1
|
Wang J, Fan Y, Sanger JM, Sanger JW. STED analysis reveals the organization of nonmuscle muscle II, muscle myosin II, and F-actin in nascent myofibrils. Cytoskeleton (Hoboken) 2022; 79:122-132. [PMID: 36125330 DOI: 10.1002/cm.21729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 01/30/2023]
Abstract
A three-step model has been proposed to describe myofibril assembly in vertebrate cardiac and skeletal muscle cells beginning with premyofibrils, followed by nascent myofibrils, and ending as mature myofibrils (reviewed in Sanger, Wang, et al. (2017). Assembly and maintenance of myofibrils in striated muscle. Handbook of Experimental Pharmacology 235, 39-75; Wang, Fan, (2020). Myofibril assembly and the roles of the ubiquitin proteasome system. Cytoskeleton 77, 456-479). Premyofibrils are composed of minisarcomeres that contain nonmuscle myosin II filaments interdigitating with actin filaments embedded at their barbed ends in muscle-specific alpha-actinin-rich Z-bodies. Sarcomeres in mature myofibrils have filaments of muscle myosin II that interact with actin filaments that are attached to muscle alpha-actinin in Z-bands. Nascent myofibrils, the transitional step between premyofibrils and mature myofibrils, possess two types of myosins II, that is, nonmuscle myosin II and muscle myosin II. The relationship of these two different myosins II in nascent myofibrils, however, is not clear. Stimulated emission depletion (STED) microscopic analyses of nascent myofibrils in both embryonic chick cardiomyocytes, and hiPSC-derived cardiomyocytes revealed that nonmuscle myosin II is in the middle of the nascent myofibril, surrounded by overlapping muscle myosin II filaments at the periphery, and non-striated filamentous actin is present in the nascent myofibril. These findings support the original three-step model of myofibril assembly proposed by Rhee, Sanger, and Sanger, (1994). The premyofibrils: Evidence for its role in myofibrillogenesis. Cell Motility and the Cytoskeleton 28, 1-24.
Collapse
Affiliation(s)
- Jushuo Wang
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Yingli Fan
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Jean M Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Joseph W Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
2
|
Wang J, Fan Y, Mittal B, Sanger JM, Sanger JW. Comparison of incorporation of wild type and mutated actins into sarcomeres in skeletal muscle cells: A fluorescence recovery after photobleaching study. Cytoskeleton (Hoboken) 2022; 79:105-115. [PMID: 36085566 DOI: 10.1002/cm.21725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/11/2022] [Accepted: 08/31/2022] [Indexed: 01/30/2023]
Abstract
The α-actin mutation G15R in the nucleotide-binding pocket of skeletal muscle, causes severe actin myopathy in human skeletal muscles. Expressed in cultured embryonic quail skeletal myotubes, YFP-G15R-α-actin incorporates in sarcomeres in a pattern indistinguishable from wildtype YFP-α-actin. However, patches of YFP-G15R-α-actin form, resembling those in patients. Analyses with FRAP of incorporation of YFP-G15R-α-actin showed major differences between fast-exchanging plus ends of overlapping actin filaments in Z-bands, versus slow exchanging ends of overlapping thin filaments in the middle of sarcomeres. Wildtype skeletal muscle YFP-α-actin shows a faster rate of incorporation at plus ends of F-actin than at their minus ends. Incorporation of YFP-G15R-α-actin molecules is reduced at plus ends, increased at minus ends. The same relationship of wildtype YFP-α-actin incorporation is seen in myofibrils treated with cytochalasin-D: decreased dynamics at plus ends, increased dynamics at minus ends, and F-actin aggregates. Speculation: imbalance of normal polarized assembly of F-actin creates excess monomers that form F-actin aggregates. Two other severe skeletal muscle YFP-α-actin mutations (H40Y and V163L) not in the nucleotide pocket do not affect actin dynamics, and lack F-actin aggregates. These results indicate that normal α-actin plus and minus end dynamics are needed to maintain actin filament stability, and avoid F-actin patches.
Collapse
Affiliation(s)
- Jushuo Wang
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Yingli Fan
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Balraj Mittal
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Jean M Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Joseph W Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
3
|
Wang J, Fan Y, Wang C, Dube S, Poiesz BJ, Dube DK, Ma Z, Sanger JM, Sanger JW. Inhibitors of the Ubiquitin Proteasome System block myofibril assembly in cardiomyocytes derived from chick embryos and human pluripotent stem cells. Cytoskeleton (Hoboken) 2022; 78:461-491. [PMID: 35502133 DOI: 10.1002/cm.21697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 11/06/2022]
Abstract
Details of sarcomeric protein assembly during de novo myofibril formation closely resemble myofibrillogenesis in skeletal and cardiac myocytes in birds, rodents and zebrafish. The arrangement of proteins during myofibrillogenesis follows a three-step process: beginning with premyofibrils, followed by nascent myofibrils, and concluding with mature myofibrils (reviewed in Sanger et al., 2017). Our aim is to determine if the same pathway is followed in human cardiomyocytes derived from human inducible pluripotent stem cells. We found that the human cardiomyocytes developed patterns of protein organization identical to the three-step series seen in the model organisms cited above. Further experiments showed that myofibril assembly can be blocked at the nascent myofibril by five different inhibitors of the Ubiquitin Proteasome System (UPS) stage in both avian and human cardiomyocytes. With the exception of Carfilzomib, removal of the UPS inhibitors allows nascent myofibrils to proceed to mature myofibrils. Some proteasomal inhibitors, such as Bortezomib and Carfilzomib, used to treat multiple myeloma patients, have off-target effects of damage to hearts in three to six percent of these patients. These cardiovascular adverse events may result from prevention of mature myofibril formation in the cardiomyocytes. In summary, our results support a common three-step model for the formation of myofibrils ranging from avian to human cardiomyocytes. The Ubiquitin Proteasome System is required for progression from nascent myofibrils to mature myofibrils. Our experiments suggest a possible explanation for the cardiac and skeletal muscle off-target effects reported in multiple myeloma patients treated with proteasome inhibitors. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jushuo Wang
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY
| | - Yingli Fan
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY
| | - Chenyan Wang
- Department of Biomedical & Chemical Engineering, The BioInspired Institute for Materials and Living Systems, Syracuse University, Syracuse, NY
| | - Syamalima Dube
- Department of Medicine, SUNY Upstate Medical University, Syracuse, NY
| | - Bernard J Poiesz
- Department of Medicine, SUNY Upstate Medical University, Syracuse, NY
| | - Dipak K Dube
- Department of Medicine, SUNY Upstate Medical University, Syracuse, NY
| | - Zhen Ma
- Department of Biomedical & Chemical Engineering, The BioInspired Institute for Materials and Living Systems, Syracuse University, Syracuse, NY
| | - Jean M Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY
| | - Joseph W Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY
| |
Collapse
|
4
|
Resolving titin's lifecycle and the spatial organization of protein turnover in mouse cardiomyocytes. Proc Natl Acad Sci U S A 2019; 116:25126-25136. [PMID: 31757849 DOI: 10.1073/pnas.1904385116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cardiac protein homeostasis, sarcomere assembly, and integration of titin as the sarcomeric backbone are tightly regulated to facilitate adaptation and repair. Very little is known on how the >3-MDa titin protein is synthesized, moved, inserted into sarcomeres, detached, and degraded. Here, we generated a bifluorescently labeled knockin mouse to simultaneously visualize both ends of the molecule and follow titin's life cycle in vivo. We find titin mRNA, protein synthesis and degradation compartmentalized toward the Z-disk in adult, but not embryonic cardiomyocytes. Originating at the Z-disk, titin contributes to a soluble protein pool (>15% of total titin) before it is integrated into the sarcomere lattice. Titin integration, disintegration, and reintegration are stochastic and do not proceed sequentially from Z-disk to M-band, as suggested previously. Exchange between soluble and integrated titin depends on titin protein composition and differs between individual cardiomyocytes. Thus, titin dynamics facilitate embryonic vs. adult sarcomere remodeling with implications for cardiac development and disease.
Collapse
|
5
|
White J, Wang J, Fan Y, Dube DK, Sanger JW, Sanger JM. Myofibril Assembly in Cultured Mouse Neonatal Cardiomyocytes. Anat Rec (Hoboken) 2018; 301:2067-2079. [DOI: 10.1002/ar.23961] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/05/2018] [Accepted: 06/12/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Jennifer White
- Department of Cell and Developmental BiologySUNY Upstate Medical University Syracuse New York
| | - Jushuo Wang
- Department of Cell and Developmental BiologySUNY Upstate Medical University Syracuse New York
| | - Yingli Fan
- Department of Cell and Developmental BiologySUNY Upstate Medical University Syracuse New York
| | - Dipak K. Dube
- Department of MedicineSUNY Upstate Medical University Syracuse New York
| | - Joseph W. Sanger
- Department of Cell and Developmental BiologySUNY Upstate Medical University Syracuse New York
| | - Jean M. Sanger
- Department of Cell and Developmental BiologySUNY Upstate Medical University Syracuse New York
| |
Collapse
|
6
|
Dhanasekaran K, Bose A, Rao VJ, Boopathi R, Shankar SR, Rao VK, Swaminathan A, Vasudevan M, Taneja R, Kundu TK. Unraveling the role of aurora A beyond centrosomes and spindle assembly: implications in muscle differentiation. FASEB J 2018; 33:219-230. [PMID: 29995440 DOI: 10.1096/fj.201800997] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Aurora kinases are critical mitotic serine/threonine kinases and are often implicated in tumorigenesis. Recent studies of the interphase functions for aurora kinase (Aurk)A have considerably expanded our understanding of its role beyond mitosis. To identify the unknown targets of AurkA, we used peptide array-based screening and found E2F4 to be a novel substrate. Phosphorylation of E2F4 by AurkA at Ser75 regulates its DNA binding and subcellular localization. Because E2F4 plays an important role in skeletal muscle differentiation, we attempted to gain insight into E2F4 phosphorylation in this context. We observed that a block in E2F4 phosphorylation retained it better within the nucleus and inhibited muscle differentiation. RNA sequencing analysis revealed a perturbation of the gene network involved in the process of muscle differentiation and mitochondrial biogenesis. Collectively, our findings establish a novel role of AurkA in the process of skeletal muscle differentiation.-Dhanasekaran, K., Bose, A., Rao, V. J., Boopathi, R., Shankar, S. R., Rao, V. K., Swaminathan, A., Vasudevan, M., Taneja, R., Kundu, T. K. Unravelling the role of aurora A beyond centrosomes and spindle assembly: implications in muscle differentiation.
Collapse
Affiliation(s)
- Karthigeyan Dhanasekaran
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Arnab Bose
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Vinay J Rao
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Ramachandran Boopathi
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Shilpa Rani Shankar
- Department of Physiology, Cellular Differentiation, and Apoptosis, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and
| | - Vinay Kumar Rao
- Department of Physiology, Cellular Differentiation, and Apoptosis, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and
| | - Amrutha Swaminathan
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | | | - Reshma Taneja
- Department of Physiology, Cellular Differentiation, and Apoptosis, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
7
|
Yakupova EI, Vikhlyantsev IM, Lobanov MY, Galzitskaya OV, Bobylev AG. Amyloid Properties of Titin. BIOCHEMISTRY (MOSCOW) 2018. [PMID: 29523065 DOI: 10.1134/s0006297917130077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This review considers data on structural and functional features of titin, on the role of this protein in determination of mechanical properties of sarcomeres, and on specific features of regulation of the stiffness and elasticity of its molecules, amyloid aggregation of this protein in vitro, and possibilities of formation of intramolecular amyloid structure in vivo. Molecular mechanisms are described of protection of titin against aggregation in muscle cells. Based on the data analysis, it is supposed that titin and the formed by it elastic filaments have features of amyloid.
Collapse
Affiliation(s)
- E I Yakupova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | | | | | |
Collapse
|
8
|
McKeown CR, Nowak RB, Gokhin DS, Fowler VM. Tropomyosin is required for cardiac morphogenesis, myofibril assembly, and formation of adherens junctions in the developing mouse embryo. Dev Dyn 2014; 243:800-17. [PMID: 24500875 DOI: 10.1002/dvdy.24115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND We explored a function for tropomyosin (TM) in mammalian myofibril assembly and cardiac development by analyzing a deletion in the mouse TPM1 gene targeting αTM1, the major striated muscle TM isoform. RESULTS Mice lacking αTM1 are embryonic lethal at E9.5 with enlarged, misshapen, and non-beating hearts characterized by an abnormally thin myocardium and reduced trabeculae. αTM1-deficient cardiomyocytes do not assemble striated myofibrils, instead displaying aberrant non-striated F-actin fibrils with α-actinin puncta dispersed irregularly along their lengths. αTM1's binding partner, tropomodulin1 (Tmod1), is also disorganized, and both myomesin-containing thick filaments as well as titin Z1Z2 fail to assemble in a striated pattern. Adherens junctions are reduced in size in αTM1-deficient cardiomyocytes, α-actinin/F-actin adherens belts fail to assemble at apical cell-cell contacts, and cell contours are highly irregular, resulting in abnormal cell shapes and a highly folded cardiac surface. In addition, Tmod1-deficient cardiomyocytes exhibit failure of α-actinin/F-actin adherens belt assembly. CONCLUSIONS Absence of αTM1 resulting in unstable F-actin may preclude sarcomere formation and/or lead to degeneration of partially assembled sarcomeres due to unregulated actomyosin interactions. Our data also identify a novel αTM1/Tmod1-based pathway stabilizing F-actin at cell-cell junctions, which may be required for maintenance of cell shapes during embryonic cardiac morphogenesis.
Collapse
Affiliation(s)
- Caroline R McKeown
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | | | | | | |
Collapse
|
9
|
Vikhlyantsev IM, Podlubnaya ZA. New titin (connectin) isoforms and their functional role in striated muscles of mammals: facts and suppositions. BIOCHEMISTRY (MOSCOW) 2013; 77:1515-35. [PMID: 23379526 DOI: 10.1134/s0006297912130093] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This review summarizes results of our studies on titin isoform composition in vertebrate striated muscles under normal conditions, during hibernation, real and simulated microgravity, and under pathological conditions (stiff-person syndrome, post-apoplectic spasticity, dilated cardiomyopathy, cardiac hypertrophy). Experimental evidence for the existence in mammalian striated muscles of higher molecular weight isoforms of titin (NT-isoforms) in addition to the known N2A-, N2BA-, and N2B-titin isoforms was obtained. Comparative studies of changes in titin isoform composition and structure-functional properties of human and animal striated muscles during adaptive and pathological processes led to a conclusion about the key role of NT-isoforms of titin in maintenance of sarcomere structure and contractile function of these muscles.
Collapse
Affiliation(s)
- I M Vikhlyantsev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | |
Collapse
|
10
|
Wang J, Dube DK, White J, Fan Y, Sanger JM, Sanger JW. Clock is not a component of Z-bands. Cytoskeleton (Hoboken) 2012; 69:1021-31. [PMID: 22907924 DOI: 10.1002/cm.21058] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 07/23/2012] [Indexed: 01/16/2023]
Abstract
The process of Z-band assembly begins with the formation of small Z-bodies composed of a complex of proteins rich in alpha-actinin. As additional proteins are added to nascent myofibrils, Z-bodies are transformed into continuous bands that form coherent discs of interacting proteins at the boundaries of sarcomeres. The steps controlling the transition of Z-bodies to Z-bands are not known. The report that a circadian protein, Clock, was localized in the Z-bands of neonatal rat cardiomyocytes raised the question whether this transcription factor could be involved in Z-band assembly. We found that the anti-Clock antibody used in the reported study also stained the Z-bands and Z-bodies of mouse and avian cardiac and skeletal muscle cells. YFP constructs of Clock that were assembled, however, did not localize to the Z-bands of muscle cells. Controls of Clock's activity showed that cotransfection of muscle cells with pYFP-Clock and pCeFP-BMAL1 led to the expected nuclear localization of YFP-Clock with its binding partner CeFP-BMAL1. Neither CeFP-BMAL1 nor antibodies directed against BMAL1 localized to Z-bands. A bimolecular fluorescence complementation assay (VC-BMAL1 and VN-Clock) confirmed the absence of Clock and BMAL1 from Z-bands, and their nuclear colocalization. A second anti-Clock antibody stained nuclei, but not Z-bands, of cells cotransfected with Clock and BMAL1 plasmids. Western blots of reactions of muscle extracts and purified alpha-actinins with the two anti-Clock antibodies showed that the original antibody cross-reacted with alpha-actinin and the second did not. These results cannot confirm Clock as an active component of Z-bands. © 2012 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jushuo Wang
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Sanger JM, Wang J, Gleason LM, Chowrashi P, Dube DK, Mittal B, Zhukareva V, Sanger JW. Arg/Abl-binding protein, a Z-body and Z-band protein, binds sarcomeric, costameric, and signaling molecules. Cytoskeleton (Hoboken) 2010; 67:808-23. [PMID: 20886612 DOI: 10.1002/cm.20490] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 09/22/2010] [Accepted: 09/23/2010] [Indexed: 12/14/2022]
Abstract
ArgBP2 (Arg/Abl-Binding Protein) is expressed at high levels in the heart and is localized in the Z-bands of mature myofibrils. ArgBP2 is a member of a small family of proteins that also includes vinexin and CAP (c-Cbl-associated protein), all characterized by having one sorbin homology (SOHO) domain and three C-terminal SH3 domains. Antibodies directed against ArgBP2 also react with the Z-bodies of myofibril precursors: premyofibrils and nascent myofibrils. Expression in cardiomyocytes of plasmids encoding Yellow Fluorescent Protein (YFP) fused to either full length ArgBP2, the SOHO, mid-ArgBP or the SH3 domains of ArgBP2 led to Z-band targeting of the fusion proteins, whereas an N-terminal fragment lacking these domains did not target to Z-bands. Although ArgBP2 is not found in skeletal muscle cells, YFP-ArgBP2 did target to Z-bodies and Z-bands in cultured myotubes. GST-ArgBP2-SH3 bound actin, α-actinin and vinculin proteins in blot overlays, cosedimentation assays, and EM negative staining techniques. Over-expression of ArgBP2 and ArgBP2-SH3 domains, but not YFP alone, led to loss of myofibrils in cardiomyocytes. Fluorescence recovery after photobleaching was used to measure the rapid dynamics of both the full length and some truncated versions of ArgBP2. Our results indicate that ArgBP2 may play an important role in the assembly and maintenance of myofibrils in cardiomyocytes.
Collapse
Affiliation(s)
- Jean M Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York 13210, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Kontrogianni-Konstantopoulos A, Ackermann MA, Bowman AL, Yap SV, Bloch RJ. Muscle giants: molecular scaffolds in sarcomerogenesis. Physiol Rev 2009; 89:1217-67. [PMID: 19789381 PMCID: PMC3076733 DOI: 10.1152/physrev.00017.2009] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Myofibrillogenesis in striated muscles is a highly complex process that depends on the coordinated assembly and integration of a large number of contractile, cytoskeletal, and signaling proteins into regular arrays, the sarcomeres. It is also associated with the stereotypical assembly of the sarcoplasmic reticulum and the transverse tubules around each sarcomere. Three giant, muscle-specific proteins, titin (3-4 MDa), nebulin (600-800 kDa), and obscurin (approximately 720-900 kDa), have been proposed to play important roles in the assembly and stabilization of sarcomeres. There is a large amount of data showing that each of these molecules interacts with several to many different protein ligands, regulating their activity and localizing them to particular sites within or surrounding sarcomeres. Consistent with this, mutations in each of these proteins have been linked to skeletal and cardiac myopathies or to muscular dystrophies. The evidence that any of them plays a role as a "molecular template," "molecular blueprint," or "molecular ruler" is less definitive, however. Here we review the structure and function of titin, nebulin, and obscurin, with the literature supporting a role for them as scaffolding molecules and the contradictory evidence regarding their roles as molecular guides in sarcomerogenesis.
Collapse
|
14
|
Chi RJ, Simon AR, Bienkiewicz EA, Felix A, Keller TCS. Smooth muscle titin Zq domain interaction with the smooth muscle alpha-actinin central rod. J Biol Chem 2008; 283:20959-67. [PMID: 18519573 DOI: 10.1074/jbc.m709621200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Actin-myosin II filament-based contractile structures in striated muscle, smooth muscle, and nonmuscle cells contain the actin filament-cross-linking protein alpha-actinin. In striated muscle Z-disks, alpha-actinin interacts with N-terminal domains of titin to provide a structural linkage crucial for the integrity of the sarcomere. We previously discovered a long titin isoform, originally smitin, hereafter sm-titin, in smooth muscle and demonstrated that native sm-titin interacts with C-terminal EF hand region and central rod R2-R3 spectrin-like repeat region sites in alpha-actinin. Reverse transcription-PCR analysis of RNA from human adult smooth muscles and cultured rat smooth muscle cells and Western blot analysis with a domain-specific antibody presented here revealed that sm-titin contains the titin gene-encoded Zq domain that may bind to the alpha-actinin R2-R3 central rod domain as well as Z-repeat domains that bind to the EF hand region. We investigated whether the sm-titin Zq domain binds to alpha-actinin R2 and R3 spectrin repeat-like domain loops that lie in proximity with two-fold symmetry on the surface of the central rod. Mutations in alpha-actinin R2 and R3 domain loop residues decreased interaction with expressed sm-titin Zq domain in glutathione S-transferase pull-down and solid phase binding assays. Alanine mutation of a region of the Zq domain with high propensity for alpha-helix formation decreased apparent Zq domain dimer formation and decreased Zq interaction with the alpha-actinin R2-R3 region in surface plasmon resonance assays. We present a model in which two sm-titin Zq domains interact with each other and with the two R2-R3 sites in the alpha-actinin central rod.
Collapse
Affiliation(s)
- Richard J Chi
- Department of Biological Science, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | | | | | | | | |
Collapse
|
15
|
Granzier H, Labeit S. Structure-function relations of the giant elastic protein titin in striated and smooth muscle cells. Muscle Nerve 2008; 36:740-55. [PMID: 17763461 DOI: 10.1002/mus.20886] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The striated muscle sarcomere contains, in addition to thin and thick filaments, a third myofilament comprised of titin. The extensible region of titin spans the I-band region of the sarcomere and develops passive force in stretched sarcomeres. This force positions the A-bands in the middle of the sarcomere, maintains sarcomere length homogeneity and, importantly, is responsible for myocardial passive tension that determines diastolic filling. Recent work suggests that smooth muscle expresses a truncated titin isoform with a short extensible region that is predicted to develop high passive force levels. Several mechanisms for tuning the titin-based passive tension have been discovered that involve alternative splicing as well as posttranslational modification, mechanisms that are at play both during normal muscle function as well as during disease.
Collapse
Affiliation(s)
- Henk Granzier
- Department of Veterinary and Comparative Anatomy, Pharmacology Physiology, and Physiology, Washington State University, Pullman, Washington, USA
| | | |
Collapse
|
16
|
Vikhlyantsev IM, Podlubnaya ZA. Structure and functions of titin, a giant protein of skeletal and cardiac muscle: Evidence and suppositions. Biophysics (Nagoya-shi) 2007. [DOI: 10.1134/s0006350907060061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
17
|
Abstract
The assembly of sarcomeric proteins into the highly organized structure of the sarcomere is an ordered and complex process involving an array of structural and associated proteins. The sarcomere has shown itself to be considerably more complex than ever envisaged and may be considered one of the most complex macromolecular assemblies in biology. Studies over the last decade have helped to put a new face on the sarcomere, and, as such, the sarcomere is being redefined as a dynamic network of proteins capable of generating force and signalling with other cellular compartments and metabolic enzymes capable of controlling many facets of striated myocyte biology.
Collapse
Affiliation(s)
- Samuel Y Boateng
- The Center for Cardiovascular Research, Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | |
Collapse
|
18
|
Schwarz ML, Witt SH, Schneider-Wald B, Buettner A, Witt CC, Stoeve J, Scharf HP, Labeit S, Milz S. Titin expression in human articular cartilage and cultured chondrocytes: a novel component in articular cartilage biomechanical sensing? Biomed Pharmacother 2007; 62:339-47. [PMID: 17920806 DOI: 10.1016/j.biopha.2007.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Accepted: 08/07/2007] [Indexed: 10/22/2022] Open
Abstract
In striated muscle tissues, the giant protein titin acts as a biomechanically active filament system, coupling stress/strain to gene expression. The objective of the study is to show the existence of titin fragments in human articular cartilage, as in diarthodial joints, chondrocytes are also known to sense and respond to stretching. We have surveyed human cultured cartilage collected from adults with osteoarthritis (OA), without OA and from infants with a set of titin antibodies and primer pairs. Three different antibodies were used for immunolabelling, reacting with titin's N-terminal Z1-Z2 domains, its Novex III exon, and with its PEVK region. An antibody directed to a titin ligand was included, since in cardiac muscle, this has been shown to participate in the transmission of stretch dependent titin-based signals. Our results indicate that although at low levels, titin is expressed in cartilage. Primer pairs detected titin transcripts in cartilage, and consistent with this, antibodies directed to titin's Z-disc region and to its elastic region stained cartilage. Moreover, we also could detect transcription of the titin ligand CARP. Components of the stretch dependent signal machinery in muscle are also expressed in cartilage. Further studies are warranted to address if common stress/strain dependent signalling are conserved in muscle and cartilage tissues.
Collapse
Affiliation(s)
- Markus L Schwarz
- Laboratory for Biomechanics and Experimental Orthopedics, Department of Orthopedic Surgery and Traumatology, University Hospital, Mannheim, Medical Faculty of Mannheim University of Heidelberg, Mannheim, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Granzier H, Radke M, Royal J, Wu Y, Irving TC, Gotthardt M, Labeit S. Functional genomics of chicken, mouse, and human titin supports splice diversity as an important mechanism for regulating biomechanics of striated muscle. Am J Physiol Regul Integr Comp Physiol 2007; 293:R557-67. [PMID: 17522126 DOI: 10.1152/ajpregu.00001.2007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Titin is a giant filamentous elastic protein that spans from the Z-disk to M-band regions of the sarcomere. The I-band region of titin is extensible and develops passive force in stretched sarcomeres. This force has been implicated as a factor involved in regulating cardiac contraction. To better understand the adaptation in the extensible region of titin, we report the sequence and annotation of the chicken and mouse titin genes and compare them to the human titin gene. Our results reveal a high degree of conservation within the genomic region encoding the A-band segment of titin, consistent with the structural similarity of vertebrate A-bands. In contrast, the genomic region encoding the Z-disk and I-band segments is highly divergent. This is most prominent within the central I-band segment, where chicken titin has fewer but larger PEVK exons (up to 1,992 bp). Furthermore, in mouse titin we found two LINE repeats that are inserted in the Z-disk and I-band regions, the regions that account for most of the splice isoform diversity. Transcript studies show that a group of 55 I-band exons is differentially expressed in chicken titin. Consistent with a large degree of titin isoform plasticity and variation in PEVK content, chicken skeletal titins range in size from approximately 3,000 to approximately 3,700 kDa and vary greatly in passive mechanical properties. Low-angle X-ray diffraction experiments reveal significant differences in myofilament lattice spacing that correlate with titin isoform expression. We conclude that titin splice diversity regulates structure and biomechanics of the sarcomere.
Collapse
Affiliation(s)
- Henk Granzier
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Wegner Hall, Rm. 205, Pullman, WA 99164-6520, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Samaras SE, Shi Y, Davidson JM. CARP: fishing for novel mechanisms of neovascularization. J Investig Dermatol Symp Proc 2006; 11:124-31. [PMID: 17069020 DOI: 10.1038/sj.jidsymp.5650014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Gene expression profiling of mouse skin wounds has led to the discovery of numerous target genes that may have therapeutic or diagnostic value. Among these, cardiac ankyrin repeat protein (CARP, ankrd1) expression was markedly and persistently elevated in several cutaneous compartments. This review summarizes the current state of knowledge of CARP and its regulation in biological systems. In addition to its role as a nuclear transcription cofactor in many cell types including vascular endothelium, CARP is also a structural component of the sarcomere. CARP transcripts are prominent in cardiogenesis and muscle injury, and they are under complex regulation by cytokines, hypoxia, doxorubicin, and other forms of stress. CARP overexpression in wounds by adenoviral gene transfer leads to a high vascular density, and CARP exerts effects on endothelial behavior. The unusual cellular distribution and actions of CARP make it a novel candidate gene in tissue repair.
Collapse
Affiliation(s)
- Susan E Samaras
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2561, USA
| | | | | |
Collapse
|
22
|
Labeit S, Lahmers S, Burkart C, Fong C, McNabb M, Witt S, Witt C, Labeit D, Granzier H. Expression of Distinct Classes of Titin Isoforms in Striated and Smooth Muscles by Alternative Splicing, and Their Conserved Interaction with Filamins. J Mol Biol 2006; 362:664-81. [PMID: 16949617 DOI: 10.1016/j.jmb.2006.07.077] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 07/26/2006] [Accepted: 07/27/2006] [Indexed: 11/25/2022]
Abstract
While the role of titin as a sarcomeric protein is well established, its potential functional role(s) in smooth muscles and non-muscle tissues are controversial. We used a titin exon array to search for which part(s) of the human titin transcriptional unit encompassing 363 exons is(are) expressed in non-striated muscle tissues. Expression profiling of adult smooth muscle tissues (aorta, bladder, carotid, stomach) identified alternatively spliced titin isoforms, encompassing 80 to about 100 exons. These exons code for parts of the titin Z-disk, I-band and A-band regions, allowing the truncated smooth muscle titin isoform to link Z-disks/dense bodies together with thick filaments. Consistent with the array data, Western blot studies detected the expression of approximately 1 MDa smooth muscle titin in adult smooth muscles, reacting with selected Z-disc, I-band, and A-band titin antibodies. Immunofluorescence with these antibodies located smooth muscle titin in the cytoplasm of cultured human aortic smooth muscle cells and in the tunica media of intact adult bovine aorta. Real time PCR studies suggested that smooth muscle titins are expressed from a promoter located 35 kb or more upstream of the transcription initiation site used for striated muscle titin, driving expression of a bi-cistronic mRNA, coding 5' for the anonymous gene FL39502, followed 3' by titin, respectively. Our work showed that smooth muscle and striated muscle titins share in their conserved amino-terminal regions binding sites for alpha-actinin and filamins: Yeast two-hybrid screens using Z2-Zis1 titin baits identified prey clones coding for alpha-actinin-1 and filamin-A from smooth muscle, and alpha-actinin-2/3, filamin-C, and nebulin from skeletal muscle cDNA libraries, respectively. This suggests that the titin Z2-Zis1 domain can link filamins and alpha-actinin together in the periphery of the Z-line/dense bodies in a fashion that is conserved in smooth and striated muscles.
Collapse
Affiliation(s)
- Siegfried Labeit
- Institute for Anaesthesiology and Intensive Care, University Hospital Mannheim, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The unique cytoarchitecture of cardiomyocytes arises by complex interactions of different filamentous structures of the cytoskeleton. Intermediate filaments of the non-sarcomeric cytoskeleton are not essential for development but important for maintenance of myofibrils. Myofibrils consist of contractile proteins involved in force generation and the muscle cytoskeleton framework. The latter is essential for proper assembly and maintenance as well as for interaction with other cardiomyocytes or the extracellular matrix, thus being involved in force transmission. The information for sarcomere assembly is encoded in the proteins and some domains essential for faithful incorporation have been identified by epitope tagging experiments. Many KO mutations result in embryonic lethal phenotypes and new techniques e.g. using cardiomyocytes derived from ES cell-lines will have to be developed that allow to study such mutations in cardiomyocytes rather than whole organisms. Alterations in the expression levels of several proteins of the muscle cytoskeleton or impairment of their function by point mutations can result in increased mechanical stress in the cardiomyocytes which finally leads to cellular responses such as the development of dilated cardiomyopathy (DCM). MLP (muscle-LIM-protein) deficient mice develop DCM and changes in the mechanical coupling of cardiomyocytes result in alterations at the intercalated disks and enhanced accumulation of adherens junction proteins. Therefore, controlled interactions between proteins of the muscle cytoskeleton and contractile proteins are essential to ensure proper cardiac function and a more detailed insight in these processes might provide new tools to improve the contractile efficiency of the cardiomyocytes and thus working output in cardiomyopathies.
Collapse
Affiliation(s)
- E Ehler
- Institute of Cell Biology ETH, Swiss Federal Institute of Technology, CH-8093, Zürich, Switzerland
| | | |
Collapse
|
24
|
Chi RJ, Olenych SG, Kim K, Keller TCS. Smooth muscle alpha-actinin interaction with smitin. Int J Biochem Cell Biol 2005; 37:1470-82. [PMID: 15833278 DOI: 10.1016/j.biocel.2005.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Accepted: 02/14/2005] [Indexed: 11/19/2022]
Abstract
Actin-myosin II filament-based contractile structures in striated muscle, smooth muscle, and nonmuscle cells also contain the actin filament-crosslinking protein alpha-actinin. In striated muscle sarcomeres, interactions between the myosin-binding protein titin and alpha-actinin in the Z-line provide an important structural linkage. We previously discovered a titin-like protein, smitin, associated with the contractile apparatus of smooth muscle cells. Purified native smooth muscle alpha-actinin binds with nanomolar affinity to smitin in smitin-myosin coassemblies in vitro. Smooth muscle alpha-actinin also interacts with striated muscle titin. In contrast to striated muscle alpha-actinin interaction with titin and smitin, which is significantly enhanced by PIP2, smooth muscle alpha-actinin interacts with smitin and titin equally well in the presence and absence of PIP2. Using expressed regions of smooth muscle alpha-actinin, we have demonstrated smitin-binding sites in the smooth muscle alpha-actinin R2-R3 spectrin-like repeat rod domain and a C-terminal domain formed by cryptic EF-hand structures. These smitin-binding sites are highly homologous to the titin-binding sites of striated muscle alpha-actinin. Our results suggest that direct interaction between alpha-actinin and titin or titin-like proteins is a common feature of actin-myosin II contractile structures in striated muscle and smooth muscle cells and that the molecular bases for alpha-actinin interaction with these proteins are similar, although regulation of these interactions may differ according to tissue.
Collapse
Affiliation(s)
- Richard J Chi
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4370, USA
| | | | | | | |
Collapse
|
25
|
Wang J, Shaner N, Mittal B, Zhou Q, Chen J, Sanger JM, Sanger JW. Dynamics of Z-band based proteins in developing skeletal muscle cells. ACTA ACUST UNITED AC 2005; 61:34-48. [PMID: 15810059 PMCID: PMC1993831 DOI: 10.1002/cm.20063] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
During myofibril formation, Z-bodies, small complexes of alpha-actinin and associated proteins, grow in size, fuse and align to produce Z-bands. To determine if there were changes in protein dynamics during the assembly process, Fluorescence Recovery after Photobleaching was used to measure the exchange of Z-body and Z-band proteins with cytoplasmic pools in cultures of quail myotubes. Myotubes were transfected with plasmids encoding Yellow, Green, or Cyan Fluorescent Protein linked to the Z-band proteins: actin, alpha-actinin, cypher, FATZ, myotilin, and telethonin. Each Z-band protein showed a characteristic recovery rate and mobility. All except telethonin were localized in both Z-bodies and Z-bands. Proteins that were present both early in development in Z-bodies and later in Z-bands had faster exchange rates in Z-bodies. These results suggest that during myofibrillogenesis, molecular interactions develop between the Z-band proteins that decrease their mobility and increase the stability of the Z-bands. A truncated construct of alpha-actinin, which localized in Z-bands in myotubes and exhibited a very low rate of exchange, led to disruption of myofibrils, suggesting the importance of dynamic, intact alpha-actinin molecules for the formation and maintenance of Z-bands. Our experiments reveal the Z-band to be a much more dynamic structure than its appearance in electron micrographs of cross-striated muscle cells might suggest.
Collapse
Affiliation(s)
- Jushuo Wang
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058
| | - Nathan Shaner
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058
| | - Balraj Mittal
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058
| | - Qiang Zhou
- Department of Medicine, Institute of Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Ju Chen
- Department of Medicine, Institute of Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Jean M. Sanger
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058
| | - Joseph W. Sanger
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058
- +Corresponding Author: Dr. J. W. Sanger, Dept. Cell & Develop. Biol., Univ. Penn. Sch. Med., 421 Curie Blvd., BRB II/III, Phila., PA 19104-6058, Tel:215-898-6919, FAX:215-898-9871,
| |
Collapse
|
26
|
Shaner NC, Sanger JW, Sanger JM. Actin and alpha-actinin dynamics in the adhesion and motility of EPEC and EHEC on host cells. ACTA ACUST UNITED AC 2004; 60:104-20. [PMID: 15627283 DOI: 10.1002/cm.20047] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Two pathogenic Escherichia coli, Enteropathogenic E. coli (EPEC) and Enterohemorrhagic E. coli (EHEC), adhere to the outside of host cells and induce cytoskeletal rearrangements leading to the formation of membrane-encased pedestals comprised of actin filaments and other associated proteins beneath the bacteria. The structure of the pedestals induced by the two pathogens appears similar, although those induced by EHEC are shorter in length. Fluorescence Recovery After Photobleaching (FRAP) was used to determine potential differences of actin polymerization in EPEC and EHEC induced pedestals in cultured PtK2 cells expressing either Green or Yellow Fluorescent Protein (GFP or YFP) fused to actin or alpha-actinin. When all the fluorescent actin in a pedestal on EPEC-infected cells was photobleached, fluorescence recovery first occurred directly beneath the bacterium in a band that grew wider at a rate of one micron/minute. Consistently observed in all EPEC-induced pedestals, whether they were stationary, lengthening, or translocating, the rate of actin polymerization that occurred at the pedestal tip was approximately 1 mum/min. Overall, a much slower rate of actin polymerization was measured in long EHEC-induced pedestals. In contrast to the dynamics of GFP-actin, recovery of GFP-alpha-actinin fluorescence was not polarized, with the actin cross-linking protein exchanging all the length of the EPEC/EHEC induced pedestals. Surprisingly, the depolymerization and retrograde flow of pedestal actin, as well as pedestal translocations, were inhibited reversibly by either 2,3-butanedione monoxime (BDM) or by a combination of sodium azide and 2-deoxy D-glucose, leading to an increase in the lengths of the pedestals. A simple physical model was developed to describe elongation and translocation of EPEC/EHEC pedestals in terms of actin polymerization and depolymerization dynamics.
Collapse
Affiliation(s)
- Nathan C Shaner
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6058, USA
| | | | | |
Collapse
|
27
|
Du A, Sanger JM, Linask KK, Sanger JW. Myofibrillogenesis in the first cardiomyocytes formed from isolated quail precardiac mesoderm. Dev Biol 2003; 257:382-94. [PMID: 12729566 DOI: 10.1016/s0012-1606(03)00104-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
De novo assembly of myofibrils was investigated in explants of precardiac mesoderm from quail embryos to address a controversy about different models of myofibrillogenesis. The sequential expression of sarcomeric components was visualized in double- and triple-stained explants before, during, and just after the first cardiomyocytes began to beat. In explants from stage 6 embryos, cultured for 10 h, ectoderm, endoderm, and the precardiac mesoderm displayed arrays of stress fibers with alternating bands of the nonmuscle isoforms of alpha-actinin and myosin IIB. With increasing time in culture, mesoderm cells contained fibrils composed of actin, nonmuscle myosin IIB, and sarcomeric alpha-actinin. Several hours later, before beating occurred, both nonmuscle and muscle myosin II localized in some of the fibrils in the cells. Concentrations of muscle myosin began as thin bundles, dispersed in the cytoplasm, often overlapping one another, and progressed to small, aligned A-band-sized aggregates. The amount of nonmuscle myosin decreased dramatically when Z-bands formed, the muscle myosin became organized into A-bands, and the cells began beating. The sequential changes in protein composition of the fibrils in the developing muscle cells supports the model of myofibrillogenesis in which assembly begins with premyofibrils and progresses through nascent myofibrils to mature myofibrils.
Collapse
Affiliation(s)
- Aiping Du
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA
| | | | | | | |
Collapse
|
28
|
Chowrashi P, Mittal B, Sanger JM, Sanger JW. Amorphin is phosphorylase; phosphorylase is an alpha-actinin-binding protein. CELL MOTILITY AND THE CYTOSKELETON 2002; 53:125-35. [PMID: 12211109 DOI: 10.1002/cm.10059] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In a study of myofibrillar proteins, Chowrashi and Pepe [1982: J. Cell Biol. 94:565-573] reported the isolation of a new, 85-kD Z-band protein that they named amorphin. We report that partial sequences of purified amorphin protein indicate that amorphin is identical to phosphorylase, an enzyme important in the metabolism of glycogen. Anti-amorphin antibodies also reacted with purified chicken and rabbit phosphorylase. To explore the basis for phosphorylase's (amorphin's) localization in the Z-bands of skeletal muscles, we reacted biotinylated alpha-actinin with purified amorphin and with purified phosphorylase and found that alpha-actinin bound to each. Radioimmune assays also indicated that phosphorylase (amorphin) bound to alpha-actinin, and, with lower affinity, to F-actin. Negative staining of actin filaments demonstrated that alpha-actinin mediates the binding of phosphorylase to actin filaments. There are several glycolytic enzymes that bind actin (e.g., aldolase, phosphofructokinase, and pyruvate kinase), but phosphorylase is the first one demonstrated to bind alpha-actinin. Localization of phosphorylase in live cells was assessed by transfecting cultures of quail embryonic myotubes with plasmids expressing phosphorylase fused to Green Fluorescent Protein (GFP). This resulted in targeting of the fusion protein to Z-bands accompanied by a diffuse pattern in the cytoplasm.
Collapse
Affiliation(s)
- Prokash Chowrashi
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, 19104-6058, USA
| | | | | | | |
Collapse
|
29
|
Sanger JW, Chowrashi P, Shaner NC, Spalthoff S, Wang J, Freeman NL, Sanger JM. Myofibrillogenesis in skeletal muscle cells. Clin Orthop Relat Res 2002:S153-62. [PMID: 12394464 DOI: 10.1097/00003086-200210001-00018] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
How are myofibrils assembled in skeletal muscles? The current authors present evidence that myofibrils assemble through a three-step model: premyofibrils to nascent myofibrils to mature myofibrils. This three-step sequence was based initially on studies of living and fixed cultured cells from cardiac muscle. Data from avian primary muscle cells and from a transgenic skeletal mouse cell line indicate that a premyofibril model for myofibrillogenesis also holds for skeletal muscle cells. Premyofibrils are characterized by minisarcomeres bounded by Z-bodies composed of the muscle isoform of alpha-actinin. Actin filaments are connected to these Z-bodies and to the mini-A-bands composed of nonmuscle myosin II filaments. Nascent myofibrils are formed when premyofibrils align and are modified by the addition of titin and muscle myosin II filaments. Mature myofibrils result when nonmuscle myosin II is eliminated from the myofibrils and the alpha-actinin rich Z-bodies fuse as the distance between them increases from 0.5 microm in premyofibrils to 2 to 2.5 microm in the mature myofibrils.
Collapse
Affiliation(s)
- Joseph W Sanger
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, 421 Curie Boulevard, Philadelphia, PA 19104-6058, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Moncman CL, Wang K. Targeted disruption of nebulette protein expression alters cardiac myofibril assembly and function. Exp Cell Res 2002; 273:204-18. [PMID: 11822876 DOI: 10.1006/excr.2001.5423] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To evaluate nebulette's role in cardiac myofibrils, cardiomyocytes expressing green fluorescent protein (GFP)-nebulette constructs were monitored for their ability to contract and myofilament protein distribution was analyzed. Cells expressing full-length GFP-nebulette appear unaffected and exhibit normal beating frequencies. Expression of the GFP linker and SH3 results in loss of the endogenous nebulette and tropomyosin; however, Z-line and thick filaments are undisturbed. Cells expressing either of these domains have dramatically reduced beating frequencies, consistent with the loss of thin filament proteins. This loss was inhibited by the addition of protease inhibitors during culturing. The GFP repeat domain disrupts both myofibrillogenesis and contraction in spreading cardiomyocytes, whereas introduction of this protein into well-spread cardiomyocytes results in localization at the Z-line and a 50% reduction in beating frequency. Ultimately, these cells form bundles containing the GFP repeat and many myofilament proteins. Interestingly, butanedione monoxime inhibition of contraction inhibited the formation of these bundles. These results show that the GFP-nebulette domains have a dominant-negative effect on the distribution and function of the sarcomeric proteins. Taken together with the observation that nebulette colocalizes with alpha-actinin in the pre-, nascent, and mature myofibrils, our data demonstrate the importance of this cardiac-specific nebulin isoform in myofibril organization and function.
Collapse
Affiliation(s)
- Carole L Moncman
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|
31
|
Luther PK, Barry JS, Squire JM. The three-dimensional structure of a vertebrate wide (slow muscle) Z-band: lessons on Z-band assembly. J Mol Biol 2002; 315:9-20. [PMID: 11771963 DOI: 10.1006/jmbi.2001.5217] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The vertebrate muscle Z-band organizes and tethers antiparallel actin filaments in adjacent sarcomeres and hence propagates the tension generated by the actomyosin interaction during muscular contraction. The axial width of the Z-band varies with fibre and muscle type: fast twitch muscles have narrow (approximately 30-50 nm) Z-bands, while slow-twitch and cardiac muscles have wide (approximately 100-140 nm) Z-bands. In electron micrographs of longitudinal sections of fast fibres like those found in fish body white muscle, the Z-band appears as a characteristic zigzag layer of density connecting the mutually offset actin filament arrays in adjacent sarcomeres. Wide Z-bands in slow fibres such as the one studied here (bovine neck muscle) show a stack of three or four zigzag layers. The variable Z-band width incorporating variable numbers of zigzag layers presumably relates to the different mechanical properties of the respective muscles. Three-dimensional reconstructions of Z-bands reveal that individual zigzag layers are often composed of more than one set of protein bridges, called Z-links, probably alpha-actinin, between oppositely oriented actin filaments. Fast muscle Z-bands comprise two or three layers of Z-links. Here we have applied Fourier reconstruction methods to obtain clear three-dimensional density maps of the Z-bands in beef muscle. The bovine slow muscle investigated here reveals a Z-band comprising six sets of Z-links, which, due to their shape and the way their projected densities overlap, appear in longitudinal sections as either three or four zigzag layers, depending on the lattice view. There has been great interest recently in the suggestion that Z-band variability with fibre type may be due to differences in the repetitive region (tandem Z-repeats) in the Z-band part of titin (also called connectin). We discuss this in the context of our results and present a systematic classification of Z-band types according to the numbers of Z-links and titin Z-repeats.
Collapse
Affiliation(s)
- Pradeep K Luther
- Biological Structure and Function Section, Biomedical Sciences Division, Faculty of Medicine, Imperial College, Exhibition Road, London, SW7 2AZ, UK.
| | | | | |
Collapse
|
32
|
Abstract
Another giant protein has been detected in cross-striated muscle cells. Given the name obscurin, it was discovered in a yeast two-hybrid screen in which the bait was a small region of titin that is localized near the Z-band. Obscurin is about 720 kD, similar in molecular weight to nebulin, but present at about one tenth the level (Young et al., 2001). Like titin, obscurin contains multiple immunoglobulin-like domains linked in tandem, but in contrast to titin it contains just two fibronectin-like domains. It also contains sequences that suggest obscurin may have roles in signal transduction. During embryonic development, its localization changes from the Z-band to the M-band. With these intriguing properties, obscurin may not remain obscure for long.
Collapse
Affiliation(s)
- J W Sanger
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
33
|
Joseph C, Stier G, O'Brien R, Politou AS, Atkinson RA, Bianco A, Ladbury JE, Martin SR, Pastore A. A structural characterization of the interactions between titin Z-repeats and the alpha-actinin C-terminal domain. Biochemistry 2001; 40:4957-65. [PMID: 11305911 DOI: 10.1021/bi002739r] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Titin and alpha-actinin, two modular muscle proteins, are with actin the major components of the Z-band in vertebrate striated muscles where they serve to organize the antiparallel actin filament arrays in adjacent sarcomeres and to transmit tension between sarcomeres during activation. Interactions between titin and alpha-actinin have been mainly localized in a 45-amino acid multiple motif (Z-repeat) in the N-terminal region of titin and the C-terminal region of alpha-actinin. In this study, we provide the first quantitative characterization of alpha-actinin-Z-repeat recognition and dissect the interaction to its minimal units. Different complementary techniques, such as circular dichroism, calorimetry, and nuclear magnetic spectroscopy, were used. Two overlapping alpha-actinin constructs (Act-EF34 and Act-EF1234) containing two and four EF-hand motifs, respectively, were produced, and their folding properties were examined. Complex formation of Act-EF34 and Act-EF1234 with single- and double-Z-repeat constructs was studied. Act-EF34 was shown quantitatively to be necessary and sufficient for binding to Z-repeats, excluding the presence of additional high-affinity binding sites in the remaining part of the domain. The binding affinities of the different Z-repeats for Act-EF34 range from micromolar to millimolar values. The strongest of these interactions are comparable to those observed in troponin C-troponin I complexes. The binding affinities for Act-EF34 are maximal for Zr1 and Zr7, the two highly homologous sequences present in all muscle isoforms. No cooperative or additional contributions to the interaction were observed for Z-repeat double constructs. These findings have direct relevance for evaluating current models of Z-disk assembly.
Collapse
Affiliation(s)
- C Joseph
- NIMR, The Ridgeway, London NW7 1AA, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Sanger JW, Ayoob JC, Chowrashi P, Zurawski D, Sanger JM. Assembly of myofibrils in cardiac muscle cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 481:89-102; discussion 103-5. [PMID: 10987068 DOI: 10.1007/978-1-4615-4267-4_6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
How do myofibrils assemble in cardiac muscle cells? When does titin first assemble into myofibrils? What is the role of titin in the formation of myofibrils in cardiac muscle cells? This chapter reviews when titin is first detected in cultured cardiomyocytes that have been freshly isolated from embryonic avian hearts. Our results support a model for myofibrillogenesis that involves three stages of assembly: premyofibrils, nascent myofibrils and mature myofibrils. Titin and muscle thick filaments were first detected associated with the nascent myofibrils. The Z-band targeting site for titin is localized in the N-terminus of titin. This region of titin binds alpha-actinin and less avidly vinculin. Thus the N-terminus of titin via its binding to alpha-actinin, and vinculin could also help mediate the costameric attachment of the Z-bands of mature myofibrils to the nearest cell surfaces.
Collapse
Affiliation(s)
- J W Sanger
- Department of Cell and Developmental Biology, University of Pennsylvania, School of Medicine, Philadelphia, USA
| | | | | | | | | |
Collapse
|
35
|
Falk MM, Lauf U. High resolution, fluorescence deconvolution microscopy and tagging with the autofluorescent tracers CFP, GFP, and YFP to study the structural composition of gap junctions in living cells. Microsc Res Tech 2001; 52:251-62. [PMID: 11180618 DOI: 10.1002/1097-0029(20010201)52:3<251::aid-jemt1011>3.0.co;2-#] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High-resolution, fluorescence deconvolution (DV) microscopy was implemented to obtain a detailed view of the organization and structural composition of gap junctions assembled from one or two different connexin isotypes in live and fixed cells. To visualize gap junctions, the structural protein components of gap junction channels, the connexin polypeptides alpha1(Cx43), beta1(Cx32), and beta2(Cx26), were tagged on their C-termini with the autofluorescent tracers green fluorescent protein (GFP), and its cyan (CFP), and yellow (YFP) color variants. Tagged connexins were expressed in transiently transfected HeLa cells. Comprehensive analysis including dye-transfer analysis demonstrated that the tagged connexins trafficked, assembled, and packed normally into functional gap junction channel plaques. Such gap junction plaques were examined by single, dual, and triple-color DV microscopy. High-resolution images and three-dimensional volume reconstructions of gap junction plaques were obtained by this technique, which revealed several new aspects of gap junction structure. Specifically, the studies demonstrated that the mode of channel distribution strictly depends on the connexin isotypes. Here we present such images, and volume reconstructions in context with images obtained by other light, and electron microscopic techniques, such as laser scanning confocal, conventional wide-field fluorescence, thin section, and freeze-fracture electron microscopy. In addition, we give a simple description of the principal mechanisms of DV microscopy, name advantages and disadvantages, and discuss issues such as dual-color imaging using CFP and YFP, spatial resolution, colocalization, and avoiding imaging artifacts.
Collapse
Affiliation(s)
- M M Falk
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
36
|
Li HY, Kotaka M, Kostin S, Lee SM, Kok LD, Chan KK, Tsui SK, Schaper J, Zimmermann R, Lee CY, Fung KP, Waye MM. Translocation of a human focal adhesion LIM-only protein, FHL2, during myofibrillogenesis and identification of LIM2 as the principal determinants of FHL2 focal adhesion localization. CELL MOTILITY AND THE CYTOSKELETON 2001; 48:11-23. [PMID: 11124707 DOI: 10.1002/1097-0169(200101)48:1<11::aid-cm2>3.0.co;2-i] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
LIM domain proteins are found to be important regulators in cell growth, cell fate determination, cell differentiation, and remodeling of the cell cytoskeleton. Human Four-and-a-half LIM-only protein 2 (FHL2) is expressed predominantly in human heart and is only slightly expressed in skeletal muscle. Since FHL2 is an abundant protein in human heart, it may play an important role in the regulation of cell differentiation and myofibrillogenesis of heart at defined subcellular compartment. Therefore, we hypothesized that FHL2 act as a multi-functional protein by the specific arrangement of the LIM domains of FHL2 and that one of the LIM domains of FHL2 can function as an anchor and localizes it into a specific subcellular compartment in a cell type specific manner to regulate myofibrillogenesis. From our results, we observed that FHL2 is localized at the focal adhesions of the C2C12, H9C2 myoblast as well as a nonmyogenic cell line, HepG2 cells. Colocalization of vinculin-CFP and FHL2-GFP at focal adhesions was also observed in cell lines. Site-directed mutagenesis, in turn, suggested that the second LIM domain-LIM2 is essential for its specific localization to focal adhesions. Moreover, FHL2 was observed along with F-actin and focal adhesion of C2C12 and H9C2 myotubes. Finally, we believe that FHL2 moves from focal adhesions and then stays at the Z-discs of terminally differentiated heart muscle.
Collapse
Affiliation(s)
- H Y Li
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Freeman NL, Zurawski DV, Chowrashi P, Ayoob JC, Huang L, Mittal B, Sanger JM, Sanger JW. Interaction of the enteropathogenic Escherichia coli protein, translocated intimin receptor (Tir), with focal adhesion proteins. CELL MOTILITY AND THE CYTOSKELETON 2000; 47:307-18. [PMID: 11093251 DOI: 10.1002/1097-0169(200012)47:4<307::aid-cm5>3.0.co;2-q] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
When enteropathogenic Escherichia coli (EPEC) attach and infect host cells, they induce a cytoskeletal rearrangement and the formation of cytoplasmic columns of actin filaments called pedestals. The attached EPEC and pedestals move over the surface of the host cell in an actin-dependent reaction [Sanger et al., 1996: Cell Motil Cytoskeleton 34:279-287]. The discovery that EPEC inserts the protein, translocated intimin receptor (Tir), into the membrane of host cells, where it binds the EPEC outer membrane protein, intimin [Kenny et al., 1997: Cell 91:511-520], suggests Tir serves two functions: tethering the bacteria to the host cell and providing a direct connection to the host's cytoskeleton. The sequence of Tir predicts a protein of 56.8 kD with three domains separated by two predicted trans-membrane spanning regions. A GST-fusion protein of the N-terminal 233 amino acids of Tir (Tir1) binds to alpha-actinin, talin, and vinculin from cell extracts. GST-Tir1 also coprecipitates purified forms of alpha-actinin, talin, and vinculin while GST alone does not bind these three focal adhesion proteins. Biotinylated probes of these three proteins also bound Tir1 cleaved from GST. Similar associations of alpha-actinin, talin, and vinculin were also detected with the C-terminus of Tir, i.e., Tir3, the last 217 amino acids. Antibody staining of EPEC-infected cultured cells reveals the presence of focal adhesion proteins beneath the attached bacteria. Our experiments support a model in which the cytoplasmic domains of Tir recruit a number of focal adhesion proteins that can bind actin filaments to form pedestals. Since pedestals also contain villin, tropomyosin and myosin II [Sanger et al., 1996: Cell Motil. Cytoskeleton 34:279-287], the pedestals appear to be a novel structure sharing properties of both focal adhesions and microvilli.
Collapse
Affiliation(s)
- N L Freeman
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia 19104-6058, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Machado C, Andrew DJ. D-Titin: a giant protein with dual roles in chromosomes and muscles. J Cell Biol 2000; 151:639-52. [PMID: 11062264 PMCID: PMC2185597 DOI: 10.1083/jcb.151.3.639] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2000] [Accepted: 09/20/2000] [Indexed: 11/28/2022] Open
Abstract
Previously, we reported that chromosomes contain a giant filamentous protein, which we identified as titin, a component of muscle sarcomeres. Here, we report the sequence of the entire titin gene in Drosophila melanogaster, D-Titin, and show that it encodes a two-megadalton protein with significant colinear homology to the NH(2)-terminal half of vertebrate titin. Mutations in D-Titin cause chromosome undercondensation, chromosome breakage, loss of diploidy, and premature sister chromatid separation. Additionally, D-Titin mutants have defects in myoblast fusion and muscle organization. The phenotypes of the D-Titin mutants suggest parallel roles for titin in both muscle and chromosome structure and elasticity, and provide new insight into chromosome structure.
Collapse
Affiliation(s)
- C Machado
- Department of Cell Biology and Anatomy, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2196, USA
| | | |
Collapse
|
39
|
van der Ven PF, Bartsch JW, Gautel M, Jockusch H, Fürst DO. A functional knock-out of titin results in defective myofibril assembly. J Cell Sci 2000; 113 ( Pt 8):1405-14. [PMID: 10725223 DOI: 10.1242/jcs.113.8.1405] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Titin, also called connectin, is a giant muscle protein that spans the distance from the sarcomeric Z-disc to the M-band. Titin is thought to direct the assembly of sarcomeres and to maintain sarcomeric integrity by interacting with numerous sarcomeric proteins and providing a mechanical linkage. Since severe defects of such an important molecule are likely to result in embryonic lethality, a cell culture model should offer the best practicable tool to probe the cellular functions of titin. The myofibroblast cell line BHK-21/C13 was described to assemble myofibrils in culture. We have now characterized the sub-line BHK-21-Bi, which bears a small deletion within the titin gene. RNA analysis revealed that in this mutant cell line only a small internal portion of the titin mRNA is deleted. However, western blots, immunofluorescence microscopy and immunoprecipitation experiments showed that only the N-terminal, approx. 100 kDa central Z-disc portion of the 3 MDa titin protein is expressed, due to the homozygous deletion in the gene. Most importantly, in BHK-21-Bi cells the formation of thick myosin filaments and the assembly of myofibrils are impaired, although sarcomeric proteins are expressed. Lack of thick filament formation and of ordered actin-myosin arrays was confirmed by electron microscopy. Myogenisation induced by transfection with MyoD yielded myofibrils only in myotubes formed from wild type and not from mutant cells, ruling out that a principal failure in myogenic commitment of the BHK-21-Bi cells might cause the observed effects. These experiments provide the first direct evidence for the crucial role of titin in both thick filament formation as a molecular ruler and in the coordination of myofibrillogenesis.
Collapse
Affiliation(s)
- P F van der Ven
- Department of Cell Biology, University of Potsdam, Lennéstr. 7a, D-14471 Potsdam, Germany.
| | | | | | | | | |
Collapse
|