1
|
Houston L, Platten EM, Connelly SM, Wang J, Grayhack EJ. Frameshifting at collided ribosomes is modulated by elongation factor eEF3 and by integrated stress response regulators Gcn1 and Gcn20. RNA (NEW YORK, N.Y.) 2022; 28:320-339. [PMID: 34916334 PMCID: PMC8848926 DOI: 10.1261/rna.078964.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Ribosome stalls can result in ribosome collisions that elicit quality control responses, one function of which is to prevent ribosome frameshifting, an activity that entails the interaction of the conserved yeast protein Mbf1 with uS3 on colliding ribosomes. However, the full spectrum of factors that mediate frameshifting during ribosome collisions is unknown. To delineate such factors in the yeast Saccharomyces cerevisiae, we used genetic selections for mutants that affect frameshifting from a known ribosome stall site, CGA codon repeats. We show that the general translation elongation factor eEF3 and the integrated stress response (ISR) pathway components Gcn1 and Gcn20 modulate frameshifting in opposing manners. We found a mutant form of eEF3 that specifically suppressed frameshifting, but not translation inhibition by CGA codons. Thus, we infer that frameshifting at collided ribosomes requires eEF3, which facilitates tRNA-mRNA translocation and E-site tRNA release in yeast and other single cell organisms. In contrast, we found that removal of either Gcn1 or Gcn20, which bind collided ribosomes with Mbf1, increased frameshifting. Thus, we conclude that frameshifting is suppressed by Gcn1 and Gcn20, although these effects are not mediated primarily through activation of the ISR. Furthermore, we examined the relationship between eEF3-mediated frameshifting and other quality control mechanisms, finding that Mbf1 requires either Hel2 or Gcn1 to suppress frameshifting with wild-type eEF3. Thus, these results provide evidence of a direct link between translation elongation and frameshifting at collided ribosomes, as well as evidence that frameshifting is constrained by quality control mechanisms that act on collided ribosomes.
Collapse
Affiliation(s)
- Lisa Houston
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
- Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| | - Evan M Platten
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
- Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| | - Sara M Connelly
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
- Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| | - Jiyu Wang
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
- Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| | - Elizabeth J Grayhack
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
- Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| |
Collapse
|
2
|
Gościńska K, Shahmoradi Ghahe S, Domogała S, Topf U. Eukaryotic Elongation Factor 3 Protects Saccharomyces cerevisiae Yeast from Oxidative Stress. Genes (Basel) 2020; 11:genes11121432. [PMID: 33260587 PMCID: PMC7760200 DOI: 10.3390/genes11121432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
Translation is a core process of cellular protein homeostasis and, thus, needs to be tightly regulated. The production of newly synthesized proteins adapts to the current needs of the cell, including the response to conditions of oxidative stress. Overall protein synthesis decreases upon oxidative stress. However, the selective production of proteins is initiated to help neutralize stress conditions. In contrast to higher eukaryotes, fungi require three translation elongation factors, eEF1, eEF2, and eEF3, for protein synthesis. eEF1 and eEF2 are evolutionarily conserved, but they alone are insufficient for the translation elongation process. eEF3 is encoded by two paralogous genes, YEF3 and HEF3. However, only YEF3 is essential in yeast, whereas the function of HEF3 remains unknown. To elucidate the cellular function of Hef3p, we used cells that were depleted of HEF3 and treated with H2O2 and analyzed the growth of yeast, global protein production, and protein levels. We found that HEF3 is necessary to withstand oxidative stress conditions, suggesting that Hef3p is involved in the selective production of proteins that are necessary for defense against reactive oxygen species.
Collapse
|
3
|
Murina V, Kasari M, Takada H, Hinnu M, Saha CK, Grimshaw JW, Seki T, Reith M, Putrinš M, Tenson T, Strahl H, Hauryliuk V, Atkinson GC. ABCF ATPases Involved in Protein Synthesis, Ribosome Assembly and Antibiotic Resistance: Structural and Functional Diversification across the Tree of Life. J Mol Biol 2018; 431:3568-3590. [PMID: 30597160 PMCID: PMC6723617 DOI: 10.1016/j.jmb.2018.12.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/11/2018] [Accepted: 12/15/2018] [Indexed: 10/27/2022]
Abstract
Within the larger ABC superfamily of ATPases, ABCF family members eEF3 in Saccharomyces cerevisiae and EttA in Escherichia coli have been found to function as ribosomal translation factors. Several other ABCFs including biochemically characterized VgaA, LsaA and MsrE confer resistance to antibiotics that target the peptidyl transferase center and exit tunnel of the ribosome. However, the diversity of ABCF subfamilies, the relationships among subfamilies and the evolution of antibiotic resistance (ARE) factors from other ABCFs have not been explored. To address this, we analyzed the presence of ABCFs and their domain architectures in 4505 genomes across the tree of life. We find 45 distinct subfamilies of ABCFs that are widespread across bacterial and eukaryotic phyla, suggesting that they were present in the last common ancestor of both. Surprisingly, currently known ARE ABCFs are not confined to a distinct lineage of the ABCF family tree, suggesting that ARE can readily evolve from other ABCF functions. Our data suggest that there are a number of previously unidentified ARE ABCFs in antibiotic producers and important human pathogens. We also find that ATPase-deficient mutants of all four E. coli ABCFs (EttA, YbiT, YheS and Uup) inhibit protein synthesis, indicative of their ribosomal function, and demonstrate a genetic interaction of ABCFs Uup and YheS with translational GTPase BipA involved in assembly of the 50S ribosome subunit. Finally, we show that the ribosome-binding resistance factor VmlR from Bacillus subtilis is localized to the cytoplasm, ruling out a role in antibiotic efflux.
Collapse
Affiliation(s)
- Victoriia Murina
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden; Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden
| | - Marje Kasari
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Hiraku Takada
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden; Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden
| | - Mariliis Hinnu
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| | - Chayan Kumar Saha
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - James W Grimshaw
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, United Kingdom
| | - Takahiro Seki
- Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Chiba University, 263-8522 Chiba, Japan
| | - Michael Reith
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Marta Putrinš
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| | - Tanel Tenson
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| | - Henrik Strahl
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, United Kingdom
| | - Vasili Hauryliuk
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden; Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden; University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| | | |
Collapse
|
4
|
Mechanism and Regulation of Protein Synthesis in Saccharomyces cerevisiae. Genetics 2017; 203:65-107. [PMID: 27183566 DOI: 10.1534/genetics.115.186221] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/24/2016] [Indexed: 12/18/2022] Open
Abstract
In this review, we provide an overview of protein synthesis in the yeast Saccharomyces cerevisiae The mechanism of protein synthesis is well conserved between yeast and other eukaryotes, and molecular genetic studies in budding yeast have provided critical insights into the fundamental process of translation as well as its regulation. The review focuses on the initiation and elongation phases of protein synthesis with descriptions of the roles of translation initiation and elongation factors that assist the ribosome in binding the messenger RNA (mRNA), selecting the start codon, and synthesizing the polypeptide. We also examine mechanisms of translational control highlighting the mRNA cap-binding proteins and the regulation of GCN4 and CPA1 mRNAs.
Collapse
|
5
|
Kovalchuk A, Kohler A, Martin F, Asiegbu FO. Diversity and evolution of ABC proteins in mycorrhiza-forming fungi. BMC Evol Biol 2015; 15:249. [PMID: 26707138 PMCID: PMC4692070 DOI: 10.1186/s12862-015-0526-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 10/28/2015] [Indexed: 11/22/2022] Open
Abstract
Background Transporter proteins are predicted to have an important role in the mycorrhizal symbiosis, due to the fact that this type of an interaction between plants and fungi requires a continuous nutrient and signalling exchange. ABC transporters are one of the large groups of transporter proteins found both in plants and in fungi. The crucial role of plant ABC transporters in the formation of the mycorrhizal symbiosis has been demonstrated recently. Some of the fungal ABC transporter-encoding genes are also induced during the mycorrhiza formation. However, no experimental evidences of the direct involvement of fungal ABC transporters in this process are available so far. To facilitate the identification of fungal ABC proteins with a potential role in the establishment of the mycorrhizal symbiosis, we have performed an inventory of the ABC protein-encoding genes in the genomes of 25 species of mycorrhiza-forming fungi. Results We have identified, manually annotated and curated more than 1300 gene models of putative ABC protein-encoding genes. Out of those, more than 1000 models are predicted to encode functional proteins, whereas about 300 models represent gene fragments or putative pseudogenes. We have also performed the phylogenetic analysis of the identified sequences. The sets of ABC proteins in the mycorrhiza-forming species were compared to the related saprotrophic or plant-pathogenic fungal species. Our results demonstrate the high diversity of ABC genes in the genomes of mycorrhiza-forming fungi. Via comparison of transcriptomics data from different species, we have identified candidate groups of ABC transporters that might have a role in the process of the mycorrhiza formation. Conclusions Results of our inventory will facilitate the identification of fungal transporters with a role in the mycorrhiza formation. We also provide the first data on ABC protein-coding genes for the phylum Glomeromycota and for orders Pezizales, Atheliales, Cantharellales and Sebacinales, contributing to the better knowledge of the diversity of this protein family within the fungal kingdom. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0526-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andriy Kovalchuk
- Department of Forest Sciences, University of Helsinki, P.O. Box 27, FIN-00014, Helsinki, Finland.
| | - Annegret Kohler
- UMR 1136, INRA/Université de Lorraine, Interactions Arbres/Microorganismes, INRA, Institut National de la Recherche Agronomique, Centre INRA de Nancy, 54280, Champenoux, France.
| | - Francis Martin
- UMR 1136, INRA/Université de Lorraine, Interactions Arbres/Microorganismes, INRA, Institut National de la Recherche Agronomique, Centre INRA de Nancy, 54280, Champenoux, France.
| | - Fred O Asiegbu
- Department of Forest Sciences, University of Helsinki, P.O. Box 27, FIN-00014, Helsinki, Finland.
| |
Collapse
|
6
|
Yeast ABC proteins involved in multidrug resistance. Cell Mol Biol Lett 2013; 19:1-22. [PMID: 24297686 PMCID: PMC6275743 DOI: 10.2478/s11658-013-0111-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 11/27/2013] [Indexed: 01/03/2023] Open
Abstract
Pleiotropic drug resistance is a complex phenomenon that involves many proteins that together create a network. One of the common mechanisms of multidrug resistance in eukaryotic cells is the active efflux of a broad range of xenobiotics through ATP-binding cassette (ABC) transporters. Saccharomyces cerevisiae is often used as a model to study such activity because of the functional and structural similarities of its ABC transporters to mammalian ones. Numerous ABC transporters are found in humans and some are associated with the resistance of tumors to chemotherapeutics. Efflux pump modulators that change the activity of ABC proteins are the most promising candidate drugs to overcome such resistance. These modulators can be chemically synthesized or isolated from natural sources (e.g., plant alkaloids) and might also be used in the treatment of fungal infections. There are several generations of synthetic modulators that differ in specificity, toxicity and effectiveness, and are often used for other clinical effects.
Collapse
|
7
|
Ribosome recycling step in yeast cytoplasmic protein synthesis is catalyzed by eEF3 and ATP. Proc Natl Acad Sci U S A 2010; 107:10854-9. [PMID: 20534490 DOI: 10.1073/pnas.1006247107] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
After each round of protein biosynthesis, the posttermination complex (PoTC) consisting of a ribosome, mRNA, and tRNA must be disassembled into its components for a new round of translation. Here, we show that a Saccharomyces cerevisiae model PoTC was disassembled by ATP and eukaryotic elongation factor 3 (eEF3). GTP or ITP functioned with less efficiency and adenosine 5gamma'-(beta,gamma-imido)triphosphate did not function at all. The k(cat) of eEF3 was 1.12 min(-1), which is comparable to that of the in vitro initiation step. The disassembly reaction was inhibited by aminoglycosides and cycloheximide. The subunits formed from the yeast model PoTC remained separated under ionic conditions close to those existing in vivo, suggesting that they are ready to enter the initiation process. Based on our experimental techniques used in this paper, the release of mRNA and tRNA and ribosome dissociation took place simultaneously. No 40S*mRNA complex was observed, indicating that eEF3 action promotes ribosome recycling, not reinitiation.
Collapse
|
8
|
Kovalchuk A, Driessen AJM. Phylogenetic analysis of fungal ABC transporters. BMC Genomics 2010; 11:177. [PMID: 20233411 PMCID: PMC2848647 DOI: 10.1186/1471-2164-11-177] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 03/16/2010] [Indexed: 12/22/2022] Open
Abstract
Background The superfamily of ABC proteins is among the largest known in nature. Its members are mainly, but not exclusively, involved in the transport of a broad range of substrates across biological membranes. Many contribute to multidrug resistance in microbial pathogens and cancer cells. The diversity of ABC proteins in fungi is comparable with those in multicellular animals, but so far fungal ABC proteins have barely been studied. Results We performed a phylogenetic analysis of the ABC proteins extracted from the genomes of 27 fungal species from 18 orders representing 5 fungal phyla thereby covering the most important groups. Our analysis demonstrated that some of the subfamilies of ABC proteins remained highly conserved in fungi, while others have undergone a remarkable group-specific diversification. Members of the various fungal phyla also differed significantly in the number of ABC proteins found in their genomes, which is especially reduced in the yeast S. cerevisiae and S. pombe. Conclusions Data obtained during our analysis should contribute to a better understanding of the diversity of the fungal ABC proteins and provide important clues about their possible biological functions.
Collapse
Affiliation(s)
- Andriy Kovalchuk
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands.
| | | |
Collapse
|
9
|
Anand M, Balar B, Ulloque R, Gross SR, Kinzy TG. Domain and nucleotide dependence of the interaction between Saccharomyces cerevisiae translation elongation factors 3 and 1A. J Biol Chem 2006; 281:32318-26. [PMID: 16954224 DOI: 10.1074/jbc.m601899200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic translation elongation factor 3 (eEF3) is a fungal-specific ATPase proposed to catalyze the release of deacylated-tRNA from the ribosomal E-site. In addition, it has been shown to interact with the aminoacyl-tRNA binding GTPase elongation factor 1A (eEF1A), perhaps linking the E and A sites. Domain mapping demonstrates that amino acids 775-980 contain the eEF1A binding sites. Domain III of eEF1A, which is also involved in actin-related functions, is the site of eEF3 binding. The binding of eEF3 to eEF1A is enhanced by ADP, indicating the interaction is favored post-ATP hydrolysis but is not dependent on the eEF1A-bound nucleotide. A temperature-sensitive P915L mutant in the eEF1A binding site of eEF3 has reduced ATPase activity and affinity for eEF1A. These results support the model that upon ATP hydrolysis, eEF3 interacts with eEF1A to help catalyze the delivery of aminoacyl-tRNA at the A-site of the ribosome. The dynamics of when eEF3 interacts with eEF1A may be part of the signal for transition of the post to pre-translocational ribosomal state in yeast.
Collapse
Affiliation(s)
- Monika Anand
- Department of Molecular Genetics, Microbiology and Immunology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
10
|
Kellis M, Birren BW, Lander ES. Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 2004; 428:617-24. [PMID: 15004568 DOI: 10.1038/nature02424] [Citation(s) in RCA: 1018] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2003] [Accepted: 01/19/2004] [Indexed: 11/09/2022]
Abstract
Whole-genome duplication followed by massive gene loss and specialization has long been postulated as a powerful mechanism of evolutionary innovation. Recently, it has become possible to test this notion by searching complete genome sequence for signs of ancient duplication. Here, we show that the yeast Saccharomyces cerevisiae arose from ancient whole-genome duplication, by sequencing and analysing Kluyveromyces waltii, a related yeast species that diverged before the duplication. The two genomes are related by a 1:2 mapping, with each region of K. waltii corresponding to two regions of S. cerevisiae, as expected for whole-genome duplication. This resolves the long-standing controversy on the ancestry of the yeast genome, and makes it possible to study the fate of duplicated genes directly. Strikingly, 95% of cases of accelerated evolution involve only one member of a gene pair, providing strong support for a specific model of evolution, and allowing us to distinguish ancestral and derived functions.
Collapse
Affiliation(s)
- Manolis Kellis
- The Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | |
Collapse
|
11
|
Anand M, Chakraburtty K, Marton MJ, Hinnebusch AG, Kinzy TG. Functional interactions between yeast translation eukaryotic elongation factor (eEF) 1A and eEF3. J Biol Chem 2003; 278:6985-91. [PMID: 12493761 DOI: 10.1074/jbc.m209224200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The translation elongation machinery in fungi differs from other eukaryotes in its dependence upon eukaryotic elongation factor 3 (eEF3). eEF3 is essential in vivo and required for each cycle of the translation elongation process in vitro. Models predict eEF3 affects the delivery of cognate aminoacyl-tRNA, a function performed by eEF1A, by removing deacylated tRNA from the ribosomal Exit site. To dissect eEF3 function and its link to the A-site activities of eEF1A, we have identified a temperature-sensitive allele of the YEF3 gene. The F650S substitution, located between the two ATP binding cassettes, reduces both ribosome-dependent and intrinsic ATPase activities. In vivo this mutation increases sensitivity to aminoglycosidic drugs, causes a 50% reduction of total protein synthesis at permissive temperatures, slows run-off of polyribosomes, and reduces binding to eEF1A. Reciprocally, excess eEF3 confers synthetic slow growth, increased drug sensitivity, and reduced translation in an allele specific fashion with an E122K mutation in the GTP binding domain of eEF1A. In addition, this mutant form of eEF1A shows reduced binding of eEF3. Thus, optimal in vivo interactions between eEF3 and eEF1A are critical for protein synthesis.
Collapse
Affiliation(s)
- Monika Anand
- Department of Molecular Genetics, Microbiology & Immunology, University of Medicine and Dentistry of New Jersey Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
12
|
Sturtevant J. Translation elongation-3-like factors: are they rational antifungal targets? Expert Opin Ther Targets 2002; 6:545-53. [PMID: 12387678 DOI: 10.1517/14728222.6.5.545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The occurrence of fungal infection has escalated significantly in recent years and is expected to continue to increase for the foreseeable future. Unfortunately, only a limited number of antifungal drugs are currently available partially due to a lack of suitable targets. The most commonly used antifungals target the same molecule in the cell membrane and, while efficacious, are either extremely toxic or susceptible to resistance. This article examines elongation factor-3, which is unique to fungi and essential for fungal cell survival and, thus, an attractive antifungal target. A search for inhibitors of this 'perfect target' led to identification of compounds (sordarins) which inhibited elongation factor-2, a protein with a mammalian homologue. Molecular analysis demonstrated why sordarins can specifically act against fungal elongation factor-2. This data questions the validity of pursuing genes as targets only if they are unique to fungi. Proteins that are homologous to elongation factor-3 are also discussed. The advances in molecular techniques and bioinformatics will allow the re-evaluation of targets previously thought to be unattractive. In addition, molecular genetics provides new and novel information on cellular processes that can potentially introduce new targets.
Collapse
Affiliation(s)
- Joy Sturtevant
- Dept of Microbiology, Immunology and Parasitology, Center of Excellence in Oral and Craniofacial Biology, LSU Health Sciences Center - School of Dentistry, 1100 Florida Ave, Box F8-130, New Orleans, LA 70119, USA.
| |
Collapse
|
13
|
Wolfger H, Mamnun YM, Kuchler K. Fungal ABC proteins: pleiotropic drug resistance, stress response and cellular detoxification. Res Microbiol 2001; 152:375-89. [PMID: 11421285 DOI: 10.1016/s0923-2508(01)01209-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A number of prominent genetic diseases are caused by mutations in genes encoding ATP-binding cassette (ABC) proteins (Ambudkar, Gottesmann, 1998). Moreover, several mammalian ABC proteins such as P-glycoprotein (P-gp) (Gottesman et al., 1995) and multidrug-resistance-associated proteins (MRPs) (Cole, Deeley, 1998) have been implicated in multidrug resistance (MDR) phenotypes of tumor cells highly resistant to many different anticancer drugs. The characteristics of MDR phenomena include the initial resistance to a single anticancer drug, followed by the development of cross-resistance to many structurally and functionally unrelated drugs. Similar mechanisms of MDR exist in pathogenic fungi, including Candida and Aspergillus (Vanden Bossche et al., 1998), and also in parasites such as Plasmodium and Leishmania (Ambudkar, Gottesmann, 1998), as well as in many bacterial pathogens (Nikaido, 1998). To dissect the mechanisms of MDR development and to elucidate the physiological functions of ABC proteins, many efforts have been made during the past decade. Importantly, yeast orthologues of mammalian disease genes made this unicellular eukaryote an invaluable model system for studies on the molecular mechanisms of ABC proteins, in order to better understand and perhaps improve treatment of ABC gene-related disease. In this review, we provide an overview of ABC proteins and pleiotropic drug resistance in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. Furthermore, we discuss the role of ABC proteins in clinical drug resistance development of certain fungal pathogens.
Collapse
Affiliation(s)
- H Wolfger
- Institute of Medical Biochemistry, Department of Molecular Genetics, University and Biocenter of Vienna, Austria
| | | | | |
Collapse
|
14
|
Abstract
The biochemistry of human nutritional zinc deficiency remains poorly defined. To characterize in genetic terms how cells respond to zinc deprivation, zinc-regulated genes (ZRG's) were identified in yeast. Gene expression was probed using random lacZ reporter gene fusions, integrated by transposon tagging into a diploid genome as previously described. About half of the genome was examined. Cells exhibiting differences in lacZ expression on low or moderate ( approximately 0. 1 vs. 10 microm) zinc media were isolated and the gene fusions were sequenced. Ribonuclease protection assays demonstrated four- to eightfold increases for the RNAs of the ZAP1, ZRG17 (YNR039c), DPP1, ADH4, MCD4, and YEF3B genes in zinc-deficient cells. All but YEF3B were shown through reporter gene assays to be controlled by a master regulator of zinc homeostasis now known to be encoded by ZAP1. ZAP1 mutants lacked the flocculence and distended vacuoles characteristic of zinc-deficient cells, suggesting that flocculation and vacuolation serve homeostatic functions in zinc-deficient cells. ZRG17 mutants required extra zinc supplementation to repress these phenotypes, suggesting that ZRG17 functions in zinc uptake. These findings illustrate the utility of transposon tagging as an approach for studying regulated gene expression in yeast.
Collapse
Affiliation(s)
- D S Yuan
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-2631, USA.
| |
Collapse
|
15
|
Bauer BE, Wolfger H, Kuchler K. Inventory and function of yeast ABC proteins: about sex, stress, pleiotropic drug and heavy metal resistance. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1461:217-36. [PMID: 10581358 DOI: 10.1016/s0005-2736(99)00160-1] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Saccharomyces cerevisiae was the first eukaryotic organism whose complete genome sequence has been determined, uncovering the existence of numerous genes encoding proteins of the ATP-binding cassette (ABC) family. Fungal ABC proteins are implicated in a variety of cellular functions, ranging from clinical drug resistance development, pheromone secretion, mitochondrial function, peroxisome biogenesis, translation elongation, stress response to cellular detoxification. Moreover, some yeast ABC proteins are orthologues of human disease genes, which makes yeast an excellent model system to study the molecular mechanisms of ABC protein-mediated disease. This review provides a comprehensive discussion and update on the function and transcriptional regulation of all known ABC genes from yeasts, including those discovered in fungal pathogens.
Collapse
Affiliation(s)
- B E Bauer
- Department of Molecular Genetics, University and Bio Center of Vienna, Dr. Bohr-Gasse 9/2, A-1030, Vienna, Austria
| | | | | |
Collapse
|
16
|
Abstract
Elongation factor 3 (EF-3) is a unique and essential requirement of the fungal translational apparatus. EF-3 is a monomeric protein with a molecular mass of 116,000. EF-3 is required by yeast ribosomes for in vitro translation and for in vivo growth. The protein stimulates the binding of EF-1 alpha :GTP:aa-tRNA ternary complex to the ribosomal A-site by facilitating release of deacylated-tRNA from the E-site. The reaction requires ATP hydrolysis. EF-3 contains two ATP-binding sequence motifs (NBS). NBSI is sufficient for the intrinsic ATPase function. NBSII is essential for ribosome-stimulated activity. By limited proteolysis, EF-3 was divided into two distinct functional domains. The N-terminal domain lacking the highly charged lysine blocks failed to bind ribosomes and was inactive in the ribosome-stimulated ATPase activity. The C-terminally derived lysine-rich fragment showed strong binding to yeast ribosomes. The purported S5 homology region of EF-3 at the N-terminal end has been reported to interact with 18S ribosomal RNA. We postulate that EF-3 contacts rRNA and/or protein(s) through the C-terminal end. Removal of these residues severely weakens its interaction mediated possibly through the N-terminal domain of the protein.
Collapse
Affiliation(s)
- K Chakraburtty
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee 53226, USA.
| |
Collapse
|
17
|
Georgopapadakou NH. Antifungals: mechanism of action and resistance, established and novel drugs. Curr Opin Microbiol 1998; 1:547-57. [PMID: 10066533 DOI: 10.1016/s1369-5274(98)80087-8] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Serious fungal infections, caused mostly by opportunistic species, are increasingly common in immunocompromised and other vulnerable patients. The use of antifungal drugs, primarily azoles and polyenes, has increased in parallel. Yet, established agents do not satisfy the medical need completely: azoles are fungistatic and vulnerable to resistance, whereas polyenes cause serious host toxicity. Drugs in clinical development include echinocandins, pneumocandins, and improved azoles. Promising novel agents in preclinical development include several inhibitors of fungal protein, lipid and cell wall syntheses. Recent advances in fungal genomics, combinatorial chemistry, and high-throughput screening may accelerate the antifungal discovery process.
Collapse
Affiliation(s)
- N H Georgopapadakou
- DuPont Pharmaceuticals Research Laboratories, Experimental Station, E400/3442, Rt 141 & Henry Clay Road, PO Box 80400, Wilmington DE 19880-0400, USA.
| |
Collapse
|