1
|
Liu Z, Wang R, Lin H, Liu Y. Lens regeneration in humans: using regenerative potential for tissue repairing. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1544. [PMID: 33313289 PMCID: PMC7729322 DOI: 10.21037/atm-2019-rcs-03] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The crystalline lens is an important optic element in human eyes. It is transparent and biconvex, refracting light and accommodating to form a clear retinal image. The lens originates from the embryonic ectoderm. The epithelial cells at the lens equator proliferate, elongate and differentiate into highly aligned lens fiber cells, which are the structural basis for maintaining the transparency of the lens. Cataract refers to the opacity of the lens. Currently, the treatment of cataract is to remove the opaque lens and implant an intraocular lens (IOL). This strategy is inappropriate for children younger than 2 years, because a developing eyeball is prone to have severe complications such as inflammatory proliferation and secondary glaucoma. On the other hand, the absence of the crystalline lens greatly affects visual function rehabilitation. The researchers found that mammalian lenses possess regenerative potential. We identified lens stem cells through linear tracking experiments and designed a minimally invasive lens-content removal surgery (MILS) to remove the opaque lens material while preserving the lens capsule, stem cells and microenvironment. In infants with congenital cataract, functional lens regeneration in situ can be observed after MILS, and the prognosis of visual function is better than that of traditional surgery. Because of insufficient regenerative ability in humans, the morphology and volume of the regenerated lens cannot reach the level of a normal lens. The activation, proliferation and differentiation of lens stem cells and the alignment of lens fibers are regulated by epigenetic factors, growth factors, transcription factors, immune system and other signals and their interactions. The construction of appropriate microenvironment can accelerate lens regeneration and improve its morphology. The therapeutic concept of MILS combined with microenvironment manipulation to activate endogenous stem cells for functional regeneration of organs in situ can be extended to other tissues and organs with strong self-renewal and repair ability.
Collapse
Affiliation(s)
- Zhenzhen Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ruixin Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Haotian Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Kumar B, Reilly MA. The Development, Growth, and Regeneration of the Crystalline Lens: A Review. Curr Eye Res 2019; 45:313-326. [DOI: 10.1080/02713683.2019.1681003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Bharat Kumar
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - M. A. Reilly
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
- Department of Ophthalmology and Visual Science, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
3
|
Vergara MN, Tsissios G, Del Rio-Tsonis K. Lens regeneration: a historical perspective. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2019; 62:351-361. [PMID: 29877565 PMCID: PMC6378223 DOI: 10.1387/ijdb.180084nv] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The idea of regenerating injured body parts has captivated human imagination for centuries, and the topic still remains an area of extensive scientific research. This review focuses on the process of lens regeneration: its history, our current knowledge, and the questions that remain unanswered. By highlighting some of the milestones that have shaped our understanding of this phenomenon and the contributions of scientists who have dedicated their lives to investigating these questions, we explore how regeneration enquiry evolved into the science it is today, and how technological advances accelerated our understanding of these remarkable processes.
Collapse
Affiliation(s)
- M Natalia Vergara
- Department of Ophthalmology, University of Colorado Denver School of Medicine, Aurora, CO, USA
| | | | | |
Collapse
|
4
|
Grigoryan EN, Radugina EA. Behavior of Stem-Like Cells, Precursors for Tissue Regeneration in Urodela, Under Conditions of Microgravity. Stem Cells Dev 2019; 28:423-437. [PMID: 30696352 DOI: 10.1089/scd.2018.0220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We summarize data from our experiments on stem-like cell-dependent regeneration in amphibians in microgravity. Considering its deleterious effect on many tissues, we asked whether microgravity is compatible with reparative processes, specifically activation and proliferation of source cells. Experiments were conducted using tailed amphibians, which combine profound regenerative capabilities with high robustness, allowing an in vivo study of lens, retina, limb, and tail regeneration in challenging settings of spaceflight. Microgravity promoted stem-like cell proliferation to a varying extent (up to 2-fold), and it seemed to speed up source cell dedifferentiation, as well as sequential differentiation in retina, lens, and limb, leading to formation of bigger and more developed regenerates than in 1g controls. It also promoted proliferation and hypertrophy of Müller glial cells, eliciting a response similar to reactive gliosis. A significant increase in stem-like cell proliferation was mostly beneficial for regeneration and only in rare cases caused moderate tissue growth abnormalities. It is important that microgravity yielded a lasting effect even if applied before operations. We hypothesize on the potential mechanisms of gravity-dependent changes in stem-like cell behavior, including fibroblast growth factor 2 signaling pathway and heat shock proteins, which were affected in our experimental settings. Taken together, our data indicate that microgravity does not disturb the natural regenerative potential of newt stem-like cells, and, depending on the system, even stimulates their dedifferentiation, proliferation, and differentiation. We discuss these data along with publications on mammalian stem cell behavior in vitro and invertebrate regeneration in vivo in microgravity. In vivo data are very scarce and require further research using contemporary methods of cell behavior analysis to elucidate mechanisms of stem cell response to altered gravity. They are relevant for both practical applications, such as managing human reparative responses in spaceflight, and fundamental understanding of stem cell biology.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - Elena A Radugina
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
Abstract
In this review, we compare and contrast the three different forms of vertebrate lens regeneration: Wolffian lens regeneration, cornea-lens regeneration, and lens regeneration from lens epithelial cells. An examination of the diverse cellular origins of these lenses, their unique phylogenetic distribution, and the underlying molecular mechanisms, suggests that these different forms of lens regeneration evolved independently and utilize neither conserved nor convergent mechanisms to regulate these processes.
Collapse
Affiliation(s)
- Jonathan J Henry
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL
| | | |
Collapse
|
6
|
Henry JJ, Thomas AG, Hamilton PW, Moore L, Perry KJ. Cell signaling pathways in vertebrate lens regeneration. Curr Top Microbiol Immunol 2013; 367:75-98. [PMID: 23224710 DOI: 10.1007/82_2012_289] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Certain vertebrates are capable of regenerating parts of the eye, including the lens. Depending on the species, two principal forms of in vivo lens regeneration have been described wherein the new lens arises from either the pigmented epithelium of the dorsal iris or the cornea epithelium. These forms of lens regeneration are triggered by retinal factors present in the eye. Studies have begun to illuminate the nature of the signals that support lens regeneration. This review describes evidence for the involvement of specific signaling pathways in lens regeneration, including the FGF, retinoic acid, TGF-beta, Wnt, and Hedgehog pathways.
Collapse
Affiliation(s)
- Jonathan J Henry
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL 61801, USA.
| | | | | | | | | |
Collapse
|
7
|
Abstract
Comparative studies of lens and retina regeneration have been conducted within a wide variety of animals over the last 100 years. Although amphibians, fish, birds and mammals have all been noted to possess lens- or retina-regenerative properties at specific developmental stages, lens or retina regeneration in adult animals is limited to lower vertebrates. The present review covers the newest perspectives on lens and retina regeneration from these different model organisms with a focus on future trends in regeneration research.
Collapse
|
8
|
Fukui L, Henry JJ. FGF signaling is required for lens regeneration in Xenopus laevis. THE BIOLOGICAL BULLETIN 2011; 221:137-45. [PMID: 21876116 PMCID: PMC3442785 DOI: 10.1086/bblv221n1p137] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In species of the frog genus Xenopus, lens regeneration occurs through a process of transdifferentiation, in which cornea epithelial cells presumably undergo dedifferentiation and subsequently redifferentiate to form a new lens. Experimental studies have shown that the retina provides the key signal required to trigger this process once the original lens is removed. A previous study showed that addition of an exogenous fibroblast growth factor (i.e., FGF1 protein) could initiate transdifferentiation of cornea epithelial cells in culture. To determine the role of FGF signaling in X. laevis lens regeneration, we have examined the presence of specific FGFs and their receptors (FGFRs) during this process and evaluated the necessity of FGFR signaling. Reverse transcriptase-polymerase chain reaction analyses reveal that a number of FGF family members are expressed in cornea epithelium and retinal tissues both before and during the process of lens regeneration. Of these, FGF1, FGF8, and FGF9 are expressed principally in retinal tissue and not in the cornea epithelium. Hence, these ligands could represent key signaling factors originating from the retina that trigger regeneration. The results of experiments using an in vitro eye culture system and an FGFR inhibitor (SU5402) suggest that FGFR signaling is required for lens regeneration in Xenopus.
Collapse
Affiliation(s)
- Lisa Fukui
- University of Illinois, Department of Cell and Developmental Biology, Urbana, Illinois 61801, USA
| | | |
Collapse
|
9
|
Abstract
Lens regeneration among vertebrates is basically restricted to some amphibians. The most notable cases are the ones that occur in premetamorphic frogs and in adult newts. Frogs and newts regenerate their lens in very different ways. In frogs the lens is regenerated by transdifferentiation of the cornea and is limited only to a time before metamorphosis. On the other hand, regeneration in newts is mediated by transdifferentiation of the pigment epithelial cells of the dorsal iris and is possible in adult animals as well. Thus, the study of both systems could provide important information about the process. Molecular tools have been developed in frogs and recently also in newts. Thus, the process has been studied at the molecular and cellular levels. A synthesis describing both systems was long due. In this review we describe the process in both Xenopus and the newt. The known molecular mechanisms are described and compared.
Collapse
Affiliation(s)
- Jonathan J Henry
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL 61801, USA.
| | | |
Collapse
|
10
|
Malloch EL, Perry KJ, Fukui L, Johnson VR, Wever J, Beck CW, King MW, Henry JJ. Gene expression profiles of lens regeneration and development in Xenopus laevis. Dev Dyn 2009; 238:2340-56. [PMID: 19681139 PMCID: PMC2773617 DOI: 10.1002/dvdy.21998] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Seven hundred and thirty-four unique genes were recovered from a cDNA library enriched for genes up-regulated during the process of lens regeneration in the frog Xenopus laevis. The sequences represent transcription factors, proteins involved in RNA synthesis/processing, components of prominent cell signaling pathways, genes involved in protein processing, transport, and degradation (e.g., the ubiquitin/proteasome pathway), matrix metalloproteases (MMPs), as well as many other proteins. The findings implicate specific signal transduction pathways in the process of lens regeneration, including the FGF, TGF-beta, MAPK, Retinoic acid, Wnt, and hedgehog signaling pathways, which are known to play important roles in eye/lens development and regeneration in various systems. In situ hybridization revealed that the majority of genes recovered are expressed during embryogenesis, including in eye tissues. Several novel genes specifically expressed in lenses were identified. The suite of genes was compared to those up-regulated in other regenerating tissues/organisms, and a small degree of overlap was detected.
Collapse
Affiliation(s)
- Erica L. Malloch
- University of Illinois, Department of Cell & Developmental Biology, 601 S. Goodwin Ave. Urbana, IL 61801
| | - Kimberly J. Perry
- University of Illinois, Department of Cell & Developmental Biology, 601 S. Goodwin Ave. Urbana, IL 61801
| | - Lisa Fukui
- University of Illinois, Department of Cell & Developmental Biology, 601 S. Goodwin Ave. Urbana, IL 61801
| | - Verity R. Johnson
- University of Illinois, Department of Cell & Developmental Biology, 601 S. Goodwin Ave. Urbana, IL 61801
| | - Jason Wever
- University of Illinois, Department of Cell & Developmental Biology, 601 S. Goodwin Ave. Urbana, IL 61801
| | - Caroline W. Beck
- University of Otago, Department of Zoology, 340 Great King Street, Dunedin, New Zealand
| | - Michael W. King
- Indiana University School of Medicine and Center for Regenerative Biology and Medicine, Terre Haute, IN 47809
| | - Jonathan J. Henry
- University of Illinois, Department of Cell & Developmental Biology, 601 S. Goodwin Ave. Urbana, IL 61801
| |
Collapse
|
11
|
Beck CW, Izpisúa Belmonte JC, Christen B. Beyond early development: Xenopus as an emerging model for the study of regenerative mechanisms. Dev Dyn 2009; 238:1226-48. [PMID: 19280606 DOI: 10.1002/dvdy.21890] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
While Xenopus is a well-known model system for early vertebrate development, in recent years, it has also emerged as a leading model for regeneration research. As an anuran amphibian, Xenopus laevis can regenerate the larval tail and limb by means of the formation of a proliferating blastema, the lens of the eye by transdifferentiation of nearby tissues, and also exhibits a partial regeneration of the postmetamorphic froglet forelimb. With the availability of inducible transgenic techniques for Xenopus, recent experiments are beginning to address the functional role of genes in the process of regeneration. The use of soluble inhibitors has also been very successful in this model. Using the more traditional advantages of Xenopus, others are providing important lineage data on the origin of the cells that make up the tissues of the regenerate. Finally, transcriptome analyses of regenerating tissues seek to identify the genes and cellular processes that enable successful regeneration. Developmental Dynamics 238:1226-1248, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Caroline W Beck
- Department of Zoology and Genetics Otago, University of Otago, New Zealand.
| | | | | |
Collapse
|
12
|
Hayashi T, Mizuno N, Takada R, Takada S, Kondoh H. Determinative role of Wnt signals in dorsal iris-derived lens regeneration in newt eye. Mech Dev 2006; 123:793-800. [PMID: 17030116 DOI: 10.1016/j.mod.2006.08.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 08/24/2006] [Accepted: 08/27/2006] [Indexed: 10/24/2022]
Abstract
We have previously shown that lens regeneration from the pigmented epithelium of the dorsal iris in the adult newt eye proceeds in two steps after lens removal or intraocular FGF2 injection. The FGF2-dependent proliferation of iris pigmented epithelium and activation of early lens genes that occur over the entire circumference of the iris comprise the first step, while subsequent dorsally confined lens development marks the second step. Here, we investigated the expression of Wnt and Wnt receptor Frizzled genes in lens-regenerating iris tissues. Wnt2b and Frizzled4 were activated only in the dorsal half of the iris in synchrony with the occurrence of the second step, whereas Wnt5a and Frizzled2 were activated in both halves throughout the period of the first and second steps. Cultured explants of the iris-derived pigmented epithelium in the presence of FGF2 underwent dorsal-specific lens development fully recapitulating the in vivo lens regeneration process. Under these conditions, Wnt inhibitors Dkk1, which specifically inhibits the canonical signal pathway, and/or sFRP1 repressed the lens development, while exogenous Wnt3a, which generally activates the canonical pathway like Wnt2b, stimulated lens development from the dorsal iris epithelium and even caused lens development from the ventral iris epithelium, albeit at a reduced rate. Wnt5a did not elicit lens development from the ventral epithelium. These observations indicate that dorsal-specific activation of Wnt2b determines the dorsally limited development of lens from the iris pigmented epithelium.
Collapse
Affiliation(s)
- Toshinori Hayashi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
13
|
Abstract
The newt is one of the few organisms that is able to undergo lens regeneration as an adult. This review will examine the signaling pathways that are involved in this amazing phenomenon. In addition to outlining the current research involved in elucidating the key signaling molecules in lens regeneration, we will also highlight some of the similarities and differences between lens regeneration and development.
Collapse
Affiliation(s)
- Matthew W Grogg
- Laboratory of Molecular Biology, Department of Biology, University of Dayton, Dayton, OH 45469-2320, USA
| | | | | |
Collapse
|
14
|
Yang EV, Wang L, Tassava RA. Effects of exogenous FGF-1 treatment on regeneration of the lens and the neural retina in the newt, Notophthalmus viridescens. ACTA ACUST UNITED AC 2006; 303:837-44. [PMID: 16161011 DOI: 10.1002/jez.a.215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Experiments were designed to compare the effects of recombinant newt fibroblast growth factor-1 (rnFGF-1) and recombinant human glial growth factor (rhGGF) on lens and retina regeneration in the eyes of adult newts. Both eyes were retinectomized and lentectomized. Beginning 3 days after the operation, one eye was given either 0.1 microg of rnFGF-1 or 0.1 microg of rhGGF in 1 microl of phosphate-buffered saline (PBS) per injection, three per week. Contralateral operated eyes served as controls and were treated with PBS alone or were not injected. In eyes that were not injected, injected with PBS alone, or with PBS containing rhGGF, regeneration of both the retina and the lens proceeded normally as described in the literature. In these control eyes, the entire retinal pigmented epithelium (RPE) depigmented/dedifferentiated and a retina rudiment formed from which a new retina regenerated by the end of the experiment at day 41 post-operation. Likewise, only a small area of dorsal iris depigmented/dedifferentiated and formed a lens vesicle from which a lens subsequently regenerated. The vitreous remained relatively free of loose cells. In eyes given rnFGF-1, the RPE depigmented/dedifferentiated and formed what appeared to be a retina rudiment but a new retina did not regenerate. Instead, vesicles were seen associated with the retina rudiment. In eyes given rnFGF-1, both the dorsal iris and ventral iris depigmented/dedifferentiated and lens regeneration occurred but the new lenses had abnormal fiber cells and the lens epithelium was very thin or absent. In addition, ectopic lenses usually regenerated in rnFGF-1-treated eyes. An abundance of loose cells were present in the vitreous of rnFGF-1-treated eyes associated largely with the RPE and the dorsal and ventral irises. The results are consistent with the view that the timely expression of FGFs is involved in the depigmentation/dedifferentiation of the RPE and dorsal iris and is necessary for proper regeneration of the lens and neural retina. Continued presence of FGF results in continued and excessive dedifferentiation, resulting in the lack of retina regeneration and abnormal lens regeneration.
Collapse
Affiliation(s)
- Eric V Yang
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
15
|
Abstract
Lens regeneration in newts is a remarkable process, whereby a lost tissue is replaced by transdifferentiation of adult tissues that only a few organisms possess. In this review, we will touch on the approaches being used to study this phenomenon, recent advances in the field of lens regeneration, similarities and differences between development and regeneration, as well as the potential role stem cells may play in understanding this process.
Collapse
|
16
|
Abstract
Cell therapy means treating diseases with the body's own cells. The ability to produce differentiated cell types at will offers a compelling new approach to cell therapy and therefore for the treatment and cure of a plethora of clinical conditions, including diabetes, Parkinson's disease and cardiovascular disease. Until recently, it was thought that differentiated cells could only be produced from embryonic or adult stem cells. Although the results from stem cell studies have been encouraging, perhaps the most startling findings have been the recent observations that differentiated cell types can transdifferentiate (or convert) into a completely different phenotype. Harnessing transdifferentiated cells as a therapeutic modality will complement the use of embryonic and adult stem cells in the treatment of degenerative disorders. In this review, we will examine some examples of transdifferentiation, describe the theoretical and practical issues involved in transdifferentiation research and comment on the long-term therapeutic possibilities.
Collapse
Affiliation(s)
- Zoë D Burke
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | | |
Collapse
|
17
|
Hayashi T, Mizuno N, Ueda Y, Okamoto M, Kondoh H. FGF2 triggers iris-derived lens regeneration in newt eye. Mech Dev 2005; 121:519-26. [PMID: 15172683 DOI: 10.1016/j.mod.2004.04.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Revised: 04/09/2004] [Accepted: 04/12/2004] [Indexed: 11/18/2022]
Abstract
Lens regeneration in newts occurs exclusively from the dorsal aspect of the iris pigment epithelium. Although the phenomenon has been a paradigm of experimental tissue regeneration, little is understood about how it is initiated and restricted to the dorsal iris. Here we show among various growth factors injected in an intact eye, a single injection of FGF2 specifically caused morphological changes of the iris characteristic of lens regeneration, induced expression of transcription factor genes Pax6, Sox2 and MafB, as well as endogenous Fgf2 in both dorsal and ventral halves, and provoked second lens development only from the dorsal iris. FGF2 protein accumulated in the iris tissue after the lens was removed, and injection of a soluble form of FGF receptor titrating FGF2 inhibited all reactions observed after the lens removal or after administration of FGF2. These results indicate that FGF2 and/or related molecules trigger lens regeneration from the dorsal iris in the newt. The observations also indicate that the absence of lens regeneration from the ventral iris is due to a block in a later phase of lens developmental pathway.
Collapse
Affiliation(s)
- Toshinori Hayashi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | | | | | | | | |
Collapse
|
18
|
Shen CN, Burke ZD, Tosh D. Transdifferentiation, metaplasia and tissue regeneration. Organogenesis 2004; 1:36-44. [PMID: 19521559 PMCID: PMC2633984 DOI: 10.4161/org.1.2.1409] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Accepted: 11/24/2004] [Indexed: 12/16/2022] Open
Abstract
Transdifferentiation is defined as the conversion of one cell type to another. It belongs to a wider class of cell type transformations called metaplasias which also includes cases in which stem cells of one tissue type switch to a completely different stem cell. Numerous examples of transdifferentiation exist within the literature. For example, isolated striated muscle of the invertebrate jellyfish (Anthomedusae) has enormous transdifferentiation potential and even functional organs (e.g., tentacles and the feeding organ (manubrium)) can be generated in vitro. In contrast, the potential for transdifferentiation in vertebrates is much reduced, at least under normal (nonpathological) conditions. But despite these limitations, there are some well-documented cases of transdifferentiation occurring in vertebrates. For example, in the newt, the lens of the eye can be formed from the epithelial cells of the iris. Other examples of transdifferentiation include the appearance of hepatic foci in the pancreas, the development of intestinal tissue at the lower end of the oesophagus and the formation of muscle, chondrocytes and neurons from neural precursor cells. Although controversial, recent results also suggest the ability of adult stem cells from different embryological germlayers to produce differentiated cells e.g., mesodermal stem cells forming ecto- or endodermally-derived cell types. This phenomenon may constitute an example of metaplasia. The current review examines in detail some well-documented examples of transdifferentiation, speculates on the potential molecular and cellular mechanisms that underlie the switches in phenotype, together with their significance to organogenesis and regenerative medicine.
Collapse
Affiliation(s)
- Chia-Ning Shen
- Centre for Regenerative Medicine; Department of Biology and Biochemistry; University of Bath; Bath, UK
| | | | | |
Collapse
|
19
|
Arresta E, Bernardini S, Gargioli C, Filoni S, Cannata SM. Lens-forming competence in the epidermis ofXenopus laevis during development. ACTA ACUST UNITED AC 2004; 303:1-12. [PMID: 15612005 DOI: 10.1002/jez.a.138] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In larval X. laevis the capacity to regenerate a lens under the influence of inductive factors present in the vitreous chamber is restricted to the outer cornea and pericorneal epidermis (Lentogenic Area, LA). However, in early embryos, the whole ectoderm is capable of responding to inductive factors of the larval eye forming lens cells. In a previous paper, Cannata et al. (2003) demonstrated that the persistence of lens-forming competence in the LA is the result of early signals causing lens-forming bias in the presumptive LA and of late signals from the eye causing cornea development. This paper analyzes 1) the decrease of the lens-forming capacity in ectodermal regions both near LA (head epidermis) and far from LA (flank epidermis) during development, 2) the capacity of the head epidermis and flank epidermis to respond to lens-competence promoting factors released by an eye transplanted below these epidermal regions, and 3) the eye components responsible for the promoting effect of the transplanted eye. Results were obtained by implanting fragments of ectoderm or epidermis into the vitreous chamber of host tadpoles and by evaluating the percentage of implants positive to a monoclonal antibody anti-lens. These results demonstrated that the lens-forming competence in the flank region is lost at the embryonic stage 30/31 and is weakly restored by eye transplantation; however, lens-forming competence in the head region is lost at the larval stage 48 and is strongly restored by eye transplantation. The authors hypothesize that during development the head ectoderm outside the LA is attained by low levels of the same signals that attain the LA and that these signals are responsible for the maintenance of lens-forming competence in the cornea and pericorneal epidermis of the larva. In this hypothesis, low levels of these signals slacken the decrease of the lens-forming competence in the head ectoderm and make the head epidermis much more responsive than the flank epidermis to the effect of promoting factors released by a transplanted eye. Results obtained after transplantation of eyes deprived of some components indicate that the lens and the retina are the main source of these promoting factors. The immunohistochemical detection of the FGFR-2 (bek variant) protein in the epidermis of stage 53 larvae submitted to eye transplantation at stage 46 showed that the eye transplantation increased the level of FGFR-2 protein in the head epidermis but not in the flank epidermis, indicating that the lens-forming competence in X. laevis epidermis could be related to the presence of an activated FGF receptor system in the responding tissue.
Collapse
Affiliation(s)
- Emiliano Arresta
- Dipartimento di Biologia, Università di Roma Tor Vergata, via della Ricerca Scientifica, I - 00133 Rome, Italy
| | | | | | | | | |
Collapse
|
20
|
Abstract
Larval and adult urodeles and anuran tadpoles readily regenerate their limbs via a process of histolysis and dedifferentiation of mature cells local to the amputation surface that accumulate under the wound epithelium as a blastema of stem cells. These stem cells require growth and trophic factors from the apical epidermal cap (AEC) and the nerves that re-innervate the blastema for their survival and proliferation. Members of the fibroblast growth factor (FGF) family synthesized by both AEC and nerves, and glial growth factor, substance P, and transferrin of nerves are suspected survival and proliferation factors. Stem cells derived from fibroblasts and muscle cells can transdifferentiate into other cell types during regeneration. The regeneration blastema is a self-organizing system based on positional information inherited from parent limb cells. Retinoids, which act through nuclear receptors, have been used in conjunction with assays for cell adhesivity to show that positional identity of blastema cells is encoded in the cell surface. These molecules are involved in the cell-cell signaling network that re-establishes the original structural pattern of the limb. Other systems of interest that regenerate by histolysis and dedifferentiation of pigmented epithelial cells are the neural retina and lens. Members of the FGF family are also important to the regeneration of these structures. The mechanism of amphibian regeneration by dedifferentiation is of importance to the development of a regenerative medicine, since understanding this mechanism may offer insights into how we might chemically induce the regeneration of mammalian tissues.
Collapse
Affiliation(s)
- D L Stocum
- Department of Biology, Indiana University Center for Regenerative Biology and Medicine, School of Science, Indiana University-Purdue University Indianapolis, 402 N. Blackford St., Indianapolis, IN 46202, USA.
| |
Collapse
|
21
|
Abstract
Eye tissues such as the lens and the retina possess remarkable regenerative abilities. In amphibians, a complete lens can be regenerated after lentectomy. The process is a classic example of transdifferentiation of one cell type to another. Likewise, retina can be regenerated, but the strategy used to replace the damaged retina differs, depending on the animal system and the age of the animal. Retina can be regenerated by transdifferentiation or by the use of stem cells. In this review, we present a synthesis on the regenerative capacity of eye tissues in different animals with emphasis on the strategy and the molecules involved. In addition, we stress the place of this field at the molecular age and the importance of the recent technologic advances.
Collapse
|
22
|
Henry JJ. The cellular and molecular bases of vertebrate lens regeneration. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 228:195-265. [PMID: 14667045 DOI: 10.1016/s0074-7696(03)28005-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Lens regeneration takes place in some vertebrates through processes of cellular dedifferentiation and transdifferentiation, processes by which certain differentiated cell types can give rise to others. This review describes the principal forms of lens regeneration that occur in vivo as well as related in vitro systems of transdifferentiation. Classic experimental studies are reviewed that define the tissue interactions that trigger these events in vivo. Recent molecular analyses have begun to identify the genes associated with these processes. These latter studies generally reveal tremendous similarities between embryonic lens development and lens regeneration. Different models are proposed to describe basic molecular pathways that define the processes of lens regeneration and transdifferentiation. Finally, studies are discussed suggesting that fibroblast growth factors play key roles in supporting the process of lens regeneration. Retinoids, such as retinoic acid, may also play important roles in this process.
Collapse
Affiliation(s)
- Jonathan J Henry
- Department of Cell and Structural Biology, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
23
|
Hayashi T, Mizuno N, Owaribe K, Kuroiwa A, Okamoto M. Regulated lens regeneration from isolated pigmented epithelial cells of newt iris in culture in response to FGF2/4. Differentiation 2002; 70:101-8. [PMID: 12076337 DOI: 10.1046/j.1432-0436.2002.700205.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
When a lens is removed from the newt eye, a new lens is regenerated from the pigmented epithelial cells of the dorsal iris, whereas the ventral iris never shows such an ability. It is important to clarify the nature of signaling molecules which act directly on the iris cells to accomplish lens regeneration from the iris and also to gain insight into the mechanism of dorso-ventral difference of the regeneration potential. To examine the effects of exogenous factors, we established an in vitro culture of reaggregates made from dissociated pigmented epithelial cells of dorsal or ventral halves of newt iris. Foci of depigmented cells appeared within the cell reaggregates, regardless of their origins, when the cell reaggregates were cultured with FGF2 or FGF4. In contrast, only the depigmented cells in the dorsal iris cell reaggregates underwent extensive proliferation and developed a lens with the synthesis of lens-specific crystallins, recapitulating the normal lens regeneration. On the other hand, neither FGF8, FGF10, EGF, VEGF, nor IGF promoted lens development from iris cell reaggregates. Consistent with the FGF-specific action, FGFR-specific inhibitor SU5402 suppressed the lens development from the cultured cell reaggregates. These results demonstrated that FGF2 or FGF4 is essential for the in vitro lens regeneration from the pigmented cells of the dorsal iris. In addition, these findings indicated that unequal competence in the dorsal and ventral iris to FGF2/4 contributes to the difference in lens forming ability between them.
Collapse
Affiliation(s)
- Toshinori Hayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | | |
Collapse
|
24
|
Shekhawat DS, Jangir OP, Prakash A, Pawan S. Lens regeneration in mice under the influence of vitamin A. J Biosci 2001; 26:571-6. [PMID: 11807287 DOI: 10.1007/bf02704755] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The effect of vitamin A has been studied on lens regeneration in young (7 days old) as well as adult mice. A longitudinal slit was made under local anesthesia in the cornea over the lens. The lens was extracted intact through the incision. Intraperitonial injection of vitamin A (0.05 ml of 30 IU/ml in young and 0.05 ml of 50 IU/ml in adult) was given to the operated animals. Vitamin A was found to induce lens regeneration in not only young but also in adult mice. Regenerated lenses were similar in shape, size, transparency and histological features to normal intact lenses.
Collapse
Affiliation(s)
- D S Shekhawat
- Developmental Biology Laboratory, Department of Zoology, Dungar College, Bikaner 334 001, India
| | | | | | | |
Collapse
|
25
|
Bhuyan DK, Reddy PG, Bhuyan KC. Growth factor receptor gene and protein expressions in the human lens. Mech Ageing Dev 2000; 113:205-18. [PMID: 10714939 DOI: 10.1016/s0047-6374(99)00111-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study the mRNAs encoding epidermal growth factor receptor (EGFR), basic fibroblast growth factor receptor (FGFR-2) and insulin-like growth factor receptor (IGFR-1) genes of the human normal lenses at ages varying from 0.5 to 72 years, were identified by semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR). Regulation of EGFR gene expression in the lens did not change with aging, and of FGFR-2 and IGFR-1 genes also remained unaltered up to age 53 years. However, expressions of FGFR-2 and IGFR-1 genes were decreased at ages above 60 years. EGFR, FGFR-2 and IGFR-1 proteins were detected by immunoblot analysis in the epithelial cell membranes of lens at age varying from 40 to 72 years. There was no detectable amount of EGFR protein in fiber cell membranes of the lens, and the levels of FGFR-2 and IGFR-1 proteins were much lower than those in the epithelial cell membranes. The low levels of these receptor proteins in the fiber cell membranes of lens, suggest their possible role in keeping the differentiated function of these unique transparent cells. The findings of the increased protein levels with age of EGFR with the appearance of some degradation products at age 48 years and higher, and the increased FGFR-2 protein at age 60 years and higher in the epithelial cell membranes of lens, were of interest. It appears that this could be a compensatory protective response of the lens to aging process for lifelong continuation of normal growth by proliferation and differentiation of its epithelial cells into new fiber cells in the germinative zone at the equatorial region. Thus, these results could provide a basis for further studies on growth factor receptor gene and protein regulations in the mechanism of lens aging and progression of age-related human cataract.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aging/genetics
- Base Sequence
- Cataract/etiology
- Child
- Child, Preschool
- DNA Primers/genetics
- ErbB Receptors/genetics
- Gene Expression Regulation, Developmental
- Humans
- Infant
- Lens, Crystalline/growth & development
- Lens, Crystalline/metabolism
- Middle Aged
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor, Fibroblast Growth Factor, Type 2
- Receptor, IGF Type 1/genetics
- Receptors, Fibroblast Growth Factor/genetics
Collapse
Affiliation(s)
- D K Bhuyan
- Department of Ophthalmology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
26
|
Guillonneau X, Regnier-Ricard F, Jeanny JC, Thomasseau S, Courtois Y, Mascarelli F. Regulation of FGF soluble receptor type 1 (SR1) expression and distribution in developing, degenerating, and FGF2-treated retina. Dev Dyn 2000; 217:24-36. [PMID: 10679927 DOI: 10.1002/(sici)1097-0177(200001)217:1<24::aid-dvdy3>3.0.co;2-c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The spatial and temporal patterns of expression and content of the fibroblast growth factor (FGF) soluble receptor SR1, a specific inhibitor of FGF, were investigated during embryonic and postnatal development of the retina in Fisher rats. As early as at embryonic day 18 (E18), SR1 mRNA and protein were detected in the retina. SR1 protein was strongly associated with the differentiating ganglion cells and its distribution paralleled the radial pattern of retinal development, from center to periphery. From E18 to postnatal day 5, the levels of both SR1 mRNA and SR1 protein remained constant. Thereafter, they decreased rapidly, by a factor of 5 in the adult retina. SR1 was labeled in the inner nuclear layer, but never in the photoreceptor nuclei. In the neural retina of RCS dystrophic rats, the levels SR1 mRNA and SR1 protein were 2 to 3 times higher than those in the normal congenic controls, before and during photoreceptor degeneration. These results provide the first evidence that a natural FGF inhibitor is regulated during retina development and degeneration and suggest that changes in SR1 content may be involved in the regulation of FGF activities in retina. This was confirmed in vivo in RCS rats, in which delayed photoreceptor apoptosis by intravitreal injection of FGF2 was accompanied by a downregulation of SR1 expression. Dev Dyn 2000;217:24-36.
Collapse
Affiliation(s)
- X Guillonneau
- Développement, vieillissement et pathologie de la rétine, INSERM U. 450, affiliée CNRS, Association Claude Bernard, Paris, France
| | | | | | | | | | | |
Collapse
|
27
|
Mizuno N, Mochii M, Yamamoto TS, Takahashi TC, Eguchi G, Okada TS. Pax-6 and Prox 1 expression during lens regeneration from Cynops iris and Xenopus cornea: evidence for a genetic program common to embryonic lens development. Differentiation 1999; 65:141-9. [PMID: 10631811 DOI: 10.1046/j.1432-0436.1999.6530141.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lens regeneration from non-lens ocular tissues has been well documented in amphibians, from the dorsal iris in the newt and from the outer cornea in Xenopus. To understand the early molecular events which govern lens regeneration, we examined the expression of two early marker genes of normal lens development, Pax-6 and Prox 1. In both Cynops (newt) iris and Xenopus cornea, Pax-6 is expressed soon after lentectomy in a region broader than that giving rise to the regenerating lens, indicative of an important role for Pax-6 in determination of the regeneration potential. Then Prox 1 expression begins within the Pax-6-expressing tissue, and these Prox 1-expressing cells give rise to the regenerating lens. This sequence of events also takes place in the lens placode of the embryo, indicating that the presence of the same genetic program operates in both embryonic lens development and lens regeneration, at least partly. In the Cynops iris, Pax-6 expression occurs initially in the entire marginal region of the iris after lentectomy but then becomes restricted to the dorsal region. Further studies are expected to elucidate the mechanism of this long-standing problem of the dorsal-restriction of lens regeneration from the newt iris.
Collapse
Affiliation(s)
- N Mizuno
- Biohistory Research Hall, Takatuki, Osaka, Japan.
| | | | | | | | | | | |
Collapse
|
28
|
Jasoni C, Hendrickson A, Roelink H. Analysis of chicken Wnt-13 expression demonstrates coincidence with cell division in the developing eye and is consistent with a role in induction. Dev Dyn 1999; 215:215-24. [PMID: 10398532 DOI: 10.1002/(sici)1097-0177(199907)215:3<215::aid-aja4>3.0.co;2-w] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We used a degenerate polymerase chain reaction (PCR) strategy to search for Wnt RNA in developing ocular tissues. We isolated a Macaca monkey Wnt-13 PCR fragment, orthologous to the human and murine Wnt-13 and Xenopus Wnt-2b, and a chick Wnt13 cDNA. Wnt-13 is a member of the Wnt-1 class of transforming Wnt molecules. In situ RNA hybridization revealed a dynamic Wnt-13 expression pattern in numerous developing tissues. Within the eye, Wnt-13 is expressed in the proliferative epithelium of the lens and both pigmented and non-pigmented layers of the ciliary margin. In vitro BrdU incorporation studies coupled with in situ hybridization showed that cWnt-13 expression domains in the lens were coincident with cell division. In addition to the eye, cWnt-13 was expressed in head ectoderm, prospective forelimb mesenchyme, lung bud, pharyngeal arches, the brain, as well as the otic vesicle. Our data are consistent with previous observations linking transforming Wnts with cell division and implicate a cascade of events involving cWnt-13 first in dorsoventral patterning and later in cell proliferation regulation associated with lens development. Dev Dyn 1999;215:215-224.
Collapse
Affiliation(s)
- C Jasoni
- Department of Biological Structure, University of Washington, Seattle, Washington
| | | | | |
Collapse
|
29
|
Guillonneau X, Régnier-Ricard F, Laplace O, Jonet L, Bryckaert M, Courtois Y, Mascarelli F. Fibroblast growth factor (FGF) soluble receptor 1 acts as a natural inhibitor of FGF2 neurotrophic activity during retinal degeneration. Mol Biol Cell 1998; 9:2785-802. [PMID: 9763444 PMCID: PMC25554 DOI: 10.1091/mbc.9.10.2785] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Fibroblast growth factors (FGF) 1 and 2 and their tyrosine kinase receptor (FGFR) are present throughout the adult retina. FGFs are potential mitogens, but adult retinal cells are maintained in a nonproliferative state unless the retina is damaged. Our work aims to find a modulator of FGF signaling in normal and pathological retina. We identified and sequenced a truncated FGFR1 form from rat retina generated by the use of selective polyadenylation sites. This 70-kDa form of soluble extracellular FGFR1 (SR1) was distributed mainly localized in the inner nuclear layer of the retina, whereas the full-length FGFR1 form was detected in the retinal Muller glial cells. FGF2 and FGFR1 mRNA levels greatly increased in light-induced retinal degeneration. FGFR1 was detected in the radial fibers of activated retinal Muller glial cells. In contrast, SR1 mRNA synthesis followed a biphasic pattern of down- and up-regulation, and anti-SR1 staining was intense in retinal pigmented epithelial cells. The synthesis of SR1 and FGFR1 specifically and independently regulated in normal and degenerating retina suggests that changes in the proportion of various FGFR forms may control the bioavailability of FGFs and thus their potential as neurotrophic factors. This was demonstrated in vivo during retinal degeneration when recombinant SR1 inhibited the neurotrophic activity of exogenous FGF2 and increased damaging effects of light by inhibiting endogenous FGF. This study highlights the significance of the generation of SR1 in normal and pathological conditions.
Collapse
Affiliation(s)
- X Guillonneau
- Développement, Vieillissement et Pathologie de la Rétine, Institut National de la Santé et de la Recherche Médicale U450, Affiliée Centre National de la Recherche Scientifique, Association Claude Bernard, 75016 Paris, France
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Lens regeneration in vivo is restricted to some urodeles only. After removal of the lens, this remarkable event is initiated from the dorsal iris. The pigmented epithelial cells from the dorsal iris dedifferentiate and subsequently transdifferentiate to form the regenerating lens. This property of the dorsal iris implies specific regulation along the dorsal-ventral axis. To date, no known genes are known to be specifically expressed in the dedifferentiating cells and to be involved in lens regeneration. In this paper, we show that FGFR-1 expression and function is correlated with the process of lens regeneration from the dorsal iris. Following lentectomy, FGFR-1 protein is specifically present in the dedifferentiating pigment epithelial cells in the dorsal iris, but is absent from the ventral iris. Subsequently, FGFR-1 protein is present throughout the process of lens regeneration and fiber differentiation. Furthermore, we show that an FGFR-1-specific inhibitor is able to inhibit the process of transdifferentiation and lens regeneration. In this sense, FGFR-1 can be regarded as the first known lens regeneration-associated factor.
Collapse
Affiliation(s)
- K Del Rio-Tsonis
- Department of Biology, University of Dayton, Ohio 45469-2320, USA
| | | | | | | |
Collapse
|
31
|
Del Rio-Tsonis K, Jung JC, Chiu IM, Tsonis PA. Conservation of fibroblast growth factor function in lens regeneration. Proc Natl Acad Sci U S A 1997; 94:13701-6. [PMID: 9391089 PMCID: PMC28369 DOI: 10.1073/pnas.94.25.13701] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/1997] [Accepted: 10/02/1997] [Indexed: 02/05/2023] Open
Abstract
In urodele amphibians, lens induction during development and regeneration occurs through different pathways. During development, the lens is induced from the mutual interaction of the ectoderm and the optic vesicle, whereas after lentectomy the lens is regenerated through the transdifferentiation of the iris-pigmented epithelial cells. Given the known role of fibroblast growth factors (FGFs) during lens development, we examined whether or not the expression and the effects of exogenous FGF during urodele lens regeneration were conserved. In this paper, we describe expression of FGF-1 and its receptors, FGFR-2 (KGFR and bek variants) and FGFR-3, in newts during lens regeneration. Expression of these genes was readily observed in the dedifferentiating pigmented epithelial cells, and the levels of expression were high in the lens epithelium and the differentiating fibers and lower in the retina. These patterns of expression implied involvement of FGFs in lens regeneration. To further elucidate this function, we examined the effects of exogenous FGF-1 and FGF-4 during lens regeneration. FGF-1 or FGF-4 treatment in lentectomized eyes resulted in the induction of abnormalities reminiscent to the ones induced during lens development in transgenic mice. Effects included transformation of epithelial cells to fiber cells, double lens regeneration, and lenses with abnormal polarity. These results establish that FGF molecules are key factors in fiber differentiation, polarity, and morphogenesis of the lens during regeneration even though the regenerating lens is induced by a different mechanism than in lens development. In this sense, FGF function in lens regeneration and development should be regarded as conserved. Such conservation should help elucidate the mechanisms of lens regeneration in urodeles and its absence in higher vertebrates.
Collapse
Affiliation(s)
- K Del Rio-Tsonis
- Laboratory of Molecular Biology, Department of Biology, University of Dayton, Dayton, OH 45469, USA
| | | | | | | |
Collapse
|