1
|
Liccardo F, Luini A, Di Martino R. Endomembrane-Based Signaling by GPCRs and G-Proteins. Cells 2022; 11:528. [PMID: 35159337 PMCID: PMC8834376 DOI: 10.3390/cells11030528] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 12/14/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) and G-proteins have a range of roles in many physiological and pathological processes and are among the most studied signaling proteins. A plethora of extracellular stimuli can activate the GPCR and can elicit distinct intracellular responses through the activation of specific transduction pathways. For many years, biologists thought that GPCR signaling occurred entirely on the plasma membrane. However, in recent decades, many lines of evidence have proved that the GPCRs and G-proteins may reside on endomembranes and can start or propagate signaling pathways through the organelles that form the secretory route. How these alternative intracellular signaling pathways of the GPCR and G-proteins influence the physiological and pathological function of the endomembranes is still under investigation. Here, we review the general role and classification of GPCRs and G-proteins with a focus on their signaling pathways in the membrane transport apparatus.
Collapse
Affiliation(s)
- Federica Liccardo
- Cardiovascular Research Institute, University of California San Francisco (UCSF), 555 Mission Bay Blvd., San Francisco, CA 94158, USA;
| | - Alberto Luini
- Istituto per L’endocrinologia e L’oncologia Sperimentale “Gaetano Salvatore” (IEOS)—Sede Secondaria, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Rosaria Di Martino
- Istituto per L’endocrinologia e L’oncologia Sperimentale “Gaetano Salvatore” (IEOS)—Sede Secondaria, Via Pietro Castellino 111, 80131 Napoli, Italy
| |
Collapse
|
2
|
Brandenburg S, Pawlowitz J, Steckmeister V, Subramanian H, Uhlenkamp D, Scardigli M, Mushtaq M, Amlaz SI, Kohl T, Wegener JW, Arvanitis DA, Sanoudou D, Sacconi L, Hasenfuss G, Voigt N, Nikolaev VO, Lehnart SE. A junctional cAMP compartment regulates rapid Ca 2+ signaling in atrial myocytes. J Mol Cell Cardiol 2022; 165:141-157. [PMID: 35033544 DOI: 10.1016/j.yjmcc.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/15/2021] [Accepted: 01/08/2022] [Indexed: 10/19/2022]
Abstract
Axial tubule junctions with the sarcoplasmic reticulum control the rapid intracellular Ca2+-induced Ca2+ release that initiates atrial contraction. In atrial myocytes we previously identified a constitutively increased ryanodine receptor (RyR2) phosphorylation at junctional Ca2+ release sites, whereas non-junctional RyR2 clusters were phosphorylated acutely following β-adrenergic stimulation. Here, we hypothesized that the baseline synthesis of 3',5'-cyclic adenosine monophosphate (cAMP) is constitutively augmented in the axial tubule junctional compartments of atrial myocytes. Confocal immunofluorescence imaging of atrial myocytes revealed that junctin, binding to RyR2 in the sarcoplasmic reticulum, was densely clustered at axial tubule junctions. Interestingly, a new transgenic junctin-targeted FRET cAMP biosensor was exclusively co-clustered in the junctional compartment, and hence allowed to monitor cAMP selectively in the vicinity of junctional RyR2 channels. To dissect local cAMP levels at axial tubule junctions versus subsurface Ca2+ release sites, we developed a confocal FRET imaging technique for living atrial myocytes. A constitutively high adenylyl cyclase activity sustained increased local cAMP levels at axial tubule junctions, whereas β-adrenergic stimulation overcame this cAMP compartmentation resulting in additional phosphorylation of non-junctional RyR2 clusters. Adenylyl cyclase inhibition, however, abolished the junctional RyR2 phosphorylation and decreased L-type Ca2+ channel currents, while FRET imaging showed a rapid cAMP decrease. In conclusion, FRET biosensor imaging identified compartmentalized, constitutively augmented cAMP levels in junctional dyads, driving both the locally increased phosphorylation of RyR2 clusters and larger L-type Ca2+ current density in atrial myocytes. This cell-specific cAMP nanodomain is maintained by a constitutively increased adenylyl cyclase activity, contributing to the rapid junctional Ca2+-induced Ca2+ release, whereas β-adrenergic stimulation overcomes the junctional cAMP compartmentation through cell-wide activation of non-junctional RyR2 clusters.
Collapse
Affiliation(s)
- Sören Brandenburg
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany; DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany.
| | - Jan Pawlowitz
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Vanessa Steckmeister
- Heart Research Center Göttingen, Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
| | - Hariharan Subramanian
- Institute of Experimental Cardiovascular Research, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Dennis Uhlenkamp
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Marina Scardigli
- Department of Physics and Astronomy, University of Florence, Florence, Italy; European Laboratory for Non-Linear Spectroscopy and National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy
| | - Mufassra Mushtaq
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Saskia I Amlaz
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
| | - Tobias Kohl
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
| | - Jörg W Wegener
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
| | - Demetrios A Arvanitis
- Molecular Biology Division, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Despina Sanoudou
- Molecular Biology Division, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Leonardo Sacconi
- European Laboratory for Non-Linear Spectroscopy and National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy; Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Gerd Hasenfuss
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany; DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
| | - Niels Voigt
- DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany; Heart Research Center Göttingen, Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Stephan E Lehnart
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany; DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany; BioMET, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Jong YJI, Sergin I, Purgert CA, O'Malley KL. Location-dependent signaling of the group 1 metabotropic glutamate receptor mGlu5. Mol Pharmacol 2014; 86:774-85. [PMID: 25326002 DOI: 10.1124/mol.114.094763] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although G protein-coupled receptors are primarily known for converting extracellular signals into intracellular responses, some receptors, such as the group 1 metabotropic glutamate receptor, mGlu5, are also localized on intracellular membranes where they can mediate both overlapping and unique signaling effects. Thus, besides "ligand bias," whereby a receptor's signaling modality can shift from G protein dependence to independence, canonical mGlu5 receptor signaling can also be influenced by "location bias" (i.e., the particular membrane and/or cell type from which it signals). Because mGlu5 receptors play important roles in both normal development and in disorders such as Fragile X syndrome, autism, epilepsy, addiction, anxiety, schizophrenia, pain, dyskinesias, and melanoma, a large number of drugs are being developed to allosterically target this receptor. Therefore, it is critical to understand how such drugs might be affecting mGlu5 receptor function on different membranes and in different brain regions. Further elucidation of the site(s) of action of these drugs may determine which signal pathways mediate therapeutic efficacy.
Collapse
Affiliation(s)
- Yuh-Jiin I Jong
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri
| | - Ismail Sergin
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri
| | - Carolyn A Purgert
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri
| | - Karen L O'Malley
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
5
|
Vaniotis G, Allen BG, Hébert TE. Nuclear GPCRs in cardiomyocytes: an insider's view of β-adrenergic receptor signaling. Am J Physiol Heart Circ Physiol 2011; 301:H1754-64. [PMID: 21890692 DOI: 10.1152/ajpheart.00657.2011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In recent years, we have come to appreciate the complexity of G protein-coupled receptor signaling in general and β-adrenergic receptor (β-AR) signaling in particular. Starting originally from three β-AR subtypes expressed in cardiomyocytes with relatively simple, linear signaling cascades, it is now clear that there are large receptor-based networks which provide a rich and diverse set of responses depending on their complement of signaling partners and the physiological state. More recently, it has become clear that subcellular localization of these signaling complexes also enriches the diversity of phenotypic outcomes. Here, we review our understanding of the signaling repertoire controlled by nuclear β-AR subtypes as well our understanding of the novel roles for G proteins themselves in the nucleus, with a special focus, where possible, on their effects in cardiomyocytes. Finally, we discuss the potential pathological implications of alterations in nuclear β-AR signaling.
Collapse
|
6
|
Boivin B, Vaniotis G, Allen BG, Hébert TE. G protein-coupled receptors in and on the cell nucleus: a new signaling paradigm? J Recept Signal Transduct Res 2008; 28:15-28. [PMID: 18437627 DOI: 10.1080/10799890801941889] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Signaling from internalizing and endosomal receptors has almost become a classic GPCR paradigm in the last several years. However, it has become clear in recent years that GPCRs also elicit signals when resident at other subcellular sites including the endoplasmic reticulum, Golgi apparatus, and the nucleus. In this review we discuss the nature, function, and trafficking of nuclear GPCR signaling complexes, as well as potential sources of endogenous and exogenous ligands. Finally, we pose a series of questions that will need to be answered in the coming years to confirm and extend this as a new paradigm for GPCR signaling.
Collapse
Affiliation(s)
- Benoit Boivin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | | | | | | |
Collapse
|
7
|
Fischmeister R, Castro LRV, Abi-Gerges A, Rochais F, Jurevicius J, Leroy J, Vandecasteele G. Compartmentation of cyclic nucleotide signaling in the heart: the role of cyclic nucleotide phosphodiesterases. Circ Res 2006; 99:816-28. [PMID: 17038651 DOI: 10.1161/01.res.0000246118.98832.04] [Citation(s) in RCA: 302] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A current challenge in cellular signaling is to decipher the complex intracellular spatiotemporal organization that any given cell type has developed to discriminate among different external stimuli acting via a common signaling pathway. This obviously applies to cAMP and cGMP signaling in the heart, where these cyclic nucleotides determine the regulation of cardiac function by many hormones and neuromediators. Recent studies have identified cyclic nucleotide phosphodiesterases as key actors in limiting the spread of cAMP and cGMP, and in shaping and organizing intracellular signaling microdomains. With this new role, phosphodiesterases have been promoted from the rank of a housekeeping attendant to that of an executive officer.
Collapse
Affiliation(s)
- Rodolphe Fischmeister
- INSERM U769, Université Paris-Sud 11, Faculté de Pharmacie, 5, Rue J.-B. Clément, F-92296 Châtenay-Malabry Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
9
|
Belevych AE, Sims C, Harvey RD. ACh-induced rebound stimulation of L-type Ca(2+) current in guinea-pig ventricular myocytes, mediated by Gbetagamma-dependent activation of adenylyl cyclase. J Physiol 2001; 536:677-92. [PMID: 11691864 PMCID: PMC2278900 DOI: 10.1111/j.1469-7793.2001.00677.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
1. The effects that muscarinic receptor stimulation have on the cAMP-dependent regulation of L-type Ca(2+) currents were studied in isolated guinea-pig ventricular myocytes using the whole-cell configuration of the patch-clamp technique. 2. The muscarinic agonist ACh inhibited the Ca(2+) current stimulated by the beta-adrenergic agonist isoprenaline (Iso), and washout of ACh revealed a stimulatory response that appeared as a transient rebound increase in the amplitude of the Ca(2+) current. The ACh-induced stimulatory effect was not observed in the absence of Iso. 3. ACh-induced rebound stimulation was also observed in the presence of H(2) histamine receptor activation and cholera toxin treatment, which like beta-adrenergic receptor activation enhance adenylyl cyclase (AC) activity in a stimulatory G protein (G(s))-dependent manner. ACh-induced rebound stimulation was not observed in the presence of forskolin, which enhances AC activity in a G(s)-independent manner. 4. Pertussis toxin (PTX) treatment blocked both the stimulatory and inhibitory effects of ACh. Intracellular dialysis with QEHA, a peptide that binds free G protein betagamma subunits, selectively antagonized the stimulatory effect, leaving an enhanced inhibitory effect. 5. Evidence for the expression of AC4, an isoform of AC that can be stimulated by Gbetagamma but only in the presence of Galpha(s), was obtained by Western blot analysis of guinea-pig ventricular myocyte membrane preparations. 6. These results suggest that muscarinic receptor stimulation facilitates as well as inhibits cAMP-dependent regulation of the Ca(2+) current and that the net response is a balance between these two actions. We suggest that the stimulatory effect is due to a direct activation of AC4 by the betagamma subunits of a PTX-sensitive G protein.
Collapse
Affiliation(s)
- A E Belevych
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106-4970, USA
| | | | | |
Collapse
|
10
|
Buchwalow IB, Schulze W, Karczewski P, Kostic MM, Wallukat G, Morwinski R, Krause EG, Müller J, Paul M, Slezak J, Luft FC, Haller H. Inducible nitric oxide synthase in the myocard. Mol Cell Biochem 2001; 217:73-82. [PMID: 11269668 DOI: 10.1023/a:1007286602865] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recognition of significance of nitric oxide synthases (NOS) in cardiovascular regulations has led to intensive research and development of therapies focused on NOS as potential therapeutic targets. However, the NOS isoform profile of cardiac tissue and subcellular localization of NOS isoforms remain a matter of debate. The aim of this study was to investigate the localization of an inducible NOS isoform (NOS2) in cardiomyocytes. Employing a novel immunocytochemical technique of a catalyzed reporter deposition system with tyramide and electron microscopical immunocytochemistry complemented with Western blotting and RT-PCR, we detected NOS2 both in rat neonatal and adult cultured cardiomyocytes and in the normal myocard of adult rats as well as in the human myocard of patients with dilative cardiomyopathy. NOS2 was targeted predominantly to a particulate component of the cardiomyocyte--along contractile fibers, in the plasma membrane including T-tubules, as well as in the nuclear envelope, mitochondria and Golgi complex. Our results point to an involvement of NOS2 in maintaining cardiac homeostasis and contradict to the notion that NOS2 is expressed in cardiac tissue only in response to various physiological and pathogenic factors. NOS2 targeting to mitochondria and contractile fibers suggests a relationship of NO with contractile function and energy production in the cardiac muscle.
Collapse
Affiliation(s)
- I B Buchwalow
- Franz Volhard Clinic, Medical Faculty of the Charite, Humboldt University of Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|