1
|
Paul S, Balakrishnan S, Arumugaperumal A, Lathakumari S, Syamala SS, Vijayan V, Durairaj SCJ, Arumugaswami V, Sivasubramaniam S. Importance of clitellar tissue in the regeneration ability of earthworm Eudrilus eugeniae. Funct Integr Genomics 2022; 22:1-32. [PMID: 35416560 DOI: 10.1007/s10142-022-00849-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/04/2022]
Abstract
Among the annelids, earthworms are renowned for their phenomenal ability to regenerate the lost segments. The adult earthworm Eudrilus eugeniae contains 120 segments and the body segments of the earthworm are divided into pre-clitellar, clitellar and post-clitellar segments. The present study denoted that clitellum plays vital role in the successful regeneration of the species. We have performed histological studies to identify among the three skin layers of the earthworm, which cellular layer supports the blastema formation and regeneration of the species. The histological evidences denoted that the proliferation of the longitudinal cell layer at the amputation site is crucial for the successful regeneration of the earthworm and it takes place only in the presence of an intact clitellum. Besides we have performed clitellar transcriptome analysis of the earthworm Eudrilus eugeniae to monitor the key differentially expressed genes and their associated functions and pathways controlling the clitellar tissue changes during both anterior and posterior regeneration of the earthworm. A total of 4707 differentially expressed genes (DEGs) were identified between the control clitellum and clitellum of anterior regenerated earthworms and 4343 DEGs were detected between the control clitellum and clitellum of posterior regenerated earthworms. The functional enrichment analysis confirmed the genes regulating the muscle mass shape and structure were significantly downregulated and the genes associated with response to starvation and anterior-posterior axis specification were significantly upregulated in the clitellar tissue during both anterior and posterior regeneration of the earthworm. The RNA sequencing data of clitellum and the comparative transcriptomic analysis were helpful to understand the complex regeneration process of the earthworm.
Collapse
Affiliation(s)
- Sayan Paul
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India.,Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, 560065, India
| | | | - Arun Arumugaperumal
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India
| | - Saranya Lathakumari
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India
| | - Sandhya Soman Syamala
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India
| | - Vijithkumar Vijayan
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India
| | - Selvan Christyraj Jackson Durairaj
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India.,Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600 119, India
| | | | - Sudhakar Sivasubramaniam
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India.
| |
Collapse
|
2
|
Parakati R, DiMario JX. Repression of myoblast proliferation and fibroblast growth factor receptor 1 promoter activity by KLF10 protein. J Biol Chem 2013; 288:13876-84. [PMID: 23569208 DOI: 10.1074/jbc.m113.457648] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND FGFR1 gene expression regulates myoblast proliferation and differentiation, and its expression is controlled by Krüppel-like transcription factors. RESULTS KLF10 interacts with the FGFR1 promoter, repressing its activity and cell proliferation. CONCLUSION KLF10 represses FGFR1 promoter activity and thereby myoblast proliferation. SIGNIFICANCE A model of transcriptional control of chicken FGFR1 gene regulation during myogenesis is presented. Skeletal muscle development is controlled by regulation of myoblast proliferation and differentiation into muscle fibers. Growth factors such as fibroblast growth factors (FGFs) and their receptors (FGFRs) regulate cell proliferation and differentiation in numerous tissues, including skeletal muscle. Transcriptional regulation of FGFR1 gene expression is developmentally regulated by the Sp1 transcription factor, a member of the Krüppel-like factor (KLF) family of transcriptional regulators. Here, we show that another KLF transcription factor, KLF10, also regulates myoblast proliferation and FGFR1 promoter activity. Expression of KLF10 reduced myoblast proliferation by 86%. KLF10 expression also significantly reduced FGFR1 promoter activity in myoblasts and Sp1-mediated FGFR1 promoter activity in Drosophila SL2 cells. Southwestern blot, electromobility shift, and chromatin immunoprecipitation assays demonstrated that KLF10 bound to the proximal Sp factor binding site of the FGFR1 promoter and reduced Sp1 complex formation with the FGFR1 promoter at that site. These results indicate that KLF10 is an effective repressor of myoblast proliferation and represses FGFR1 promoter activity in these cells via an Sp1 binding site.
Collapse
Affiliation(s)
- Rajini Parakati
- Department of Cell Biology and Anatomy, School of Graduate and Postdoctoral Studies and Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | | |
Collapse
|
3
|
Hotowy A, Sawosz E, Pineda L, Sawosz F, Grodzik M, Chwalibog A. Silver nanoparticles administered to chicken affect VEGFA and FGF2 gene expression in breast muscle and heart. NANOSCALE RESEARCH LETTERS 2012; 7:418. [PMID: 22827927 PMCID: PMC3507702 DOI: 10.1186/1556-276x-7-418] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Accepted: 07/14/2012] [Indexed: 05/25/2023]
Abstract
Nanoparticles of colloidal silver (AgNano) can influence gene expression. Concerning trials of AgNano application in poultry nutrition, it is useful to reveal whether they affect the expression of genes crucial for bird development. AgNano were administered to broiler chickens as a water solution in two concentrations (10 and 20 ppm). After dissection of the birds, breast muscles and hearts were collected. Gene expression of FGF2 and VEGFA on the mRNA and protein levels were evaluated using quantitative polymerase chain reaction and enzyme-linked immunosorbent assay methods. The results for gene expression in the breast muscle revealed changes on the mRNA level (FGF2 was up-regulated, P < 0.05) but not on the protein level. In the heart, 20 ppm of silver nanoparticles in drinking water increased the expression of VEGFA (P < 0.05), at the same time decreasing FGF2 expression both on the transcriptional and translational levels. Changes in the expression of these genes may lead to histological changes, but this needs to be proven using histological and immunohistochemical examination of tissues. In general, we showed that AgNano application in poultry feeding influences the expression of FGF2 and VEGFA genes on the mRNA and protein levels in growing chicken.
Collapse
Affiliation(s)
- Anna Hotowy
- Department of Basic Animal and Veterinary Sciences, University of Copenhagen, Groennegaardsvej 3, Frederiksberg, 1870, Denmark
| | - Ewa Sawosz
- Nanobiotechnology Laboratory, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| | - Lane Pineda
- Department of Basic Animal and Veterinary Sciences, University of Copenhagen, Groennegaardsvej 3, Frederiksberg, 1870, Denmark
| | - Filip Sawosz
- Department of Basic Animal and Veterinary Sciences, University of Copenhagen, Groennegaardsvej 3, Frederiksberg, 1870, Denmark
| | - Marta Grodzik
- Nanobiotechnology Laboratory, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| | - André Chwalibog
- Department of Basic Animal and Veterinary Sciences, University of Copenhagen, Groennegaardsvej 3, Frederiksberg, 1870, Denmark
| |
Collapse
|
4
|
Hensel N, Ratzka A, Brinkmann H, Klimaschewski L, Grothe C, Claus P. Analysis of the fibroblast growth factor system reveals alterations in a mouse model of spinal muscular atrophy. PLoS One 2012; 7:e31202. [PMID: 22348054 PMCID: PMC3278439 DOI: 10.1371/journal.pone.0031202] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 01/04/2012] [Indexed: 12/02/2022] Open
Abstract
The monogenetic disease Spinal Muscular Atrophy (SMA) is characterized by a progressive loss of motoneurons leading to muscle weakness and atrophy due to severe reduction of the Survival of Motoneuron (SMN) protein. Several models of SMA show deficits in neurite outgrowth and maintenance of neuromuscular junction (NMJ) structure. Survival of motoneurons, axonal outgrowth and formation of NMJ is controlled by neurotrophic factors such as the Fibroblast Growth Factor (FGF) system. Besides their classical role as extracellular ligands, some FGFs exert also intracellular functions controlling neuronal differentiation. We have previously shown that intracellular FGF-2 binds to SMN and regulates the number of a subtype of nuclear bodies which are reduced in SMA patients. In the light of these findings, we systematically analyzed the FGF-system comprising five canonical receptors and 22 ligands in a severe mouse model of SMA. In this study, we demonstrate widespread alterations of the FGF-system in both muscle and spinal cord. Importantly, FGF-receptor 1 is upregulated in spinal cord at a pre-symptomatic stage as well as in a mouse motoneuron-like cell-line NSC34 based model of SMA. Consistent with that, phosphorylations of FGFR-downstream targets Akt and ERK are increased. Moreover, ERK hyper-phosphorylation is functionally linked to FGFR-1 as revealed by receptor inhibition experiments. Our study shows that the FGF system is dysregulated at an early stage in SMA and may contribute to the SMA pathogenesis.
Collapse
Affiliation(s)
- Niko Hensel
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Andreas Ratzka
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
| | - Hella Brinkmann
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
| | - Lars Klimaschewski
- Division of Neuroanatomy, Innsbruck Medical University, Innsbruck, Austria
| | - Claudia Grothe
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Peter Claus
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
- * E-mail:
| |
Collapse
|
5
|
Huang R, Stolte D, Kurz H, Ehehalt F, Cann GM, Stockdale FE, Patel K, Christ B. Ventral axial organs regulate expression of myotomal Fgf-8 that influences rib development. Dev Biol 2003; 255:30-47. [PMID: 12618132 DOI: 10.1016/s0012-1606(02)00051-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fgf-8 encodes a secreted signaling molecule mediating key roles in embryonic patterning. This study analyzes the expression pattern, regulation, and function of this growth factor in the paraxial mesoderm of the avian embryo. In the mature somite, expression of Fgf-8 is restricted to a subpopulation of myotome cells, comprising most, but not all, epaxial and hypaxial muscle precursors. Following ablation of the notochord and floor plate, Fgf-8 expression is not activated in the somites, in either the epaxial or the hypaxial domain, while ablation of the dorsal neural tube does not affect Fgf-8 expression in paraxial mesoderm. Contrary to the view that hypaxial muscle precursors are independent of regulatory influences from axial structures, these findings provide the first evidence for a regulatory influence of ventral, but not dorsal axial structures on the hypaxial muscle domain. Sonic hedgehog can substitute for the ventral neural tube and notochord in the initiation of Fgf-8 expression in the myotome. It is also shown that Fgf-8 protein leads to an increase in sclerotomal cell proliferation and enhances rib cartilage development in mature somites, whereas inhibition of Fgf signaling by SU 5402 causes deletions in developing ribs. These observations demonstrate: (1) a regulatory influence of the ventral axial organs on the hypaxial muscle compartment; (2) regulation of epaxial and hypaxial expression of Fgf-8 by Sonic hedgehog; and (3) independent regulation of Fgf-8 and MyoD in the hypaxial myotome by ventral axial organs. It is postulated that the notochord and ventral neural tube influence hypaxial expression of Fgf-8 in the myotome and that, in turn, Fgf-8 has a functional role in rib formation.
Collapse
Affiliation(s)
- Ruijin Huang
- Institute of Anatomy, University of Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Edom-Vovard F, Bonnin MA, Duprez D. Misexpression of Fgf-4 in the chick limb inhibits myogenesis by down-regulating Frek expression. Dev Biol 2001; 233:56-71. [PMID: 11319857 DOI: 10.1006/dbio.2001.0221] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Skeletal muscle development involves an initial period of myoblast replication followed by a phase in which some myoblasts continue to proliferate while others undergo terminal differentiation. The latter process involves the permanent cessation of DNA synthesis, activation of muscle-specific gene expression, and fusion of single cells to generate multinucleated muscle fibres. The in vivo signals regulating the progression through all these steps remain unknown. Fibroblast growth factors (Fgfs) and Fgf receptors comprise a large family whose members have been shown to play multiple roles in the development of skeletal muscle in vitro. Exogenously applied Fgfs are able to stimulate proliferation and suppress myogenic differentiation in cell culture. We sought to determine the role played by Fgf-4 during limb myogenesis in vivo. Fgf-4 transcripts are located at both extremities of myotubes whereas the mRNAs of one of the Fgf receptors, Frek, are detected in mononucleated proliferating myoblasts surrounding the multinucleated fibres. Overexpression of mouse Fgf-4 (mFgf-4) using a replication-competent retrovirus, RCAS, leads to a down-regulation of muscle markers followed by an inhibition of terminal differentiation in limb muscles. Using quail/chick transplantations we were able to follow the muscle cells and found a dramatic decrease in their number after exposure to mFgf-4. Interestingly ectopic mFgf-4 down-regulates Frek transcripts in limb muscle areas. We conclude that overexpression of mFgf-4 inhibits myoblast proliferation, probably by down-regulating Frek mRNAs. This suggests a role for Fgf-4, located at the extremities of the myotubes, where it could be responsible for the absence of Frek mRNA in the muscle fibre.
Collapse
Affiliation(s)
- F Edom-Vovard
- Institut d'Embryologie Cellulaire et Moléculaire, CNRS (FRE 2160) et du College de France, 49 bis, avenue de la Belle Gabrielle, Nogent Sur Marne Cedex, 94736, France
| | | | | |
Collapse
|
7
|
Erck C, Meisinger C, Grothe C, Seidl K. Regulation of nerve growth factor and its low-affinity receptor (p75NTR) during myogenic differentiation. J Cell Physiol 1998; 176:22-31. [PMID: 9618141 DOI: 10.1002/(sici)1097-4652(199807)176:1<22::aid-jcp3>3.0.co;2-a] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In our preceding report, we have shown that nerve growth factor (NGF) and its low-affinity receptor (p75NTR) are expressed in C2C12 myoblasts and downregulated during myogenic differentiation. Furthermore, NGF affects myogenic differentiation and cell growth via p75NTR and downregulation of p75NTR is essential for myogenic differentiation (Seidl et al., 1998). Here we show that NGF and p75NTR are regulated by mechanisms preceding terminal differentiation in myogenic cells. These mechanisms include cell-density phenomena such as cell-cell contact as well as signaling of basic fibroblast growth factor (FGF-2) and its receptor (FGFR1). Downregulation of NGF and p75NTR occurred as a consequence of increasing cell density, an important trigger for the onset of myogenic differentiation. FGF-2 and FGFR1 were shown to be present in C2C12 cells and exogenous FGF-2 induced NGF and p75NTR expression, implying that FGF/FGFR signaling is an upstream regulator of the NGF/p75NTR system. The fact that FGF-2 could suspend yet not abolish density-induced downregulation indicates that cell-cell contact counteracts the FGF effect and ultimately terminates NGF/p75NTR signaling. This evidence, together with the observation that p75NTR expression is suppressed in muscle progenitors, which constitutively express adenovirus E1A proteins and thus lack the competence of myogenic differentiation, underline the important role for the NGF/p75NTR system in the interplay of multiple factors and biological systems that balance myogenic differentiation at the appropriate spatial and temporal level.
Collapse
Affiliation(s)
- C Erck
- Department of Cell and Molecular Biology, Institute for Biochemistry and Biotechnology, University of Braunschweig, Germany
| | | | | | | |
Collapse
|
8
|
Currie PD, Ingham PW. The generation and interpretation of positional information within the vertebrate myotome. Mech Dev 1998; 73:3-21. [PMID: 9545513 DOI: 10.1016/s0925-4773(98)00036-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
How somitic cells become restricted to the muscle fate has been investigated on a number of levels. Classical embryological manipulations have attempted to define the source of inductive signals that control the formation of the myotome. Recently, these studies have converged with others dissecting the role of secreted proteins in embryonic patterning to demonstrate a role for specific peptides in inducing individual cell types of the myotome. Collectively, these investigations have implicated the products of the Wnt, Hedgehog (Hh) and Bone morphogenetic protein (Bmp) gene families as key myogenic regulators; simultaneously controlling both the initiation of myogenesis and the fate of individual myoblasts.
Collapse
Affiliation(s)
- P D Currie
- Developmental Genetics Section, MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | | |
Collapse
|
9
|
Abstract
The skeletal muscle progenitor cells of the vertebrate body originate in the dermomyotome epithelium of the embryonic somites. To precisely locate myotome precursor cells, fluorescent vital dyes were iontophoretically injected at specific sites in the dermomyotome in ovo and the fates of dye-labeled cells monitored by confocal microscopy. Dye-labeled myotome myofibers were generated from cells injected along the entire medial boundary and the medial portion of the cranial boundary of the dermomyotome, regions in close proximity to the dorsal region of the neural tube where myogenic-inducing factors are thought to be produced. Other injected regions of the dermomyotome did not give rise to myotome fibers. Analysis of nascent myotome fibers showed that they elongate along the embryonic axis in cranial and caudal directions, or in both directions simultaneously, until they reach the margins of the dermomyotome. Finally, deposition of myotome fibers and expansion of the dermomyotome epithelium occurs in a lateral-to-medial direction. This new model for early myotome formation has implications for myogenic specification and for growth of the epaxial domain during early embryonic development.
Collapse
Affiliation(s)
- W F Denetclaw
- Department of Anatomy and Cardiovascular Research Institute, University of California San Francisco, 94143, USA
| | | | | |
Collapse
|