1
|
Mykles DL. Signaling Pathways That Regulate the Crustacean Molting Gland. Front Endocrinol (Lausanne) 2021; 12:674711. [PMID: 34234741 PMCID: PMC8256442 DOI: 10.3389/fendo.2021.674711] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/28/2021] [Indexed: 12/25/2022] Open
Abstract
A pair of Y-organs (YOs) are the molting glands of decapod crustaceans. They synthesize and secrete steroid molting hormones (ecdysteroids) and their activity is controlled by external and internal signals. The YO transitions through four physiological states over the molt cycle, which are mediated by molt-inhibiting hormone (MIH; basal state), mechanistic Target of Rapamycin Complex 1 (mTORC1; activated state), Transforming Growth Factor-β (TGFβ)/Activin (committed state), and ecdysteroid (repressed state) signaling pathways. MIH, produced in the eyestalk X-organ/sinus gland complex, inhibits the synthesis of ecdysteroids. A model for MIH signaling is organized into a cAMP/Ca2+-dependent triggering phase and a nitric oxide/cGMP-dependent summation phase, which maintains the YO in the basal state during intermolt. A reduction in MIH release triggers YO activation, which requires mTORC1-dependent protein synthesis, followed by mTORC1-dependent gene expression. TGFβ/Activin signaling is required for YO commitment in mid-premolt. The YO transcriptome has 878 unique contigs assigned to 23 KEGG signaling pathways, 478 of which are differentially expressed over the molt cycle. Ninety-nine contigs encode G protein-coupled receptors (GPCRs), 65 of which bind a variety of neuropeptides and biogenic amines. Among these are putative receptors for MIH/crustacean hyperglycemic hormone neuropeptides, corazonin, relaxin, serotonin, octopamine, dopamine, allatostatins, Bursicon, ecdysis-triggering hormone (ETH), CCHamide, FMRFamide, and proctolin. Contigs encoding receptor tyrosine kinase insulin-like receptor, epidermal growth factor (EGF) receptor, and fibroblast growth factor (FGF) receptor and ligands EGF and FGF suggest that the YO is positively regulated by insulin-like peptides and growth factors. Future research should focus on the interactions of signaling pathways that integrate physiological status with environmental cues for molt control.
Collapse
Affiliation(s)
- Donald L. Mykles
- Department of Biology, Colorado State University, Fort Collins, CO, United States
- University of California-Davis Bodega Marine Laboratory, Bodega Bay, CA, United States
| |
Collapse
|
2
|
Trapp M, Valle SC, Pöppl AG, Chittó ALF, Kucharski LC, Da Silva RSM. Insulin-like receptors and carbohydrate metabolism in gills of the euryhaline crab Neohelice granulata: Effects of osmotic stress. Gen Comp Endocrinol 2018; 262:81-89. [PMID: 29548758 DOI: 10.1016/j.ygcen.2018.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 03/11/2018] [Accepted: 03/12/2018] [Indexed: 11/16/2022]
Abstract
The present study determined the effect of osmotic stress on the insulin-like receptor binding characteristics and on glucose metabolism in the anterior (AG) and posterior (PG) gills of the crab Neohelice granulata. Bovine insulin increased the capacity of the PG cell membrane to phosphorylate exogenous substrate poly (Glu:Tyr 4:1) and the glucose uptake in the control crab group. The crabs were submitted to three periods of hyperosmotic (HR) and hyposmotic (HO) stress, for 24, 72 and 144 h, to investigate the insulin-like receptor phosphorylation capacity of gills. Acclimation to HO for 24 h or HR for 144 h of stress inhibited the effects of insulin in the PG, decreasing the capacity of insulin to phosphorylate exogenous substrate poly (Glu:Tyr 4:1) and decreasing the glucose uptake. Hyperosmotic stress for the same period of 144 h significantly affected 125I-insulin binding in the AG and PG. However, HO stress for 24 h significantly reduced 125I-insulin-specific uptake only in the PG. Therefore, osmotic stress induces alterations in the gill insulin-like receptors that decrease insulin binding in the PG. These findings indicate that osmotic stress induced a pattern of insulin resistance in the PG. The free-glucose concentration in the PG decreased during acclimation to 144 h of HR stress and 24 h of HO stress. This decrease in the cell free-glucose concentration was not accompanied by a significant change in hemolymph glucose levels. In AG from the control group, neither the capacity of bovine insulin to phosphorylate exogenous substrate poly (Glu:Tyr 4:1) nor the glucose uptake changed; however, genistein decreased tyrosine-kinase activity, confirming that this receptor belongs to the tyrosine-kinase family. Acclimation to HO (24 h) or HR (144 h) stress decreased tyrosine-kinase activity in the AG. This study provided new information on the mechanisms involved in the osmoregulation process in crustaceans, demonstrating for the first time in an estuarine crab that osmotic challenge inhibited insulin-like signaling and the effect of insulin on glucose uptake in the PG.
Collapse
Affiliation(s)
- Márcia Trapp
- Laboratório de Metabolismo e Endocrinologia Comparada, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul. Rua Sarmento Leite, 500, ICBS - Campus Centro, Porto Alegre CEP 90050-170, RS, Brazil.
| | - Sandra Costa Valle
- Laboratório de Metabolismo e Endocrinologia Comparada, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul. Rua Sarmento Leite, 500, ICBS - Campus Centro, Porto Alegre CEP 90050-170, RS, Brazil; Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1, Pelotas CEP 96010-610, RS, Brazil
| | - Alan Gomes Pöppl
- Laboratório de Metabolismo e Endocrinologia Comparada, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul. Rua Sarmento Leite, 500, ICBS - Campus Centro, Porto Alegre CEP 90050-170, RS, Brazil; Setor de Clínica de Pequenos Animais, Hospital de Clínicas Veterinárias, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves 9090, Agronomia, Porto Alegre CEP 91540-000, RS, Brazil
| | - Ana Lúcia Fernandes Chittó
- Laboratório de Metabolismo e Endocrinologia Comparada, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul. Rua Sarmento Leite, 500, ICBS - Campus Centro, Porto Alegre CEP 90050-170, RS, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga, 6681 Partenon, Porto Alegre CEP 90619-900, RS, Brazil
| | - Luiz Carlos Kucharski
- Laboratório de Metabolismo e Endocrinologia Comparada, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul. Rua Sarmento Leite, 500, ICBS - Campus Centro, Porto Alegre CEP 90050-170, RS, Brazil
| | - Roselis Silveira Martins Da Silva
- Laboratório de Metabolismo e Endocrinologia Comparada, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul. Rua Sarmento Leite, 500, ICBS - Campus Centro, Porto Alegre CEP 90050-170, RS, Brazil
| |
Collapse
|
3
|
Mechanistic target of rapamycin (mTOR) signaling genes in decapod crustaceans: cloning and tissue expression of mTOR, Akt, Rheb, and p70 S6 kinase in the green crab, Carcinus maenas, and blackback land crab, Gecarcinus lateralis. Comp Biochem Physiol A Mol Integr Physiol 2013; 168:25-39. [PMID: 24269559 DOI: 10.1016/j.cbpa.2013.11.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/29/2013] [Accepted: 11/13/2013] [Indexed: 01/01/2023]
Abstract
Mechanistic target of rapamycin (mTOR) controls global translation of mRNA into protein by phosphorylating p70 S6 kinase (S6K) and eIF4E-binding protein-1. Akt and Rheb, a GTP-binding protein, regulate mTOR protein kinase activity. Molting in crustaceans is regulated by ecdysteroids synthesized by a pair of molting glands, or Y-organs (YOs), located in the cephalothorax. During premolt, the YOs hypertrophy and increase production of ecdysteroids. Rapamycin (1μM) inhibited ecdysteroid secretion in Carcinus maenas and Gecarcinus lateralis YOs in vitro, indicating that ecdysteroidogenesis requires mTOR-dependent protein synthesis. The effects of molting on the expression of four key mTOR signaling genes (mTOR, Akt, Rheb, and S6K) in the YO was investigated. Partial cDNAs encoding green crab (C. maenas) mTOR (4031bp), Akt (855bp), and S6K (918bp) were obtained from expressed sequence tags. Identity/similarity of the deduced amino acid sequence of the C. maenas cDNAs to human orthologs were 72%/81% for Cm-mTOR, 58%/73% for Cm-Akt, and 77%/88% for Cm-S6K. mTOR, Akt, S6K, and elongation factor 2 (EF2) in C. maenas and blackback land crab (G. lateralis) were expressed in all tissues examined. The two species differed in the effects of molting on gene expression in the YO. In G. lateralis, Gl-mTOR, Gl-Akt, and Gl-EF2 mRNA levels were increased during premolt. By contrast, molting had no effect on the expression of Cm-mTOR, Cm-Akt, Cm-S6K, Cm-Rheb, and Cm-EF2. These data suggest that YO activation during premolt involves up regulation of mTOR signaling genes in G. lateralis, but is not required in C. maenas.
Collapse
|
4
|
MacLea KS, Abuhagr AM, Pitts NL, Covi JA, Bader BD, Chang ES, Mykles DL. Rheb, an activator of target of rapamycin, in the blackback land crab, Gecarcinus lateralis: cloning and effects of molting and unweighting on expression in skeletal muscle. ACTA ACUST UNITED AC 2012; 215:590-604. [PMID: 22279066 DOI: 10.1242/jeb.062869] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Molt-induced claw muscle atrophy in decapod crustaceans facilitates exuviation and is coordinated by ecdysteroid hormones. There is a 4-fold reduction in mass accompanied by remodeling of the contractile apparatus, which is associated with an 11-fold increase in myofibrillar protein synthesis by the end of the premolt period. Loss of a walking limb or claw causes a loss of mass in the associated thoracic musculature; this unweighting atrophy occurs in intermolt and is ecdysteroid independent. Myostatin (Mstn) is a negative regulator of muscle growth in mammals; it suppresses protein synthesis, in part, by inhibiting the insulin/metazoan target of rapamycin (mTOR) signaling pathway. Signaling via mTOR activates translation by phosphorylating ribosomal S6 kinase (s6k) and 4E-binding protein 1. Rheb (Ras homolog enriched in brain), a GTP-binding protein, is a key activator of mTOR and is inhibited by Rheb-GTPase-activating protein (GAP). Akt protein kinase inactivates Rheb-GAP, thus slowing Rheb-GTPase activity and maintaining mTOR in the active state. We hypothesized that the large increase in global protein synthesis in claw muscle was due to regulation of mTOR activity by ecdysteroids, caused either directly or indirectly via Mstn. In the blackback land crab, Gecarcinus lateralis, a Mstn-like gene (Gl-Mstn) is downregulated as much as 17-fold in claw muscle during premolt and upregulated 3-fold in unweighted thoracic muscle during intermolt. Gl-Mstn expression in claw muscle is negatively correlated with hemolymph ecdysteroid level. Full-length cDNAs encoding Rheb orthologs from three crustacean species (G. lateralis, Carcinus maenas and Homarus americanus), as well as partial cDNAs encoding Akt (Gl-Akt), mTOR (Gl-mTOR) and s6k (Gl-s6k) from G. lateralis, were cloned. The effects of molting on insulin/mTOR signaling components were quantified in claw closer, weighted thoracic and unweighted thoracic muscles using quantitative polymerase chain reaction. Gl-Rheb mRNA levels increased 3.4-fold and 3.9-fold during premolt in claw muscles from animals induced to molt by eyestalk ablation (ESA) and multiple leg autotomy (MLA), respectively, and mRNA levels were positively correlated with hemolymph ecdysteroids. There was little or no effect of molting on Gl-Rheb expression in weighted thoracic muscle and no correlation of Gl-Rheb mRNA with ecdysteroid titer. There were significant changes in Gl-Akt, Gl-mTOR and Gl-s6k expression with molt stage. These changes were transient and were not correlated with hemolymph ecdysteroids. The two muscles differed in terms of the relationship between Gl-Rheb and Gl-Mstn expression. In thoracic muscle, Gl-Rheb mRNA was positively correlated with Gl-Mstn mRNA in both ESA and MLA animals. By contrast, Gl-Rheb mRNA in claw muscle was negatively correlated with Gl-Mstn mRNA in ESA animals, and no correlation was observed in MLA animals. Unweighting increased Gl-Rheb expression in thoracic muscle at all molt stages; the greatest difference (2.2-fold) was observed in intermolt animals. There was also a 1.3-fold increase in Gl-s6k mRNA level in unweighted thoracic muscle. These data indicate that the mTOR pathway is upregulated in atrophic muscles. Gl-Rheb, in particular, appears to play a role in the molt-induced increase in protein synthesis in the claw muscle.
Collapse
Affiliation(s)
- Kyle S MacLea
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Estrus cycle effect on muscle tyrosine kinase activity in bitches. Vet Res Commun 2011; 36:81-4. [DOI: 10.1007/s11259-011-9513-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2011] [Indexed: 11/29/2022]
|
6
|
Kucharski LC, Schein V, Capp E, da Silva RSM. In vitro insulin stimulatory effect on glucose uptake and glycogen synthesis in the gills of the estuarine crab Chasmagnathus granulata. Gen Comp Endocrinol 2002; 125:256-63. [PMID: 11884071 DOI: 10.1006/gcen.2001.7748] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of the present study was to examine the effects of insulin on glucose uptake and glycogen synthesis in crab Chasmagnathus granulata gills. We observed an increased glucose uptake and incorporation of d-[(14)C]glucose into glycogen when posterior C. granulata gills were incubated in the presence of insulin; however, this was not observed in anterior gills, despite the presence of similar insulin receptors. In posterior gills, basal glucose uptake in the summer was significantly higher than in the winter. Moreover, in the summer, the insulin dose required to stimulate glucose uptake was twice as high as in the winter. However, there was no significant difference in terms of basal glycogen synthesis in summer and winter. In crustaceans, the endogenous insulin/IGFI substance might be involved in the rapid restoration of glycogen levels in the gills, increasing glucose uptake and glycogen synthesis. Bovine insulin seems to have a stimulatory effect on glycogen metabolism only in posterior gills.
Collapse
Affiliation(s)
- Luiz Carlos Kucharski
- Department of Physiology, Instituto de Ciências Básicas da Saúde, Porto Alegre, RS, 90050-170, Brazil
| | | | | | | |
Collapse
|