1
|
Zhang SZ, Lobo A, Li PF, Zhang YF. Sialylated glycoproteins and sialyltransferases in digestive cancers: Mechanisms, diagnostic biomarkers, and therapeutic targets. Crit Rev Oncol Hematol 2024; 197:104330. [PMID: 38556071 DOI: 10.1016/j.critrevonc.2024.104330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024] Open
Abstract
Sialic acid (SA), as the ultimate epitope of polysaccharides, can act as a cap at the end of polysaccharide chains to prevent their overextension. Sialylation is the enzymatic process of transferring SA residues onto polysaccharides and is catalyzed by a group of enzymes known as sialyltransferases (SiaTs). It is noteworthy that the sialylation level of glycoproteins is significantly altered when digestive cancer occurs. And this alteration exhibits a close correlation with the progression of these cancers. In this review, from the perspective of altered SiaTs expression levels and changed glycoprotein sialylation patterns, we summarize the pathogenesis of gastric cancer (GC), colorectal cancer (CRC), pancreatic ductal adenocarcinoma (PDAC), and hepatocellular carcinoma (HCC). Furthermore, we propose potential early diagnostic biomarkers and prognostic indicators for different digestive cancers. Finally, we summarize the therapeutic value of sialylation in digestive system cancers.
Collapse
Affiliation(s)
- Shao-Ze Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Amara Lobo
- Department of Critical Care Medicine Holy Family Hospital, St Andrew's Road, Bandra (West), Mumbai 400050, India
| | - Pei-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
2
|
Dragon AC, Beermann LM, Umland M, Bonifacius A, Malinconico C, Ruhl L, Kehler P, Gellert J, Weiß L, Mayer-Hain S, Zimmermann K, Riese S, Thol F, Beutel G, Maecker-Kolhoff B, Yamamoto F, Blasczyk R, Schambach A, Hust M, Hudecek M, Eiz-Vesper B. CAR-Ts redirected against the Thomsen-Friedenreich antigen CD176 mediate specific elimination of malignant cells from leukemia and solid tumors. Front Immunol 2023; 14:1219165. [PMID: 37915564 PMCID: PMC10616308 DOI: 10.3389/fimmu.2023.1219165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023] Open
Abstract
Introduction Chimeric antigen receptor-engineered T cells (CAR-Ts) are investigated in various clinical trials for the treatment of cancer entities beyond hematologic malignancies. A major hurdle is the identification of a target antigen with high expression on the tumor but no expression on healthy cells, since "on-target/off-tumor" cytotoxicity is usually intolerable. Approximately 90% of carcinomas and leukemias are positive for the Thomsen-Friedenreich carbohydrate antigen CD176, which is associated with tumor progression, metastasis and therapy resistance. In contrast, CD176 is not accessible for ligand binding on healthy cells due to prolongation by carbohydrate chains or sialylation. Thus, no "on-target/off-tumor" cytotoxicity and low probability of antigen escape is expected for corresponding CD176-CAR-Ts. Methods Using the anti-CD176 monoclonal antibody (mAb) Nemod-TF2, the presence of CD176 was evaluated on multiple healthy or cancerous tissues and cells. To target CD176, we generated two different 2nd generation CD176-CAR constructs differing in spacer length. Their specificity for CD176 was tested in reporter cells as well as primary CD8+ T cells upon co-cultivation with CD176+ tumor cell lines as models for CD176+ blood and solid cancer entities, as well as after unmasking CD176 on healthy cells by vibrio cholerae neuraminidase (VCN) treatment. Following that, both CD176-CARs were thoroughly examined for their ability to initiate target-specific T-cell signaling and activation, cytokine release, as well as cytotoxicity. Results Specific expression of CD176 was detected on primary tumor tissues as well as on cell lines from corresponding blood and solid cancer entities. CD176-CARs mediated T-cell signaling (NF-κB activation) and T-cell activation (CD69, CD137 expression) upon recognition of CD176+ cancer cell lines and unmasked CD176, whereby a short spacer enabled superior target recognition. Importantly, they also released effector molecules (e.g. interferon-γ, granzyme B and perforin), mediated cytotoxicity against CD176+ cancer cells, and maintained functionality upon repetitive antigen stimulation. Here, CD176L-CAR-Ts exhibited slightly higher proliferation and mediator-release capacities. Since both CD176-CAR-Ts did not react towards CD176- control cells, their response proved to be target-specific. Discussion Genetically engineered CD176-CAR-Ts specifically recognize CD176 which is widely expressed on cancer cells. Since CD176 is masked on most healthy cells, this antigen and the corresponding CAR-Ts represent a promising approach for the treatment of various blood and solid cancers while avoiding "on-target/off-tumor" cytotoxicity.
Collapse
Affiliation(s)
- Anna Christina Dragon
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School (MHH), Hannover, Germany
| | - Luca Marie Beermann
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School (MHH), Hannover, Germany
| | - Melina Umland
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School (MHH), Hannover, Germany
| | - Agnes Bonifacius
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School (MHH), Hannover, Germany
| | - Chiara Malinconico
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School (MHH), Hannover, Germany
| | - Louisa Ruhl
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School (MHH), Hannover, Germany
| | | | | | | | | | - Katharina Zimmermann
- Institute of Experimental Hematology, Hannover Medical School (MHH), Hannover, Germany
| | - Sebastian Riese
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School (MHH), Hannover, Germany
| | - Felicitas Thol
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany
| | - Gernot Beutel
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany
| | - Britta Maecker-Kolhoff
- Department of Pediatric Hematology and Oncology, Hannover Medical School (MHH), Hannover, Germany
| | | | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School (MHH), Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School (MHH), Hannover, Germany
| | - Michael Hust
- Department of Medical Biotechnology, Technical University of Braunschweig, Braunschweig, Germany
| | - Michael Hudecek
- Department of Internal Medicine II, University Hospital of Würzburg, Wuerzburg, Germany
| | - Britta Eiz-Vesper
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School (MHH), Hannover, Germany
| |
Collapse
|
3
|
Radziejewska I. Galectin-3 and Epithelial MUC1 Mucin-Interactions Supporting Cancer Development. Cancers (Basel) 2023; 15:2680. [PMID: 37345016 DOI: 10.3390/cancers15102680] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 06/23/2023] Open
Abstract
Aberrant glycosylation of cell surface proteins is a very common feature of many cancers. One of the glycoproteins, which undergoes specific alterations in the glycosylation of tumor cells is epithelial MUC1 mucin, which is highly overexpressed in the malignant state. Such changes lead to the appearance of tumor associated carbohydrate antigens (TACAs) on MUC1, which are rarely seen in healthy cells. One of these structures is the Thomsen-Friedenreich disaccharide Galβ1-3GalNAc (T or TF antigen), which is typical for about 90% of cancers. It was revealed that increased expression of the T antigen has a big impact on promoting cancer progression and metastasis, among others, due to the interaction of this antigen with the β-galactose binding protein galectin-3 (Gal-3). In this review, we summarize current information about the interactions between the T antigen on MUC1 mucin and Gal-3, and their impact on cancer progression and metastasis.
Collapse
Affiliation(s)
- Iwona Radziejewska
- Department of Medical Chemistry, Medical University of Białystok, ul. Mickiewicza 2a, 15-222 Białystok, Poland
| |
Collapse
|
4
|
OUP accepted manuscript. Glycobiology 2022; 32:556-579. [DOI: 10.1093/glycob/cwac014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/22/2022] [Accepted: 03/09/2022] [Indexed: 11/12/2022] Open
|
5
|
Szczykutowicz J, Tkaczuk-Włach J, Ferens-Sieczkowska M. Glycoproteins Presenting Galactose and N-Acetylgalactosamine in Human Seminal Plasma as Potential Players Involved in Immune Modulation in the Fertilization Process. Int J Mol Sci 2021; 22:ijms22147331. [PMID: 34298952 PMCID: PMC8303229 DOI: 10.3390/ijms22147331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/20/2022] Open
Abstract
In light of recent research, there is increasing evidence showing that extracellular semen components have a significant impact on the immune reaction of the female partner, leading to the tolerogenic response enabling the embryo development and implantation as well as further progress of healthy pregnancy. Seminal plasma glycoproteins are rich in the unique immunomodulatory glycoepitopes that may serve as ligands for endogenous lectins that decorate the surface of immune cells. Such interaction may be involved in modulation of the maternal immune response. Among immunomodulatory glycans, Lewis type antigens have been of interest for at least two decades, while the importance of T/Tn antigens and related structures is still far from understanding. In the current work, we applied two plant lectins capable of distinguishing glycoepitopes with terminal GalNAc and Gal to identify glycoproteins that are their efficient carriers. By means of lectin blotting and lectin affinity chromatography followed by LC-MS, we identified lactotransferrin, prolactin inducible protein as well as fibronectin and semenogelins 1 and 2 as lectin-reactive. Net-O-glycosylation analysis results indicated that the latter three may actually carry T and/or Tn antigens, while in the case of prolactin inducible protein and lactotransferrin LacdiNAc and lactosamine glycoepitopes were more probable. STRING bioinformatics analysis linked the identified glycoproteins in the close network, indicating their involvement in immune (partially innate) processes. Overall, our research revealed potential seminal plasma ligands for endogenous Gal/GalNAc specific lectins with a possible role in modulation of maternal immune response during fertilization.
Collapse
Affiliation(s)
- Justyna Szczykutowicz
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-369 Wrocław, Poland;
| | - Joanna Tkaczuk-Włach
- Laboratory of Diagnostic Techniques, Medical University of Lublin, 20-081 Lublin, Poland;
- Family Health Centre AB OVO, 20-819 Lublin, Poland
| | - Mirosława Ferens-Sieczkowska
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-369 Wrocław, Poland;
- Correspondence:
| |
Collapse
|
6
|
Sclerotium rolfsii lectin induces opposite effects on normal PBMCs and leukemic Molt-4 cells by recognising TF antigen and its variants as receptors. Glycoconj J 2020; 37:251-261. [PMID: 31900725 DOI: 10.1007/s10719-019-09905-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/13/2019] [Accepted: 12/20/2019] [Indexed: 01/02/2023]
Abstract
Sclerotium rolfsii lectin (SRL) exerts apoptotic effect against various cancer cells and an antitumor activity on mice with colon and breast cancer xenografts. The current study aimed to explore its exquisite carbohydrate specificity on human peripheral blood mononuclear cells (PBMCs) and leukemic T-cells. SRL, showed strong binding (>98%) to resting/activated PBMCs, leukemic Molt-4 and Jurkat cell lines. The glycans mediated binding to these cells was effectively blocked by mucin and fetuin, exhibiting 97% and 94% inhibition respectively. SRL showed mitogenic stimulation of PBMCs at 10 μg/ml as determined by thymidine incorporation assay. In contrast, lectin induced a dose dependent growth inhibition of Molt-4 cells with 58% inhibition at 25 μg/ml. Many common membrane receptors in activated PBMCs, Molt 4 and Jurkat cells were identified by lectin blotting. However, membrane receptors that are recognized by SRL in normal resting PBMCs were totally different and are high molecular weight glycoproteins. Treatment of membrane receptors with glycosidases prior to lectin probing, revealed that fucosylated Thomsen-Friedenreich(TF) antigen glycans are increasingly expressed on transformed Molt-4 leukemic cells compared to other cells. The findings highlight the opposite effects of SRL on transformed and normal hematopoietic cells by recognizing different glycan-receptors. SRL has promising potential for diagnostics and therapeutic applications in leukaemia.
Collapse
|
7
|
Prognostic and Clinicopathological Significance of MUC Family Members in Colorectal Cancer: A Systematic Review and Meta-Analysis. Gastroenterol Res Pract 2019; 2019:2391670. [PMID: 31933627 PMCID: PMC6942850 DOI: 10.1155/2019/2391670] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 10/24/2019] [Accepted: 11/11/2019] [Indexed: 12/11/2022] Open
Abstract
Objective To assess the association between MUC expression levels in colorectal cancer (CRC) tissues and prognosis and investigate the associations between MUC expression levels and CRC clinicopathological characteristics. Methods The PubMed, Embase, Cochrane Library, and Web of Science databases were searched from inception through September 13, 2019, to identify studies investigating the association between MUC expression levels in CRC tissues and prognosis. Pooled hazard ratios (HRs) or odds ratio (ORs) with 95% confidence intervals (CIs) were used to evaluate associations between MUC expression levels and prognosis or clinicopathological characteristics, respectively. The heterogeneity between studies was assessed by the I2 values, whereas the likelihood of publication bias was assessed by Egger's linear regression and Begg's rank correlation test. Results Among 33 included studies (n = 6032 patients), there were no associations between combined MUC phenotype expression levels and overall survival (OS) or disease-free survival (DFS)/relapse-free survival (RFS) in patients with CRC. In subgroup analyses, the upregulated MUC1 expression (HR = 1.50; 95% CI, 1.29–1.74; P < 0.00001) was associated with poor OS. However, the upregulated MUC2 expression (HR = 0.64; 95% CI, 0.52–0.79; P < 0.00001) was associated with better OS. Furthermore, a high level of MUC1 expression (HR = 1.99; 95% CI, 0.99–3.99; P = 0.05) was associated with shorter DFS/RFS. However, patients with a low level of MUC2 tumors showed better DFS/RFS than patients with a high level of MUC2 tumors (HR = 0.71; 95% CI, 0.49–1.04; P = 0.08; P = 0.0.009, I2 = 67%) and MUC5AC expression (HR = 0.56; 95% CI, 0.38–0.82; P = 0.003) was associated with longer DFS/RFS. In addition, a high level of MUC1 expression was associated with CRC in the rectum, deeper invasion, lymph node metastasis, distant metastasis, advanced tumor stage, and lymphatic invasion. A high level of MUC2 expression had a protective effect. High secretion of MUC5AC is associated with colon cancer compared with rectal cancer. Conclusion The protein expression of MUC1 might be a poor biomarker in colorectal cancer and might play a role in tumor transformation and metastasis. However, the protein expression of MUC2 expression might have a protective effect. Furthermore, randomized controlled trials (RCTs) of large patients are needed to confirm the results.
Collapse
|
8
|
Heublein S, Egger M, Zhu J, Berger L, Mayr D, Schindlbeck C, Kuhn C, Hofmann SS, Schuetz F, Jeschke U, Ditsch N. Evaluation of the anti-Thomsen-Friedenreich antibodies Nemod-TF1 and Nemod-TF2 as prognostic markers in breast cancer. Breast Cancer Res Treat 2019; 179:643-652. [PMID: 31828591 DOI: 10.1007/s10549-019-05503-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 11/19/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE The TF (Thomsen-Friedenreich, CD176, Galβ1-3GalNAc) carbohydrate moiety is known as a specific oncofetal carbohydrate epitope present in fetal and neoplastic tissue as well as in stem cells. TF was demonstrated to mediate tumor-promoting features and to be highly immunogenic. The current study aimed to evaluate whether presence of the TF antigen is associated with clinico-pathological parameters and prognosis of early breast cancer (BC). METHODS Primary BC tissue (n = 226) was stained for TF using two monoclonal anti-TF antibodies (Nemod-TF1, Nemod-TF2). Staining results were correlated to clinical data including survival. RESULTS Nemod-TF1 staining was positively correlated to lymph node metastasis (p = 0.03) and the presence of tumor-associated MUC1 (TA-MUC1; p = 0.003). Further, the presence of the Nemod-TF1 epitope predicted worse prognosis in TA-MUC1 positive (overall survival: p = 0.026) as well as in triple negative (overall survival: p = 0.002; distant metastasis-free survival: p = 0.012) BC. CONCLUSIONS The data presented here further support a role of TF in BC tumor biology. Whether anti-TF directed treatment approaches may gain clinical relevance in those cases determined as triple negative or TA-MUC1 positive remains to be determined.
Collapse
Affiliation(s)
- Sabine Heublein
- Department of Obstetrics and Gynecology, Heidelberg University Hospital, Heidelberg, Germany. .,Department of Obstetrics and Gynecology, Ludwig-Maximilians-University of Munich, Munich, Germany.
| | - Markus Egger
- Department of Obstetrics and Gynecology, Ludwig-Maximilians-University of Munich, Munich, Germany.,St. Anna Kinderspital, Vienna, Austria
| | - Junyan Zhu
- Department of Obstetrics and Gynecology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Luisa Berger
- Department of Obstetrics and Gynecology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Doris Mayr
- Department of Pathology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | | | - Christina Kuhn
- Department of Obstetrics and Gynecology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Simone S Hofmann
- Department of Obstetrics and Gynecology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Florian Schuetz
- Department of Obstetrics and Gynecology, Heidelberg University Hospital, Heidelberg, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, Ludwig-Maximilians-University of Munich, Munich, Germany.,Department of Obstetrics and Gynecology, University Hospital Augsburg, Augsburg, Germany
| | - Nina Ditsch
- Department of Obstetrics and Gynecology, Ludwig-Maximilians-University of Munich, Munich, Germany.,Department of Obstetrics and Gynecology, University Hospital Augsburg, Augsburg, Germany
| |
Collapse
|
9
|
Rangel MG, Silva MLS. Detection of the cancer-associated T antigen using an Arachis hypogaea agglutinin biosensor. Biosens Bioelectron 2019; 141:111401. [DOI: 10.1016/j.bios.2019.111401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 01/01/2023]
|
10
|
Li C, Liu T, Yin L, Zuo D, Lin Y, Wang L. Prognostic and clinicopathological value of MUC1 expression in colorectal cancer: A meta-analysis. Medicine (Baltimore) 2019; 98:e14659. [PMID: 30817589 PMCID: PMC6831235 DOI: 10.1097/md.0000000000014659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 01/22/2019] [Accepted: 01/30/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Accumulating evidence supports the overexpression of mucin 1 (MUC1) in colorectal cancer (CRC), but the value of elevated MUC1 expression remains controversial. Here, we evaluated the prognostic and clinicopathological value of MUC1 expression in CRC. MATERIALS AND METHODS The Web of Science, PubMed, Embase, Cochrane Library, and Wanfang databases, as well as the China Biology Medicine disc (CBMdisc) and China National Knowledge Infrastructure (CNKI) were searched for studies on MUC1 expression and prognosis of CRC through July 20, 2018. The pooled relative risks (RRs) and hazard ratios (HRs) with 95% confidence intervals (95% CIs) were calculated to evaluate the prognostic and clinicopathological value of MUC1 expression in CRC. The Revman version 5.3 package and STATA, version 12 were employed for pooled analysis and analysis of publication bias. RESULTS This meta-analysis included 16 published studies. The combined analysis showed that CRC patients with high MUC1 expression had a worse clinical outcome in overall survival (OS) (HR = 1.51, 95% CI = 1.30-1.75, P <.00001). In addition, high MUC1 expression was associated with higher TNM stage (RR = 1.44, 95% CI = 1.17-1.77, P = .0007), greater depth of invasion (RR = 1.30, 95% CI = 1.10-1.53, P = .002), and lymph node metastasis (RR = 1.47, 95% CI = 1.20-1.80, P = .0002) of CRC. However, the elevated MUC1 expression was not related to disease-free survival/recurrence-free survival (DFS/RFS) (HR = 1.51, 95% CI = 0.78-2.89, P = .22), histological grade (RR = 1.15, 95% CI = 0.96-1.38, P = .12), gender (RR = 0.95; 95% CI = 0.83-1.08, P = .44), tumor size (RR = 1.11, 95% CI = 0.85-1.44, P = .44), tumor site (RR = 1.01, 95% CI = 0.88-1.16, P = .84), or mucinous component (RR = 0.83, 95% CI = 0.60-1.14, P = .24) in CRC. CONCLUSION Our findings indicated that high MUC1 expression represents a marker of poor prognosis in CRC. Meanwhile, elevated MUC1 expression was associated with advanced TNM stage, greater depth of invasion, and lymph node metastasis.
Collapse
Affiliation(s)
- Chao Li
- Department of Colorectal and Anal Surgery
| | - Tao Liu
- Department of Colorectal and Anal Surgery
| | - Libin Yin
- Department of Colorectal and Anal Surgery
| | - Didi Zuo
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Yuyang Lin
- Department of Colorectal and Anal Surgery
| | - Lei Wang
- Department of Colorectal and Anal Surgery
| |
Collapse
|
11
|
Lavrsen K, Dabelsteen S, Vakhrushev SY, Levann AMR, Haue AD, Dylander A, Mandel U, Hansen L, Frödin M, Bennett EP, Wandall HH. De novo expression of human polypeptide N-acetylgalactosaminyltransferase 6 (GalNAc-T6) in colon adenocarcinoma inhibits the differentiation of colonic epithelium. J Biol Chem 2017; 293:1298-1314. [PMID: 29187600 DOI: 10.1074/jbc.m117.812826] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/27/2017] [Indexed: 12/25/2022] Open
Abstract
Aberrant expression of O-glycans is a hallmark of epithelial cancers. Mucin-type O-glycosylation is initiated by a large family of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases (GalNAc-Ts) that target different proteins and are differentially expressed in cells and organs. Here, we investigated the expression patterns of all of the GalNAc-Ts in colon cancer by analyzing transcriptomic data. We found that GalNAc-T6 was highly up-regulated in colon adenocarcinomas but absent in normal-appearing adjacent colon tissue. These results were verified by immunohistochemistry, suggesting that GalNAc-T6 plays a role in colon carcinogenesis. To investigate the function of GalNAc-T6 in colon cancer, we used precise gene targeting to produce isogenic colon cancer cell lines with a knockout/rescue system for GALNT6 GalNAc-T6 expression was associated with a cancer-like, dysplastic growth pattern, whereas GALNT6 knockout cells showed a more normal differentiation pattern, reduced proliferation, normalized cell-cell adhesion, and formation of crypts in tissue cultures. O-Glycoproteomic analysis of the engineered cell lines identified a small set of GalNAc-T6-specific targets, suggesting that this isoform has unique cellular functions. In support of this notion, the genetically and functionally closely related GalNAc-T3 homolog did not show compensatory functionality for effects observed for GalNAc-T6. Taken together, these data strongly suggest that aberrant GalNAc-T6 expression and site-specific glycosylation is involved in oncogenic transformation.
Collapse
Affiliation(s)
- Kirstine Lavrsen
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, and
| | - Sally Dabelsteen
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, and
| | - Sergey Y Vakhrushev
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, and
| | - Asha M R Levann
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, and
| | - Amalie Dahl Haue
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, and
| | - August Dylander
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, and
| | - Ulla Mandel
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, and
| | - Lars Hansen
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, and
| | - Morten Frödin
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK 2200, Copenhagen N, Denmark
| | - Eric P Bennett
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, and
| | - Hans H Wandall
- From the Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, and
| |
Collapse
|
12
|
Corfield A. Eukaryotic protein glycosylation: a primer for histochemists and cell biologists. Histochem Cell Biol 2017; 147:119-147. [PMID: 28012131 PMCID: PMC5306191 DOI: 10.1007/s00418-016-1526-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2016] [Indexed: 12/21/2022]
Abstract
Proteins undergo co- and posttranslational modifications, and their glycosylation is the most frequent and structurally variegated type. Histochemically, the detection of glycan presence has first been performed by stains. The availability of carbohydrate-specific tools (lectins, monoclonal antibodies) has revolutionized glycophenotyping, allowing monitoring of distinct structures. The different types of protein glycosylation in Eukaryotes are described. Following this educational survey, examples where known biological function is related to the glycan structures carried by proteins are given. In particular, mucins and their glycosylation patterns are considered as instructive proof-of-principle case. The tissue and cellular location of glycoprotein biosynthesis and metabolism is reviewed, with attention to new findings in goblet cells. Finally, protein glycosylation in disease is documented, with selected examples, where aberrant glycan expression impacts on normal function to let disease pathology become manifest. The histological applications adopted in these studies are emphasized throughout the text.
Collapse
Affiliation(s)
- Anthony Corfield
- Mucin Research Group, School of Clinical Sciences, Bristol Royal Infirmary, University of Bristol, Bristol, BS2 8HW, UK.
| |
Collapse
|
13
|
Geiger P, Mayer B, Wiest I, Schulze S, Jeschke U, Weissenbacher T. Binding of galectin-1 to breast cancer cells MCF7 induces apoptosis and inhibition of proliferation in vitro in a 2D- and 3D- cell culture model. BMC Cancer 2016; 16:870. [PMID: 27825375 PMCID: PMC5101677 DOI: 10.1186/s12885-016-2915-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/27/2016] [Indexed: 08/23/2023] Open
Abstract
Background Galectin-1 (gal-1) belongs to the family of β-galactoside-binding proteins which primarily recognizes the Galβ1-4GlcNAc sequences of oligosaccharides associated with several cell surface glycoconjugates. The lectin recognizes correspondent glycoepitopes on human breast cancer cells. Galectin-1 is expressed both in normal and malignant tissues. Lymphatic organs naturally possessing high rates of apoptotic cells, express high levels of Galectin-1. Furthermore galectin-1 can initiate T cell apoptosis. Binding of galectin-1 to trophoblast tumor cells presenting the oncofetal Thomsen-Friedenreich (TF) carbohydrate antigen inhibits tumor cell proliferation. In this study we examined the impact galectin-1 has in vitro on cell proliferation, apoptotic potential and metabolic activity of MCF-7 and T-47D breast cancer cells in dependence to their expression of the Thomsen-Friedenreich (TF) tumor antigen. Methods For proliferation and apoptosis assays cells were grown in presence of 10, 30 and 60 μg gal-1/ml medium. Cell proliferation was determined by a BrdU uptake ELISA. Detection of apoptotic cells was done by M30 cyto death staining, in situ nick translation and by a nucleosome ELISA method. Furthermore we studied the impact galectin-1 has on the metabolic activity of MCF-7 and T-47D cells in a homotypic three-dimensional spheroid cell culture model mimicking a micro tumour environment. Results Gal-1 inhibited proliferation of MCF-7 cells (strong expression of the TF epitope) but did not significantly change proliferation of T-47D cells (weak expression of the TF epitope). The incubation of MCF-7 cells with gal-1 raised number of apoptotic cells significantly. Treating the spheroids with 30 μg/ml galectin-1 in addition to standard chemotherapeutic regimes (FEC, TAC) resulted in further suppression of the metabolic activity in MCF-7 cells whereas T-47D cells were not affected. Conclusions Our results demonstrate that galectin-1 can inhibit proliferation und metabolic cell activity and induce apoptosis in breast tumor cell lines with high expression levels of the Thomsen-Friedenreich (TF) antigen in monolayer and spheroid cell culture models.
Collapse
Affiliation(s)
- Pamina Geiger
- Department of Obstetrics and Gynecology, LMU Munich-Innenstadt, Maistrasse 11, 80337, München, Germany
| | - Barbara Mayer
- Department of General, Visceral and Transplantation Surgery, Hospital of the LMU Munich, Marchioninistr 15, 81377, Munich, Germany
| | - Irmi Wiest
- Department of Obstetrics and Gynecology, LMU Munich-Innenstadt, Maistrasse 11, 80337, München, Germany
| | - Sandra Schulze
- Department of Obstetrics and Gynecology, LMU Munich-Innenstadt, Maistrasse 11, 80337, München, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, LMU Munich-Innenstadt, Maistrasse 11, 80337, München, Germany.
| | - Tobias Weissenbacher
- Department of Obstetrics and Gynecology, LMU Munich-Innenstadt, Maistrasse 11, 80337, München, Germany
| |
Collapse
|
14
|
Fu C, Zhao H, Wang Y, Cai H, Xiao Y, Zeng Y, Chen H. Tumor-associated antigens: Tn antigen, sTn antigen, and T antigen. HLA 2016; 88:275-286. [PMID: 27679419 DOI: 10.1111/tan.12900] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 02/06/2023]
Abstract
Glycosylation is one of the major posttranslational modifications of proteins. N-glycosylation (Asn-linked) and O-glycosylation (Ser/Thr-linked) are the two main forms. Abnormal O-glycosylation is frequently observed on the surface of tumor cells, and is associated with an adverse outcome and poor prognosis in patients with cancer. O-glycans (Tn, sTn, and T antigen) can be synthesized in the Golgi apparatus with the aid of several glycosyltransferases (such as T-synthase and ST6GalNAc-I) in a suitable environment. The unique molecular chaperone of T-synthase is Cosmc, which helps T-synthase to fold correctly in the endoplasmic reticulum. Dysregulation of these glycosyltransferases, molecular chaperones, or the environment is involved in the dysregulation of O-glycans. Tn, sTn, and T antigen neo- or over-expression occurs in many types of cancer including gastric, colon, breast, lung, esophageal, prostate, and endometrial cancer. This review discusses the major synthetic pathway of O-glycans and the mechanism by which Tn, sTn, and T antigens promote tumor metastasis.
Collapse
Affiliation(s)
- C Fu
- Institute of Spinal Medicine and Trauma, Department of Spinal Surgery Ward/Center for Minimally Invasive Spine Surgery, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China
| | - H Zhao
- Institute of Spinal Medicine and Trauma, Department of Spinal Surgery Ward/Center for Minimally Invasive Spine Surgery, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China
| | - Y Wang
- The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China
| | - H Cai
- Department of Hematology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China
| | - Y Xiao
- Institute of Spinal Medicine and Trauma, Department of Spinal Surgery Ward/Center for Minimally Invasive Spine Surgery, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China
| | - Y Zeng
- Medical College of China Three Gorges University, Yichang, China
| | - H Chen
- Institute of Spinal Medicine and Trauma, Department of Spinal Surgery Ward/Center for Minimally Invasive Spine Surgery, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China
| |
Collapse
|
15
|
Chia J, Goh G, Bard F. Short O-GalNAc glycans: regulation and role in tumor development and clinical perspectives. Biochim Biophys Acta Gen Subj 2016; 1860:1623-39. [PMID: 26968459 DOI: 10.1016/j.bbagen.2016.03.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/03/2016] [Accepted: 03/03/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND While the underlying causes of cancer are genetic modifications, changes in cellular states mediate cancer development. Tumor cells display markedly changed glycosylation states, of which the O-GalNAc glycans called the Tn and TF antigens are particularly common. How these antigens get over-expressed is not clear. The expression levels of glycosylation enzymes fail to explain it. SCOPE OF REVIEW We describe the regulation of O-GalNAc glycosylation initiation and extension with emphasis on the initiating enzymes ppGalNAcTs (GALNTs), and introduce the GALA pathway--a change in GALNTs compartmentation within the secretory pathway that regulates Tn levels. We discuss the roles of O-GalNAc glycans and GALNTs in tumorigenic processes and finally consider diagnostic and therapeutic perspectives. MAJOR CONCLUSIONS Contrary to a common hypothesis, short O-glycans in tumors are not the result of an incomplete glycosylation process but rather reveal the activation of regulatory pathways. Surprisingly, high Tn levels reveal a major shift in the O-glycoproteome rather than a shortening of O-glycans. These changes are driven by membrane trafficking events. GENERAL SIGNIFICANCE Many attempts to use O-glycans for biomarker, antibody and therapeutic vaccine development have been made, but suffer limitations including poor sensitivity and/or specificity that may in part derive from lack of a mechanistic understanding. Deciphering how short O-GalNAc glycans are regulated would open new perspectives to exploit this biology for therapeutic usage. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- Joanne Chia
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Germaine Goh
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Frederic Bard
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore; Department of Biochemistry, National University of Singapore, 21 Lower Kent Ridge, Road, 119077, Singapore.
| |
Collapse
|
16
|
Heublein S, Page SK, Mayr D, Ditsch N, Jeschke U. p53 determines prognostic significance of the carbohydrate stem cell marker TF1 (CD176) in ovarian cancer. J Cancer Res Clin Oncol 2016; 142:1163-70. [PMID: 26935926 DOI: 10.1007/s00432-016-2126-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 01/28/2016] [Indexed: 01/01/2023]
Abstract
INTRODUCTION The oncofoetal Thomsen-Friedenreich (TF1, CD176) epitope is a carbohydrate cancer stem cell (CSC) antigen, and TF1-mediated cancer progression can be widely reversed by anti-TF1 antibodies. Particularly, CSC-like cells are regarded to be tumorigenic and chemoresistant. Aberrant p53 is probably the factor most closely associated with chemoresistance and tumour aggressiveness in ovarian tumours. We thus questioned whether TF1 in combination with p53 or as a single marker may be related to clinico-pathological features and survival of ovarian cancer patients. PATIENTS AND METHODS Both markers were quantified in ovarian cancer tissue (n = 151) by immunohistochemistry. p53 staining was subdivided into three subgroups [n (completely negative) = 57, n (moderately stained) = 28, n (overexpressing) = 66]. TF1 was scored as positive (n = 30) versus negative (n = 121). RESULTS Only in those cancers classified with moderate p53 staining-and thus most likely displaying with wild-type TP53-TF1 positivity turned out to be a predictor for shortened overall survival (univariate: p < 0.001, multivariate: p = 0.001). By screening 17 different protein markers for correlation with TF1, only mucin-1 emerged as a potential TF1 carrier protein. CONCLUSION It is hypothesized that TF1 may confer tumour-promoting features, especially in a TP53 wild-type genetic background. In addition, TF1 is an attractive immunotherapeutic target. Whether those cases classified as TF1 positive and at the same time as moderately stained for p53 might particularly benefit from a future anti-TF1 antibody treatment or from TF1 vaccination therapy remains to be determined.
Collapse
Affiliation(s)
- Sabine Heublein
- Department of Obstetrics and Gynaecology - National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany. .,Department of Obstetrics and Gynaecology, Ludwig Maximilians University of Munich, Munich, Germany.
| | - Sabina K Page
- Department of Obstetrics and Gynaecology, Ludwig Maximilians University of Munich, Munich, Germany
| | - Doris Mayr
- Department of Pathology, Ludwig Maximilians University of Munich, Munich, Germany
| | - Nina Ditsch
- Department of Obstetrics and Gynaecology, Ludwig Maximilians University of Munich, Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynaecology, Ludwig Maximilians University of Munich, Munich, Germany
| |
Collapse
|
17
|
Liang Y, Chen H, Zhang HB, Jin YX, Guo HQ, Chen XG, Sun H. Lectin from Agrocybe aegerita as a glycophenotype probe for evaluation of progression and survival in colorectal cancer. Asian Pac J Cancer Prev 2015; 15:5601-5. [PMID: 25081672 DOI: 10.7314/apjcp.2014.15.14.5601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Agrocybe aegerita Lectin (AAL) has been identified to have high affinity for sulfated and α2-3- linked sialic acid glycoconjugates, especially the sulfated and sialyl TF (Thomsen-Friedenreich) disaccharide. This study was conducted to investigate the clinicopathological and prognostic value of AAL in identifying aberrant glycosylation in colorectal cancer (CRC). MATERIALS AND METHODS Glycoconjugate expression in 59 CRC tissues were detected using AAL-histochemistry. Clinicopathological associates of expression were analyzed with chi- square test or Fisher's exact test. Relationships between expression and the various clinicopathological parameters was estimated using Kaplan-Meier analysis and Cox regression models. RESULTS AAL specific glycoconjugate expression was significantly higher in tumor than corresponding normal tissues (66.1% and 46.1%, respectively, p=0.037), correlating with depth of invasion (p=0.015) and TNM stage (p=0.024). Patients with lower expression levels had a significantly higher survival rate than those with higher expression (p=0.046 by log rank test and p=0.047 by Breslow test for overall survival; p=0.054 by log rank test and P=0.038 by Breslow test for progress free survival). A marginally significant association was found between AAL specific glycoconjugate expression and overall survival by univariate Cox regression analysis (p=0.059). CONCLUSIONS Lower AAL specific glycoconjugate expression is a significant favorable prognostic factor for overall and progress free survival in CRC. This is the first report about the employment of AAL for histochemical analysis of cancer tissues. The binding characteristics of AAL means it has potential to become a powerful tool for the glycan investigation and clinical application.
Collapse
Affiliation(s)
- Yi Liang
- Department of Clinical Immunology, Guangdong Medical College, Dongguan, China E-mail : ,
| | | | | | | | | | | | | |
Collapse
|
18
|
Karsten U, Goletz S. What makes cancer stem cell markers different? SPRINGERPLUS 2013; 2:301. [PMID: 23888272 PMCID: PMC3710573 DOI: 10.1186/2193-1801-2-301] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/26/2013] [Indexed: 01/06/2023]
Abstract
Since the cancer stem cell concept has been widely accepted, several strategies have been proposed to attack cancer stem cells (CSC). Accordingly, stem cell markers are now preferred therapeutic targets. However, the problem of tumor specificity has not disappeared but shifted to another question: how can cancer stem cells be distinguished from normal stem cells, or more specifically, how do CSC markers differ from normal stem cell markers? A hypothesis is proposed which might help to solve this problem in at least a subgroup of stem cell markers. Glycosylation may provide the key.
Collapse
Affiliation(s)
- Uwe Karsten
- Glycotope GmbH, Robert-Rössle-Str.10, D-13125 Berlin-Buch, Germany
| | | |
Collapse
|
19
|
Recent advances in developing synthetic carbohydrate-based vaccines for cancer immunotherapies. Future Med Chem 2012; 4:545-84. [DOI: 10.4155/fmc.11.193] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cancer cells can often be distinguished from healthy cells by the expression of unique carbohydrate sequences decorating the cell surface as a result of aberrant glycosyltransferase activity occurring within the cell; these unusual carbohydrates can be used as valuable immunological targets in modern vaccine designs to raise carbohydrate-specific antibodies. Many tumor antigens (e.g., GM2, Ley, globo H, sialyl Tn and TF) have been identified to date in a variety of cancers. Unfortunately, carbohydrates alone evoke poor immunogenicity, owing to their lack of ability in inducing T-cell-dependent immune responses. In order to enhance their immunogenicity and promote long-lasting immune responses, carbohydrates are often chemically modified to link to an immunogenic protein or peptide fragment for eliciting T-cell-dependent responses. This review will present a summary of efforts and advancements made to date on creating carbohydrate-based anticancer vaccines, and will include novel approaches to overcoming the poor immunogenicity of carbohydrate-based vaccines.
Collapse
|
20
|
Wu YM, Liu CH, Hu RH, Huang MJ, Lee JJ, Chen CH, Huang J, Lai HS, Lee PH, Hsu WM, Huang HC, Huang MC. Mucin glycosylating enzyme GALNT2 regulates the malignant character of hepatocellular carcinoma by modifying the EGF receptor. Cancer Res 2011; 71:7270-9. [PMID: 21990321 DOI: 10.1158/0008-5472.can-11-1161] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Extracellular glycosylation is a critical determinant of malignant character. Here, we report that N-acetylgalactosaminyltransferase 2 (GALNT2), the enzyme that mediates the initial step of mucin type-O glycosylation, is a critical mediator of malignant character in hepatocellular carcinoma (HCC) that acts by modifying the activity of the epidermal growth factor receptor (EGFR). GALNT2 mRNA and protein were downregulated frequently in HCC tumors where these events were associated with vascular invasion and recurrence. Restoring GALNT2 expression in HCC cells suppressed EGF-induced cell growth, migration, and invasion in vitro and in vivo. Mechanistic investigations revealed that the status of the O-glycans attached to the EGFR was altered by GALNT2, changing EGFR responses after EGF binding. Inhibiting EGFR activity with erlotinib decreased the malignant characters caused by siRNA-mediated knockdown of GALNT2 in HCC cells, establishing the critical role of EGFR in mediating the effects of GALNT2 expression. Taken together, our results suggest that GALNT2 dysregulation contributes to the malignant behavior of HCC cells, and they provide novel insights into the significance of O-glycosylation in EGFR activity and HCC pathogenesis.
Collapse
MESH Headings
- Animals
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Movement/genetics
- Cell Proliferation/drug effects
- Down-Regulation
- Epidermal Growth Factor/metabolism
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/metabolism
- Erlotinib Hydrochloride
- Female
- Gene Knockdown Techniques/methods
- Glycosylation/drug effects
- Hep G2 Cells
- Humans
- Liver Neoplasms/enzymology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Mucins/metabolism
- N-Acetylgalactosaminyltransferases/genetics
- N-Acetylgalactosaminyltransferases/metabolism
- Neoplasm Invasiveness
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/pathology
- Quinazolines/pharmacology
- RNA, Messenger/genetics
- Polypeptide N-acetylgalactosaminyltransferase
Collapse
Affiliation(s)
- Yao-Ming Wu
- Department of Surgery and Obstetrics, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kumar SR, Gallazzi FA, Quinn TP, Deutscher SL. 64Cu-Labeled Peptide for PET of Breast Carcinomas Expressing the Thomsen-Friedenreich Carbohydrate Antigen. J Nucl Med 2011; 52:1819-26. [DOI: 10.2967/jnumed.111.093716] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
22
|
Zhao Q, Barclay M, Hilkens J, Guo X, Barrow H, Rhodes JM, Yu LG. Interaction between circulating galectin-3 and cancer-associated MUC1 enhances tumour cell homotypic aggregation and prevents anoikis. Mol Cancer 2010; 9:154. [PMID: 20565834 PMCID: PMC2911446 DOI: 10.1186/1476-4598-9-154] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 06/18/2010] [Indexed: 01/14/2023] Open
Abstract
Background Formation of tumour cell aggregation/emboli prolongs the survival of circulating tumour cells in the circulation, enhances their physical trapping in the micro-vasculature and thus increases metastatic spread of the cancer cells to remote sites. Results It shows here that the presence of the galactoside-binding galectin-3, whose concentration is markedly increased in the blood circulation of cancer patients, increases cancer cell homotypic aggregation under anchorage-independent conditions by interaction with the oncofetal Thomsen-Friedenreich carbohydrate (Galβ1,3GalNAcα-, TF) antigen on the cancer-associated transmembrane mucin protein MUC1. The galectin-3-MUC1 interaction induces MUC1 cell surface polarization and exposure of the cell surface adhesion molecules including E-cadherin. The enhanced cancer cell homotypic aggregation by galectin-MUC1 interaction increases the survival of the tumour cells under anchorage-independent conditions by allowing them to avoid initiation of anoikis (suspension-induced apoptosis). Conclusion These results suggest that the interaction between free circulating galectin-3 and cancer-associated MUC1 promotes embolus formation and survival of disseminating tumour cells in the circulation. This provides new information into our understanding of the molecular mechanisms of cancer cell haematogenous dissemination and suggests that targeting the interaction of circulating galectin-3 with MUC1 in the circulation may represent an effective therapeutic approach for preventing metastasis.
Collapse
Affiliation(s)
- Qicheng Zhao
- Gastroenterology Research Unit, School of Clinical Sciences, Centre for Glycobiology, University of Liverpool, Liverpool L69 3GE, UK
| | | | | | | | | | | | | |
Collapse
|
23
|
Kodar K, Kurtenkov O, Klaamas K. The Thomsen-Friedenreich antigen and alphaGal-specific human IgG glycoforms: concanavalin A reactivity and relation to survival of cancer patients. Immunol Invest 2010; 38:704-17. [PMID: 19860583 DOI: 10.3109/08820130903147193] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Glycan structures of IgG strongly influence the affinity for Fcgamma receptors and antibody effector functions. However, no particular attention has been paid yet to the glycosylation of tumor antigen-specific IgG. The objectives of this study were (i) to investigate the concanavalin A lectin (ConA) reactivity of human anti-Thomsen-Friedenreich (TF) and anti-alphaGal specific IgG in gastric cancer patients and healthy controls and (ii) to evaluate whether the ConA-reactivity of anti-TF and anti-alphaGal specific IgG is associated with the survival rate of patients with cancer. Total IgG was purified from the sera of patients with gastric cancer and healthy blood donors. The anti-TF and anti-alphaGal glycotope specific IgG were detected with ELISA using synthetic saccharide-polyacrylamide conjugates as antigen. In parallel plate, the ConA reactivity of the anti-TF or anti-alphaGal IgG was determined and the ConA index was calculated. Results show that serum anti-TF specific IgG antibodies of patients with cancer contain significantly higher content of ConA positive IgG glycoform compared to IgG of controls. No correlation between the ConA reactivity of anti-TF IgG and anti-alphaGal IgG was observed. High level of anti-TF IgG ConA reactivity was associated with a significantly lower survival rate of patients with gastric cancer.
Collapse
Affiliation(s)
- Kristel Kodar
- Department of Oncology and Immunology, National Institute for Health Development, Tallinn, Estonia
| | | | | |
Collapse
|
24
|
Anti-idiotypic antibody mimicking a T-antigen-specific lectin inhibits human epithelial tumor cell proliferation. Immunol Cell Biol 2010; 88:787-94. [PMID: 20404839 DOI: 10.1038/icb.2010.49] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cancer-associated mucins show frequent alterations of oligosaccharide chain profile. Terminal structures may be deleted, thereby exposing normally 'cryptic' structures such as Tn (GalNAcα-O-Ser/Thr) and T antigen (Galβ1-3GalNAcα-O-Ser/Thr). Overexpression of these commonly hidden glycoforms, and reduced level of naturally occurring anti-T or anti-Tn antibodies, is associated with epithelial tumor progression and aggressiveness. The lectin from the common edible mushroom Agaricus bisporus (ABL) shows high affinity binding to T antigen, and reversible noncytotoxic inhibitory effect on epithelial tumor cell proliferation. The aim of this study was to induce immune response with tumor-associated glycan specificity and biological activity similar to those of ABL. An anti-idiotypic (Id) antibody strategy was developed using ABL as first template. ABL was purified by affinity chromatography and assayed as immunogen in rabbit. Rabbit IgG was purified from anti-ABL serum using a protein G column, and specific anti-ABL IgG was obtained by affinity chromatography using immobilized ABL. Affinity-purified anti-ABL IgG contained an antibody fraction that recognizes the carbohydrate-binding site of ABL. This IgG was used as immunogen in mouse to yield anti-Id antibody recognizing tumor-associated glycans such as Tn and T antigen. Competitive assays showed that α-anomeric GalNAc is the main binding subsite of anti-Id antibody in glycan recognition. Anti-Id antibody bound human epithelial tumor cells, as shown by cell enzyme-linked immunosorbent assay and immunofluorescence. Anti-Id antibody raised by immunization with affinity-purified anti-ABL IgG had antiproliferative effect on human epithelial tumor cells through apoptosis induction similar to that of ABL. The anti-Id immune response developed here has potential application in cancer therapy.
Collapse
|
25
|
Zhao Q, Guo X, Nash GB, Stone PC, Hilkens J, Rhodes JM, Yu LG. Circulating galectin-3 promotes metastasis by modifying MUC1 localization on cancer cell surface. Cancer Res 2009; 69:6799-806. [PMID: 19690136 DOI: 10.1158/0008-5472.can-09-1096] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adhesion of circulating tumor cells to the blood vessel endothelium is a critical step in cancer metastasis. We show in this study that galectin-3, the concentration of which is greatly increased in the circulation of cancer patients, increases cancer cell adhesion to macrovascular and microvascular endothelial cells under static and flow conditions, increases transendothelial invasion, and decreases the latency of experimental metastasis in athymic mice. These effects of galectin-3 are shown to be a consequence of its interaction with cancer-associated MUC1, which breaks the "protective shield" of the cell-surface MUC1 by causing MUC1 polarization, leading to exposure of smaller cell-surface adhesion molecules/ligands including CD44 and ligand(s) for E-selectin. Thus, the interaction in the bloodstream of cancer patients between circulating galectin-3 and cancer cells expressing MUC1 bearing the galectin-3 ligand TF (Galbeta1,3GalNAc-) promotes metastasis. This provides insight into the molecular regulation of metastasis and has important implications for the development of novel therapeutic strategies for prevention of metastasis.
Collapse
Affiliation(s)
- Qicheng Zhao
- Gastroenterology Research Unit, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
26
|
Mayoral MA, Mayoral C, Meneses A, Villalvazo L, Guzmán A, Espinosa B, Ochoa JL, Zenteno E, Guevara J. Identification of Galectin-3 and Mucin-Type O-Glycans in Breast Cancer and Its Metastasis to Brain. Cancer Invest 2009; 26:615-23. [DOI: 10.1080/07357900701837051] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Baldus SE, Engelmann K, Hanisch FG. MUC1 and the MUCs: A Family of Human Mucins with Impact in Cancer Biology. Crit Rev Clin Lab Sci 2008; 41:189-231. [PMID: 15270554 DOI: 10.1080/10408360490452040] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mucins represent a family of glycoproteins characterized by repeat domains and a dense O-glycosylation. During the last two decades, the gene and peptide structures of various mucins as well as their glycosylation states were partly elucidated. Characteristic tumor-associated alterations of the expression patterns and glycosylation profiles were observed in biochemical, immunochemical, and histological studies and are discussed in the light of efforts to use the most prominent member in this family, MUC1, as a tumor target in anti-tumor strategies. Within this context the present review, focusing on MUC1, describes recent work on the regulation of mucin biosynthesis by cytokines and hormones, the role of mucins in cell adhesion, and their interaction with the immune system. Important aspects of clinical diagnostics based on mucin antigens are discussed, including the application of tumor serum assays and the significance of numerous studies revealing correlations between the expression of peptide cores or mucin-associated carbohydrates and clinicopathological parameters like tumor progression and prognosis.
Collapse
Affiliation(s)
- Stephan E Baldus
- Institute of Pathology and Center of Biochemistry, University of Cologne, Cologne, Germany.
| | | | | |
Collapse
|
28
|
Schindlbeck C, Stellwagen J, Jeschke U, Karsten U, Rack B, Janni W, Jückstock J, Tulusan A, Sommer H, Friese K. Immunomagnetic enrichment of disseminated tumor cells in bone marrow and blood of breast cancer patients by the Thomsen-Friedenreich-Antigen. Clin Exp Metastasis 2008; 25:233-40. [DOI: 10.1007/s10585-007-9137-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2007] [Accepted: 12/20/2007] [Indexed: 12/12/2022]
|
29
|
Yu LG. The oncofetal Thomsen-Friedenreich carbohydrate antigen in cancer progression. Glycoconj J 2007; 24:411-20. [PMID: 17457671 DOI: 10.1007/s10719-007-9034-3] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 03/22/2007] [Accepted: 03/23/2007] [Indexed: 12/11/2022]
Abstract
The oncofetal Thomsen-Friedenreich carbohydrate antigen (Galbeta1-3GalNAcalpha1-Ser/Thr TF or T antigen) is a pan-carcinoma antigen highly expressed by about 90% of all human carcinomas. Its broad expression and high specificity in cancer have attracted many investigations into its potential use in cancer diagnosis and immunotherapy. Over the past few years increasing evidence suggests that the increased TF occurrence in cancer cells may be functionally important in cancer progression by allowing increased interaction/communication of the cells with endogenous carbohydrate-binding proteins (lectins), particularly the members of the galactoside-binding galectin family. This review focuses on the recent progress in understanding of the regulation and functional significance of increased TF occurrence in cancer progression and metastasis.
Collapse
Affiliation(s)
- Lu-Gang Yu
- The Henry Wellcome Laboratory of Molecular and Cellular Gastroenterology, School of Clinical Science, University of Liverpool, Liverpool, L69 3BX, UK.
| |
Collapse
|
30
|
Yu LG, Andrews N, Zhao Q, McKean D, Williams JF, Connor LJ, Gerasimenko OV, Hilkens J, Hirabayashi J, Kasai K, Rhodes JM. Galectin-3 interaction with Thomsen-Friedenreich disaccharide on cancer-associated MUC1 causes increased cancer cell endothelial adhesion. J Biol Chem 2006; 282:773-81. [PMID: 17090543 DOI: 10.1074/jbc.m606862200] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Patients with metastatic cancer commonly have increased serum galectin-3 concentrations, but it is not known whether this has any functional implications for cancer progression. We report that MUC1, a large transmembrane mucin protein that is overexpressed and aberrantly glycosylated in epithelial cancer, is a natural ligand for galectin-3. Recombinant galectin-3 at concentrations (0.2-1.0 microg/ml) similar to those found in the sera of patients with metastatic cancer increased adhesion of MUC1-expressing human breast (ZR-75-1) and colon (HT29-5F7) cancer cells to human umbilical vein endothelial cells (HUVEC) by 111% (111 +/- 21%, mean +/- S.D.) and 93% (93 +/- 17%), respectively. Recombinant galectin-3 also increased adhesion to HUVEC of MUC1 transfected HCA1.7+ human breast epithelial cells that express MUC1 bearing the oncofetal Thomsen-Friedenreich antigen (Galbeta1,3 GalNAc-alpha (TF)) but did not affect adhesion of MUC1-negative HCA1.7-cells. MUC1-transfected, Ras-transformed, canine kidney epithelial-like (MDE9.2+) cells, bearing MUC1 that predominantly carries sialyl-TF, only demonstrated an adhesive response to galectin-3 after sialidase pretreatment. Furthermore, galectin-3-mediated adhesion of HCA1.7+ to HUVEC was reduced by O-glycanase pretreatment of the cells to remove TF. Recombinant galectin-3 caused focal disappearance of cell surface MUC1 in HCA1.7+ cells, suggesting clustering of MUC1. Co-incubation with antibodies against E-Selectin or CD44H, but not integrin-beta1, ICAM-1 or VCAM-1, largely abolished the epithelial cell adhesion to HUVEC induced by galectin-3. Thus, galectin-3, by interacting with cancer-associated MUC1 via TF, promotes cancer cell adhesion to endothelium by revealing epithelial adhesion molecules that are otherwise concealed by MUC1. This suggests a critical role for circulating galectin-3 in cancer metastasis and highlights the functional importance of altered cell surface glycosylation in cancer progression.
Collapse
Affiliation(s)
- Lu-Gang Yu
- Henry Wellcome Laboratory of Molecular and Cellular Gastroenterology, School of Clinical Science, University of Liverpool, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Schindlbeck C, Jeschke U, Schulze S, Karsten U, Janni W, Rack B, Krajewski S, Sommer H, Friese K. Prognostic impact of Thomsen-Friedenreich tumor antigen and disseminated tumor cells in the bone marrow of breast cancer patients. Breast Cancer Res Treat 2006; 101:17-25. [PMID: 16807671 DOI: 10.1007/s10549-006-9271-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Accepted: 05/05/2006] [Indexed: 12/11/2022]
Abstract
PURPOSE The Thomsen-Friedenreich antigen (TF, CD176) is a specific oncofetal carbohydrate epitope (Gal beta1-3GalNAc alpha-O-Ser/Thr) expressed on the surface of various carcinomas. It mediates endothelium adhesion and formation of metastases. As it also causes immune response, its prognostic impact is indeterminate. The presence of disseminated tumor cells in the bone marrow of breast cancer patients (DTC-BM) indicates worse prognosis. We examined the expression of TF in primary breast cancer tissue of 265 patients with known BM status at the time of first diagnosis. METHODS BM aspiration, cytospin preparation and immunocytochemical staining with the anti-Cytokeratin antibody A45 B/B3 was done following a standardised protocol. TF expression was examined immunohistochemically on Tissue Micro Arrays (TMA) with the anti-TF antibody A78-G/A7. Evaluation was done using the immunoreactive score (IRS). RESULTS Median IRS for TF expression was 2 (0-12). 68 of 265 patients (25.7%) showed DTC-BM with a median of 2/2 x 10(6) cells (1-1500). There was no correlation between TF expression and DTC-BM. After a median follow up of 60.1 months (7-119), the detection of DTC-BM showed prognostic significance for overall survival (OS, p = 0.034), whereas TF positivity (IRS > 2) indicated prolonged disease-free (p = 0.01), distant disease-free (p = 0.005), and overall survival (p = 0.005). DISCUSSION Patients with TF-positive tumors had a significantly better prognosis. Dissemination routes, TF-mediated metastasis formation, and the immunogeneity of TF might determine the prognostic impact of TF expression in different tumor entities. Further characterisation of primary tumors and DTC-BM could help to improve the biological understanding of metastases and develop targeted therapies.
Collapse
Affiliation(s)
- Christian Schindlbeck
- First Department of Obstetrics & Gynecology, Ludwig Maximilians University of Munich, Maistrasse 11, D-80337, Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Huang MC, Chen HY, Huang HC, Huang J, Liang JT, Shen TL, Lin NY, Ho CC, Cho IM, Hsu SM. C2GnT-M is downregulated in colorectal cancer and its re-expression causes growth inhibition of colon cancer cells. Oncogene 2006; 25:3267-76. [PMID: 16418723 DOI: 10.1038/sj.onc.1209350] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Changes in carbohydrates on the cell surface are associated with tumor malignancy. The mucin-type core 2 beta-1,6-N-acetylglucosaminyltransferase (C2GnT-M) is highly expressed in the gastrointestinal tract and catalyses the formation of core 2, core 4, and blood group I branches on O-glycans. In the present study, we evaluated the role of C2GnT-M in colorectal cancer. C2GnT-M downexpression was observed in 73.6% of the primary tumors from colorectal cancer patients (39 of 53) analysed by cancer profiling array. Consistently, the majority of colon cancer cell lines and primary colon tumors expressed lower levels of C2GnT-M than did normal colon tissues by RT-PCR. HCT116 cells stably transfected with C2GnT-M inhibited expression of the core 1 structure, Galbeta1,3GalNAcalpha1-Ser/Thr, on the cell surface. Moreover, C2GnT-M expression suppressed cell adhesion, motility, and invasion as well as colony formation ability. The growth of C2GnT-M-transfected HCT116 and SW480 cells was dramatically suppressed, and the cell death induced by C2GnT-M was demonstrated by an increase in the annexin V-positive cells. Interestingly, C2GnT-M inhibited cell adhesion to collagen IV and fibronectin, and decreased tyrosine phosphorylation of paxillin, indicating that the changes in cancer behavior may be partly mediated by integrin-signaling pathways. Tumor growth in vivo was also significantly suppressed by C2GnT-M in the xenografts of nude mice. These results demonstrate that C2GnT-M is frequently downregulated in colorectal cancer and suppresses colon cancer cell growth.
Collapse
Affiliation(s)
- M-C Huang
- Institute of Anatomy & Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kumar SR, Sauter ER, Quinn TP, Deutscher SL. Thomsen-Friedenreich and Tn Antigens in Nipple Fluid: Carbohydrate Biomarkers for Breast Cancer Detection. Clin Cancer Res 2005; 11:6868-71. [PMID: 16203776 DOI: 10.1158/1078-0432.ccr-05-0146] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Novel biomarkers would facilitate early and accurate diagnosis of breast cancer. The Thomsen-Freidenreich (TF) and Tn antigens are aberrantly glycosylated carbohydrate cancer-associated antigens found in approximately 80% of adenocarcinomas. Both TF and Tn are expressed on cell-surface glycoproteins and glycolipids. Nipple aspirate fluid (NAF) is concentrated in secreted proteins and lipids from cells that give rise to cancer. The objective of this study was to determine if NAF from breasts with cancer contains elevated levels of TF and Tn compared with NAF from normal breasts. A sensitive and specific antigen capture immunoassay for TF and Tn detection in NAF was developed for this purpose. EXPERIMENTAL DESIGN Fifty NAF samples, 25 from breasts with cancer and 25 from normal breasts, were examined. Antigen capture immunoassays were done on the samples using monoclonal antibodies that specifically recognized either TF or Tn antigen in NAF. These antibodies captured serially diluted NAF samples, and the concentration of TF or Tn was determined by comparing absorbance values against a standard curve generated from standard sources of TF or Tn. RESULTS TF and Tn were detected in 19 of 25 and 20 of 25 NAF samples from breasts with cancer, respectively, compared with 0 of 25 and 1 of 25 NAF samples from breasts without cancer (P < 0.001 for both TF and Tn). In 92% of the cancerous breast NAF samples tested, either TF or Tn was found. CONCLUSIONS Simultaneous measurement of TF and Tn in NAF may facilitate the noninvasive detection of breast cancer and warrants further study.
Collapse
Affiliation(s)
- Senthil R Kumar
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65212, USA
| | | | | | | |
Collapse
|
34
|
Irazoqui FJ, Sendra VG, Lardone RD, Nores GA. Immune response to Thomsen-Friedenreich disaccharide and glycan engineering. Immunol Cell Biol 2005; 83:405-12. [PMID: 16033536 DOI: 10.1111/j.1440-1711.2005.01348.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cancer-associated mucins show frequent alterations of their oligosaccharide chain profile, with a switch to unmask normally cryptic O-glycan backbone and core regions. Epithelial tumour cells typically show overexpression of the uncovered Gal(beta)1-3GalNAc(alpha)-O-Ser/Thr (Core 1) structure, known as the T antigen or the Thomsen-Friedenreich antigen, the oligosaccharide chain of which is called the Thomsen-Friedenreich disaccharide (TFD). T antigen expression has been associated with immunosuppression, metastasis dissemination, and the proliferation of cancer cells. Several different strategies have been used to trigger a specific immune response to TFD. Natural T antigen and synthetic TFD residues have low immunodominance. In the T antigen, flexibility of the glycosidic bond reduces the immunogenicity of the sugar residue. Enhanced rigidity should favour certain glycan conformations and thereby improve TFD immunotargeting. We propose the term 'glycan engineering' for this approach. Such engineering of TFD should reduce the flexibility of its glycan moiety and thereby enhance its stability, rigidity and immunogenicity.
Collapse
Affiliation(s)
- Fernando J Irazoqui
- CIQUIBIC-CONICET/Department of Biological Chemistry, Faculty of Chemical Sciences, National University of Cordoba, Ciudad Universitaria, Cordoba, Argentina.
| | | | | | | |
Collapse
|
35
|
Slovin SF, Ragupathi G, Musselli C, Fernandez C, Diani M, Verbel D, Danishefsky S, Livingston P, Scher HI. Thomsen-Friedenreich (TF) antigen as a target for prostate cancer vaccine: clinical trial results with TF cluster (c)-KLH plus QS21 conjugate vaccine in patients with biochemically relapsed prostate cancer. Cancer Immunol Immunother 2005; 54:694-702. [PMID: 15726361 PMCID: PMC11034220 DOI: 10.1007/s00262-004-0598-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Accepted: 07/12/2004] [Indexed: 10/25/2022]
Abstract
The differential overexpression of self-antigens on tumor cells is a prime feature of malignant transformation. Thomsen-Friedenreich (TF), a core disaccharide of O-glycosylated complex glycoproteins, is one of many "self" antigens expressed on malignantly transformed cells that has served as a target for immune recognition and attack. Previously, we conducted clinical trials with a series of synthetic glycolipid, peptide and carbohydrate antigens conjugated to the immunological carrier keyhole limpet hemocyanin (KLH) mixed with the immunological saponin adjuvant, QS21. These trials resulted in the generation of high-titer IgM and IgG antibody responses specific for the individual antigens, and, in several cases, the capacity of those antibodies to mediate complement lysis. Four groups of five patients who had evidence of a biochemical relapse defined as rising prostate-specific antigens (PSAs) following primary therapy for prostate cancer with either prostatectomy or radiation were treated with escalating doses of 1, 3, 10 and 30 microg of synthetic TF in a clustered formation (c) which was conjugated to KLH and given with 100 microg of QS21. Patients received a total of five subcutaneous vaccines over 6 months and were monitored expectantly with scans every 3-4 months. Serum samples were obtained at weeks 1, 2, 3, 7, 9, 13, 19, 26, 50 and every 3 months. Antibody titers were monitored by ELISA and antibody binding to the cell surface of prostate cell lines was performed by flow cytometry. Complement-dependent cytotoxicity was performed on selected patients. Twenty evaluable patients were accrued to the study, of whom only one did not receive all six vaccinations. All patients developed maximum IgM and IgG antibody titers by week 9. The median IgM antibody titer by week 7 was 1/1,280 at 10 microg, 1/320 at 30 microg, 1/1,280 at 3 microg and 1/1,280 at 1 microg dose groups. The IgM titers from all groups remained greater than 1/320 by week 32 and beyond through week 50. We report here the results of a dose-escalating trial of a TF(c)-KLH conjugate vaccine in patients in the clinical state of a rising PSA in the absence of radiographic disease. For the first time, a synthetically made TF trimer or cluster (c) was made with three TF disaccharides attached to three sequential threonines on a peptide backbone. TF(c) doses of 1, 3, 10 and 30 microg were conjugated to KLH and administered with QS21. All doses induced high-titer IgM and IgG antibodies against TF. Unlike our findings in previous dose-escalating phase I trials, there did not appear to be increased antibody production with increasing doses of vaccine; higher titers of IgM and IgG antibodies developed at the lowest dose level (1 microg). An anti-tumor effect in the form of a change in post-treatment versus pretreatment logPSA slopes was also observed. The results justify the inclusion of TF(c) at a dose of 1 microg as a relevant antigenic target in a multivalent phase II vaccine trial in patients in the high-risk minimal disease state.
Collapse
MESH Headings
- Adjuvants, Immunologic
- Aged
- Antigens, Neoplasm/immunology
- Antigens, Tumor-Associated, Carbohydrate/immunology
- Cancer Vaccines/immunology
- Cancer Vaccines/therapeutic use
- Hemocyanins/immunology
- Humans
- Male
- Middle Aged
- Neoplasm Recurrence, Local/immunology
- Neoplasm Recurrence, Local/prevention & control
- Neoplasm Recurrence, Local/therapy
- Prostate-Specific Antigen/blood
- Prostatic Neoplasms/immunology
- Prostatic Neoplasms/therapy
- Saponins/immunology
- Vaccination
- Vaccines, Conjugate/chemistry
- Vaccines, Conjugate/immunology
- Vaccines, Conjugate/therapeutic use
Collapse
Affiliation(s)
- Susan F Slovin
- Genitourinary Oncology Service, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Schindlbeck C, Jeschke U, Schulze S, Karsten U, Janni W, Rack B, Sommer H, Friese K. Characterisation of disseminated tumor cells in the bone marrow of breast cancer patients by the Thomsen-Friedenreich tumor antigen. Histochem Cell Biol 2005; 123:631-7. [PMID: 15889266 DOI: 10.1007/s00418-005-0781-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2005] [Indexed: 10/25/2022]
Abstract
The detection of disseminated tumor cells in the bone marrow (DTC-BM) of breast cancer patients has proved prognostic significance in all stages of the disease. Further characterisation of those cells could help to improve the biological understanding of metastases, develop targeted therapies and define surface markers for enrichment techniques. The Thomsen-Friedenreich (TF) antigen has been shown to be a tumor specific antigen in breast cancer. The aim of this study was to investigate the expression of TF on DTC-BM in 25 patients. Bone marrow samples were first double-stained by a Cy3 conjugated cytokeratin (CK) antibody (ab) A45 B/B3 (IgG) and anti-TF ab Nemod 2 (IgM), followed by Cy2 conjugated goat anti-mouse IgM ab. For further characterisation samples were also double-stained with anti-TF ab Nemod 2 (IgM), followed by Cy2 conjugated goat anti-mouse IgM ab, and anti MUC1 ab A76-A/C7 IgG, followed by Cy3 conjugated goat anti-mouse IgG. CK positive DTC-BM showed co-expression of TF antigen in 22/23 patients (96%) and 61 of 62 detected cells (98%). Mononuclear BM cells without CK expression were also negative for TF. All of the TF positive cells showed strong MUC1 expression. This is the first study showing co-expression of CK and TF as markers of DTC-BM. Double staining experiments of TF and MUC1 expression showed that MUC1 is the carrier protein of TF in these cells. As TF is a specific marker of DTC-BM, it could be used as a target for antibody based therapy and immunomagnetic enrichment techniques for the isolation of DTC-BM.
Collapse
Affiliation(s)
- Christian Schindlbeck
- First Department of Obstetrics and Gynecology, Ludwig Maximilians University of Munich, Maistrasse 11, 80337, Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Ravn P, Danielczyk A, Jensen KB, Kristensen P, Christensen PA, Larsen M, Karsten U, Goletz S. Multivalent scFv Display of Phagemid Repertoires for the Selection of Carbohydrate-specific Antibodies and its Application to the Thomsen–Friedenreich Antigen. J Mol Biol 2004; 343:985-96. [PMID: 15476815 DOI: 10.1016/j.jmb.2004.08.052] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 08/09/2004] [Accepted: 08/13/2004] [Indexed: 02/07/2023]
Abstract
The Thomsen-Friedenreich disaccharide (TF) is a promising target antigen for tumor immunotherapy, since it is almost exclusively expressed in carcinoma tissues. The TF-specific antibodies generated so far are IgMs of mouse origin with limited therapeutic potential. Phage-displayed scFv repertoires are an established source for recombinant antibodies; however, we were unable to identify scFvs binding to TF when applying libraries in the standard monovalent display format of phagemid systems. Here, we report on the successful selection of TF-specific antibody fragments using a multivalent scFv phagemid library format based on shortened linkers (one amino acid residue). The libraries were constructed from mice immunized with asialoglycophorin and selected using TF displayed on two different carrier molecules in combination with the proteolytically cleavable helper phage KM13. All isolated clones encoded the same framework genes and the same complementarity-determining regions. After affinity maturation only scFv with the founder sequence were selected from secondary repertoires. This indicates a very narrow sequence window for TF-specific antibodies. Investigating other linker-length formats revealed a clear inverse correlation between linker length and binding activity both as soluble proteins and displayed on phages. The highest affinity was obtained with the tetrameric format. The selected scFv was specific for TF on various carrier molecules and tumor cells and performed well in ELISA and immunohistochemistry. We postulate that scFv phagemid library formats with short linkers (i.e. multimeric scFvs) may, in general, be advantageous in selections for the generation of scFvs against carbohydrate epitopes or other epitopes associated with low intrinsic affinity per binding site), and expect that they will be superior in applications for diagnosis or therapy.
Collapse
Affiliation(s)
- Peter Ravn
- NEMOD Biotherapeutics GmbH & Co. KG, Robert-Rössle-Str 10, D-13125, Berlin-Buch, FRG, Germany
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Carcinomas of sebaceous glands are uncommon. They are traditionally classified into ocular and extraocular sebaceous carcinomas (SC). Ocular SC tend to be more common and more aggressive than extraocular SC. However, the latter can occasionally follow a fatal course. Histologically, SC should be classified into 1) SC in situ; 2) SC, infiltrating, low-grade with or without pagetoid spread; 3) SC, infiltrating, high-grade, with or without pagetoid spread; and 4) SC with extraocular and extracutaneous involvement, including metastases. Immunohistochemistry plays a minor role in the diagnosis of SC. Thomsen-Friedenreich (T) antigen can be a helpful tool in differentiating SC (strong T-antigen reactivity in basaloid cells) from other mimicking neoplasms (basaloid cells are T-antigen negative). The histologic differential diagnosis, pathogenesis, and management of SC are reviewed.
Collapse
Affiliation(s)
- Ashraf M Hassanein
- Department of Pathology, Immunology, Laboratory Medicine and Dermatology, University of Florida College of Medicine, P.O. Box 100275, Gainesville, FL 32610, USA.
| |
Collapse
|
39
|
Baldus SE. [Clinical, pathological and molecular prognostic factors in colorectal carcinomas]. DER PATHOLOGE 2003; 24:49-60. [PMID: 12601478 DOI: 10.1007/s00292-002-0592-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Various aspects of the progression and prognosis of colorectal carcinoma have been investigated in numerous publications during recent years. An exact macroscopic and microscopic examination is still of basic importance but different factors of the molecular pathogenesis of colorectal carcinoma could be described by immunohistochemistry and molecular biology. Furthermore, they have been evaluated regarding their importance for the course of disease and prognosis and in particular, the different pathways of carcinogenesis and microsatellite instability were included. The detection of micrometastasis was investigated applying mostly molecular genetic methods. Numerous oncogenes, tumor suppressor genes and regulators of the cell cycle, markers of proliferation and apoptosis, cell adhesion antigens and angiogenetic factors were characterized with regard to their prognostic potential. In the future, so-called response predictors will presumably gain a certain relevance in the context of neoadjuvant (radiotherapy) chemotherapy. The present review summarizes these results and discusses the future clinical relevance.
Collapse
Affiliation(s)
- S E Baldus
- Institut für Pathologie, Universität zu Köln, Cologne.
| |
Collapse
|
40
|
Goletz S, Cao Y, Danielczyk A, Ravn P, Schoeber U, Karsten U. Thomsen-Friedenreich Antigen: The “Hidden” Tumor Antigen. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 535:147-62. [PMID: 14714894 DOI: 10.1007/978-1-4615-0065-0_10] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- S Goletz
- NEMOD Immuntherapie AG and Max Delbrück Centre for Molecular Medicine, Berlin-Buch, Germany
| | | | | | | | | | | |
Collapse
|