrocytes of patients with primary open-angle glaucoma (POAG), a major cause of blindness worldwide. The available data strongly indicate that TGF-β2 is a key player contributing to the structural changes in the extracellular matrix (ECM) of the trabecular meshwork and optic nerve head as characteristically seen in POAG. The changes involve an induction in the expression of various ECM molecules and are remarkably similar in trabecular meshwork cells and optic nerve head astrocytes. The ECM changes in the trabecular meshwork most probably play a role in the increase of aqueous humor outflow resistance causing higher intraocular pressure (IOP). In the optic nerve head, TGF-β2-induced changes might contribute to deformation of the optic nerve axons causing impairment of axonal transport and neurotrophic supply and leading to their continuous degeneration. The increase in IOP further adds mechanical stress and strain to optic nerve axons and accelerates degenerative changes. In addition, high IOP might induce the expression of activated TGF-β1 in trabecular meshwork cells and optic nerve head astrocytes; this again might significantly lead to the progress of axonal degeneration. The action of TGF-β2 in POAG is largely mediated through the connective tissue growth factor, whereas the activities of TGF-β1 and -β2 are modulated by the blocking effects of bone morphogenetic protein-4 (BMP-4) and BMP-7, by gremlin that inhibits BMP signaling and by several species of microRNAs.
Collapse
Affiliation(s)
- Rudolf Fuchshofer
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | | |
Collapse
|
46
|
Kao CY, Richdale K, Sinnott LT, Grillott LE, Bailey MD. Semiautomatic extraction algorithm for images of the ciliary muscle. Optom Vis Sci 2011; 88:275-89. [PMID: 21169877 PMCID: PMC3030281 DOI: 10.1097/opx.0b013e3182044b94] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
PURPOSE To develop and evaluate a semiautomatic algorithm for segmentation and morphological assessment of the dimensions of the ciliary muscle in Visante Anterior Segment Optical Coherence Tomography images. METHODS Geometric distortions in Visante images analyzed as binary files were assessed by imaging an optical flat and human donor tissue. The appropriate pixel/mm conversion factor to use for air (n = 1) was estimated by imaging calibration spheres. A semiautomatic algorithm was developed to extract the dimensions of the ciliary muscle from Visante images. Measurements were also made manually using Visante software calipers. Interclass correlation coefficients and Bland-Altman analyses were used to compare the methods. A multilevel model was fitted to estimate the variance of algorithm measurements that was due to differences within- and between-examiners in scleral spur selection vs. biological variability. RESULTS The optical flat and the human donor tissue were imaged and appeared without geometric distortions in binary file format. Bland-Altman analyses revealed that caliper measurements tended to underestimate ciliary muscle thickness at 3 mm posterior to the scleral spur in subjects with the thickest ciliary muscles (t = 3.6, p < 0.001). The percent variance due to within- or between-examiner differences in scleral spur selection was found to be small (6%) when compared with the variance because of biological difference across subjects (80%). Using the mean of measurements from three images, achieved an estimated interclass correlation coefficient of 0.85. CONCLUSIONS The semiautomatic algorithm successfully segmented the ciliary muscle for further measurement. Using the algorithm to follow the scleral curvature to locate more posterior measurements is critical to avoid underestimating thickness measurements. This semiautomatic algorithm will allow for repeatable, efficient, and masked ciliary muscle measurements in large datasets.
Collapse
Affiliation(s)
- Chiu-Yen Kao
- Department of Mathematics and Mathematical Biosciences Institute, College of Mathematics and Physical Sciences, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
47
|
Wu ZL, Kurokawa T, Liang S, Furukawa H, Gong JP. Hydrogels with Cylindrically Symmetric Structure at Macroscopic Scale by Self-Assembly of Semi-rigid Polyion Complex. J Am Chem Soc 2010; 132:10064-9. [DOI: 10.1021/ja101969k] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zi Liang Wu
- Division of Biological Sciences and Faculty of Advanced Life Science, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan, and Creative Research Initiative Sousei, Hokkaido University, Sapporo 001-0021, Japan
| | - Takayuki Kurokawa
- Division of Biological Sciences and Faculty of Advanced Life Science, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan, and Creative Research Initiative Sousei, Hokkaido University, Sapporo 001-0021, Japan
| | - Songmiao Liang
- Division of Biological Sciences and Faculty of Advanced Life Science, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan, and Creative Research Initiative Sousei, Hokkaido University, Sapporo 001-0021, Japan
| | - Hidemitsu Furukawa
- Division of Biological Sciences and Faculty of Advanced Life Science, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan, and Creative Research Initiative Sousei, Hokkaido University, Sapporo 001-0021, Japan
| | - Jian Ping Gong
- Division of Biological Sciences and Faculty of Advanced Life Science, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan, and Creative Research Initiative Sousei, Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
48
|
The trabecular meshwork outflow pathways: structural and functional aspects. Exp Eye Res 2009; 88:648-55. [PMID: 19239914 DOI: 10.1016/j.exer.2009.02.007] [Citation(s) in RCA: 332] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2009] [Accepted: 02/08/2009] [Indexed: 01/06/2023]
Abstract
The major drainage structures for aqueous humor (AH) are the conventional or trabecular outflow pathways, which are comprised of the trabecular meshwork (made up by the uveal and corneoscleral meshworks), the juxtacanalicular connective tissue (JCT), the endothelial lining of Schlemm's canal (SC), the collecting channels and the aqueous veins. The trabecular meshwork (TM) outflow pathways are critical in providing resistance to AH outflow and in generating intraocular pressure (IOP). Outflow resistance in the TM outflow pathways increases with age and primary open-angle glaucoma. Uveal and corneoscleral meshworks form connective tissue lamellae or beams that are covered by flat TM cells which rest on a basal lamina. TM cells in the JCT are surrounded by fibrillar elements of the extracellular matrix (ECM) to form a loose connective tissue. In contrast to the other parts of the TM, JCT cells and ECM fibrils do not form lamellae, but are arranged more irregularly. SC inner wall endothelial cells form giant vacuoles in response to AH flow, as well as intracellular and paracellular pores. In addition, minipores that are covered with a diaphragm are observed. There is considerable evidence that normal AH outflow resistance resides in the inner wall region of SC, which is formed by the JCT and SC inner wall endothelium. Modulation of TM cell tone by the action of their actomyosin system affects TM outflow resistance. In addition, the architecture of the TM outflow pathways and consequently outflow resistance appear to be modulated by contraction of ciliary muscle and scleral spur cells. The scleral spur contains axons that innervate scleral spur cells or that have the ultrastructural characteristics of mechanosensory nerve endings.
Collapse
|
49
|
|
50
|
Davis-Silberman N, Ashery-Padan R. Iris development in vertebrates; genetic and molecular considerations. Brain Res 2008; 1192:17-28. [PMID: 17466284 DOI: 10.1016/j.brainres.2007.03.043] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 03/11/2007] [Accepted: 03/16/2007] [Indexed: 10/23/2022]
Abstract
The iris plays a key role in visual function. It regulates the amount of light entering the eye and falling on the retina and also operates in focal adjustment of closer objects. The iris is involved in circulation of the aqueous humor and hence functions in regulation of intraocular pressure. Intriguingly, iris pigmented cells possess the ability to transdifferentiate into different ocular cell types of retinal pigmented epithelium, photoreceptors and lens cells. Thus, the iris is considered a potential source for cell-replacement therapies. During embryogenesis, the iris arises from both the optic cup and the periocular mesenchyme. Its interesting mode of development includes specification of the peripheral optic cup to a non-neuronal fate, migration of cells from the surrounding periocular mesenchyme and an atypical formation of smooth muscles from the neuroectoderm. This manner of development raises some interesting general topics concerning the early patterning of the neuroectoderm, the specification and differentiation of diverse cell types and the interactions between intrinsic and extrinsic factors in the process of organogenesis. In this review, we discuss iris anatomy and development, describe major pathologies of the iris and their molecular etiology and finally summarize the recent findings on genes and signaling pathways that are involved in iris development.
Collapse
Affiliation(s)
- Noa Davis-Silberman
- Sackler Faculty of Medicine, Department of Human Molecular Genetics and Biochemistry, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| | | |
Collapse
|