1
|
Højfeldt G, Sorenson T, Gonzales A, Kjaer M, Andersen JL, Mackey AL. Fusion of myofibre branches is a physiological feature of healthy human skeletal muscle regeneration. Skelet Muscle 2023; 13:13. [PMID: 37573332 PMCID: PMC10422711 DOI: 10.1186/s13395-023-00322-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/17/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND The occurrence of hyperplasia, through myofibre splitting, remains a widely debated phenomenon. Structural alterations and fibre typing of skeletal muscle fibres, as seen during regeneration and in certain muscle diseases, can be challenging to interpret. Neuromuscular electrical stimulation can induce myofibre necrosis followed by changes in spatial and temporal cellular processes. Thirty days following electrical stimulation, remnants of regeneration can be seen in the myofibre and its basement membrane as the presence of small myofibres and encroachment of sarcolemma and basement membrane (suggestive of myofibre branching/splitting). The purpose of this study was to investigate myofibre branching and fibre type in a systematic manner in human skeletal muscle undergoing adult regenerative myogenesis. METHODS Electrical stimulation was used to induce myofibre necrosis to the vastus lateralis muscle of one leg in 5 young healthy males. Muscle tissue samples were collected from the stimulated leg 30 days later and from the control leg for comparison. Biopsies were sectioned and stained for dystrophin and laminin to label the sarcolemma and basement membrane, respectively, as well as ATPase, and antibodies against types I and II myosin, and embryonic and neonatal myosin. Myofibre branches were followed through 22 serial Sects. (264 μm). Single fibres and tissue blocks were examined by confocal and electron microscopy, respectively. RESULTS Regular branching of small myofibre segments was observed (median length 144 μm), most of which were observed to fuse further along the parent fibre. Central nuclei were frequently observed at the point of branching/fusion. The branch commonly presented with a more immature profile (nestin + , neonatal myosin + , disorganised myofilaments) than the parent myofibre, together suggesting fusion of the branch, rather than splitting. Of the 210 regenerating muscle fibres evaluated, 99.5% were type II fibres, indicating preferential damage to type II fibres with our protocol. Furthermore, these fibres demonstrated 7 different stages of "fibre-type" profiles. CONCLUSIONS By studying the regenerating tissue 30 days later with a range of microscopy techniques, we find that so-called myofibre branching or splitting is more likely to be fusion of myotubes and is therefore explained by incomplete regeneration after a necrosis-inducing event.
Collapse
Affiliation(s)
- Grith Højfeldt
- Department of Orthopaedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Nielsine Nielsens Vej 11, 2400, Copenhagen, NV, Denmark.
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark.
| | - Trent Sorenson
- Department of Orthopaedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Nielsine Nielsens Vej 11, 2400, Copenhagen, NV, Denmark
| | - Alana Gonzales
- Department of Orthopaedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Nielsine Nielsens Vej 11, 2400, Copenhagen, NV, Denmark
| | - Michael Kjaer
- Department of Orthopaedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Nielsine Nielsens Vej 11, 2400, Copenhagen, NV, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Belgdamsvej 9, 2100, Copenhagen Ø, Denmark
| | - Jesper L Andersen
- Department of Orthopaedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Nielsine Nielsens Vej 11, 2400, Copenhagen, NV, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Belgdamsvej 9, 2100, Copenhagen Ø, Denmark
| | - Abigail L Mackey
- Department of Orthopaedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Nielsine Nielsens Vej 11, 2400, Copenhagen, NV, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Belgdamsvej 9, 2100, Copenhagen Ø, Denmark.
| |
Collapse
|
2
|
Kawaguchi AT, Tamaki T. Artificial oxygen carrier improves fatigue resistance in slow muscle but not in fast muscle in a rat in situ model. Artif Organs 2019; 44:72-80. [PMID: 31291698 DOI: 10.1111/aor.13535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/05/2019] [Accepted: 07/02/2019] [Indexed: 01/02/2023]
Abstract
The effects of liposome-encapsulated hemoglobin with high O2 affinity (h-LEH), an artificial O2 carrier in skeletal muscle, were studied by in situ fatigue resistance test in fast-type plantaris (PLT) and slow-type soleus (SOL) muscles with or without ischemia in the rat. The distal tendons of PLT and SOL muscles were isolated in situ and individually attached to the force transducers to record the developed tension in response to stimuli (80 Hz tetanus train, 1.5 minutes) to the ipsilateral sciatic nerve. The fatigue resistance test (five sets separated by 2-minute rests) was evaluated in terms of tension attenuation (fatigue) from the initial to the last tension (A) during each set, attenuation of the initial (B) or last tension (C) in each set, as compared to the first set in the presence or absence of ischemia or h-LEH (10 mL/kg). While ischemia significantly enhanced fatigue only in PLT, h-LEH showed no effect regardless of the perfusion pattern (normal/ischemia) or muscle-type (PLT/SOL) during each set (A). In parameter (B), set-by-set fatigue development was observed in PLT, whereas h-LEH-SOL showed a trend of advanced fatigue resistance. Such trends became clear in the parameter C (last tension), because h-LEH-SOL exerted, rather than decreased, the tension enhancement regardless of the presence or absence of ischemia, whereas there were no h-LEH effects in PLT. In addition, faster recovery of the nicotinamide adenine dinucleotide content in the muscle after 10 minutes of all fatigue tests was observed in h-LEH-SOL, while saline-SOL still showed a significantly higher value than that of control. These results suggested that additional O2 supply by h-LEH may accelerate the tricarboxylic acid cycle/electron transport chain in slow-type aerobic SOL muscle containing abundant mitochondria and contribute to the faster removal of muscle fatigue substances such as lactate.
Collapse
Affiliation(s)
- Akira T Kawaguchi
- Department of Cell Transplantation and Regenerative Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Tetsuro Tamaki
- Muscle Physiology and Cell Biology Unit, Tokai University School of Medicine, Isehara, Japan.,Department of Human Structure and Function, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
3
|
Ichinose T, Yamamoto A, Kobayashi T, Shitara H, Shimoyama D, Iizuka H, Koibuchi N, Takagishi K. Compensatory hypertrophy of the teres minor muscle after large rotator cuff tear model in adult male rat. J Shoulder Elbow Surg 2016; 25:316-21. [PMID: 26422529 DOI: 10.1016/j.jse.2015.07.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 02/01/2023]
Abstract
BACKGROUND Rotator cuff tear (RCT) is a common musculoskeletal disorder in the elderly. The large RCT is often irreparable due to the retraction and degeneration of the rotator cuff muscle. The integrity of the teres minor (TM) muscle is thought to affect postoperative functional recovery in some surgical treatments. Hypertrophy of the TM is found in some patients with large RCTs; however, the process underlying this hypertrophy is still unclear. The objective of this study was to determine if compensatory hypertrophy of the TM muscle occurs in a large RCT rat model. METHODS Twelve Wistar rats underwent transection of the suprascapular nerve and the supraspinatus and infraspinatus tendons in the left shoulder. The rats were euthanized 4 weeks after the surgery, and the cuff muscles were collected and weighed. The cross-sectional area and the involvement of Akt/mammalian target of rapamycin (mTOR) signaling were examined in the remaining TM muscle. RESULTS The weight and cross-sectional area of the TM muscle was higher in the operated-on side than in the control side. The phosphorylated Akt/Akt protein ratio was not significantly different between these sides. The phosphorylated-mTOR/mTOR protein ratio was significantly higher on the operated-on side. CONCLUSION Transection of the suprascapular nerve and the supraspinatus and infraspinatus tendons activates mTOR signaling in the TM muscle, which results in muscle hypertrophy. The Akt-signaling pathway may not be involved in this process. Nevertheless, activation of mTOR signaling in the TM muscle after RCT may be an effective therapeutic target of a large RCT.
Collapse
Affiliation(s)
- Tsuyoshi Ichinose
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.
| | - Atsushi Yamamoto
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Tsutomu Kobayashi
- Department of Physical Therapy, Takasaki University of Health and Welfare, Takasaki, Gunma, Japan
| | - Hitoshi Shitara
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Daisuke Shimoyama
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Haku Iizuka
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Kenji Takagishi
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| |
Collapse
|
4
|
Kryściak K, Celichowski J, Drzymała-Celichowska H, Gardiner PF, Krutki P. Force regulation and electrical properties of motor units in overloaded muscle. Muscle Nerve 2015; 53:96-106. [PMID: 25900834 DOI: 10.1002/mus.24690] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2015] [Indexed: 11/08/2022]
Abstract
INTRODUCTION The influence of long-term muscle overload on force regulation and electrical properties of motor units (MUs) was investigated in rats. METHODS Compensatory overload of the medial gastrocnemius was induced by tenotomy of its synergists. Electrophysiological experiments were performed on functionally isolated MUs 3 months after the surgery. RESULTS Force-frequency curves for overloaded MUs were shifted rightward compared with control, thus MUs developed the same relative tetanic forces at higher frequencies. Higher force increase was achieved in response to an increase in stimulation frequency in overloaded fast MUs compared with control. The optimal tetanic contraction, characterized by the highest force-time area per pulse, was evoked at higher stimulation frequencies for all overloaded MUs except FF. Only minor adaptive changes in MU action potentials occurred. CONCLUSIONS Compensatory muscle overload leads to substantial modifications in MU force development mechanisms, which are MU-type-specific and influence whole muscle force regulation.
Collapse
Affiliation(s)
- Katarzyna Kryściak
- Department of Neurobiology, University School of Physical Education in Poznan, 27/39 Królowej Jadwigi Street, 61-871, Poznań, Poland
| | - Jan Celichowski
- Department of Neurobiology, University School of Physical Education in Poznan, 27/39 Królowej Jadwigi Street, 61-871, Poznań, Poland
| | - Hanna Drzymała-Celichowska
- Department of Neurobiology, University School of Physical Education in Poznan, 27/39 Królowej Jadwigi Street, 61-871, Poznań, Poland
| | - Phillip F Gardiner
- Spinal Cord Research Center, and Faculty of Kinesiology & Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Piotr Krutki
- Department of Neurobiology, University School of Physical Education in Poznan, 27/39 Królowej Jadwigi Street, 61-871, Poznań, Poland
| |
Collapse
|
5
|
Saito K, Tamaki T, Hirata M, Hashimoto H, Nakazato K, Nakajima N, Kazuno A, Sakai A, Iida M, Okami K. Reconstruction of Multiple Facial Nerve Branches Using Skeletal Muscle-Derived Multipotent Stem Cell Sheet-Pellet Transplantation. PLoS One 2015; 10:e0138371. [PMID: 26372044 PMCID: PMC4570662 DOI: 10.1371/journal.pone.0138371] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/28/2015] [Indexed: 01/17/2023] Open
Abstract
Head and neck cancer is often diagnosed at advanced stages, and surgical resection with wide margins is generally indicated, despite this treatment being associated with poor postoperative quality of life (QOL). We have previously reported on the therapeutic effects of skeletal muscle-derived multipotent stem cells (Sk-MSCs), which exert reconstitution capacity for muscle-nerve-blood vessel units. Recently, we further developed a 3D patch-transplantation system using Sk-MSC sheet-pellets. The aim of this study is the application of the 3D Sk-MSC transplantation system to the reconstitution of facial complex nerve-vascular networks after severe damage. Mouse experiments were performed for histological analysis and rats were used for functional examinations. The Sk-MSC sheet-pellets were prepared from GFP-Tg mice and SD rats, and were transplanted into the facial resection model (ST). Culture medium was transplanted as a control (NT). In the mouse experiment, facial-nerve-palsy (FNP) scoring was performed weekly during the recovery period, and immunohistochemistry was used for the evaluation of histological recovery after 8 weeks. In rats, contractility of facial muscles was measured via electrical stimulation of facial nerves root, as the marker of total functional recovery at 8 weeks after transplantation. The ST-group showed significantly higher FNP (about three fold) scores when compared to the NT-group after 2–8 weeks. Similarly, significant functional recovery of whisker movement muscles was confirmed in the ST-group at 8 weeks after transplantation. In addition, engrafted GFP+ cells formed complex branches of nerve-vascular networks, with differentiation into Schwann cells and perineurial/endoneurial cells, as well as vascular endothelial and smooth muscle cells. Thus, Sk-MSC sheet-pellet transplantation is potentially useful for functional reconstitution therapy of large defects in facial nerve-vascular networks.
Collapse
Affiliation(s)
- Kosuke Saito
- Department of Otolaryngology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259–1193, Japan
- Muscle Physiology & Cell Biology Unit, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259–1193, Japan
| | - Tetsuro Tamaki
- Muscle Physiology & Cell Biology Unit, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259–1193, Japan
- Department of Physiological Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259–1193, Japan
- * E-mail:
| | - Maki Hirata
- Muscle Physiology & Cell Biology Unit, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259–1193, Japan
- Department of Orthopedics, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259–1193, Japan
| | - Hiroyuki Hashimoto
- Muscle Physiology & Cell Biology Unit, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259–1193, Japan
- Department of Orthopedics, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259–1193, Japan
| | - Kenei Nakazato
- Muscle Physiology & Cell Biology Unit, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259–1193, Japan
- Department of General Thorathic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259–1193, Japan
| | - Nobuyuki Nakajima
- Muscle Physiology & Cell Biology Unit, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259–1193, Japan
- Department of Urology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259–1193, Japan
| | - Akihito Kazuno
- Muscle Physiology & Cell Biology Unit, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259–1193, Japan
- Department of Gastroenterological Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259–1193, Japan
| | - Akihiro Sakai
- Department of Otolaryngology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259–1193, Japan
| | - Masahiro Iida
- Department of Otolaryngology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259–1193, Japan
| | - Kenji Okami
- Department of Otolaryngology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259–1193, Japan
| |
Collapse
|
6
|
Ichinose T, Lesmana R, Yamamoto A, Kobayashi T, Shitara H, Shimoyama D, Takatsuru Y, Iwasaki T, Shimokawa N, Takagishi K, Koibuchi N. Possible involvement of IGF-1 signaling on compensatory growth of the infraspinatus muscle induced by the supraspinatus tendon detachment of rat shoulder. Physiol Rep 2014; 2:e00197. [PMID: 24744876 PMCID: PMC3967680 DOI: 10.1002/phy2.197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/09/2013] [Accepted: 12/13/2013] [Indexed: 01/18/2023] Open
Abstract
A rotator cuff tear (RCT) is a common musculoskeletal disorder among elderly people. RCT is often treated conservatively for functional compensation by the remaining muscles. However, the mode of such compensation after RCT has not yet been fully understood. Here, we used the RCT rat model to investigate the compensatory process in the remaining muscles. The involvement of insulin-like growth factor 1 (IGF-1)/Akt signaling which potentially contributes to the muscle growth was also examined. The RCT made by transecting the supraspinatus (SSP) tendon resulted in atrophy of the SSP muscle. The remaining infraspinatus (ISP) muscle weight increased rapidly after a transient decrease (3 days), which could be induced by posttraumatic immobilization. The IGF-1 mRNA levels increased transiently at 7 days followed by a gradual increase thereafter in the ISP muscle, and those of IGF-1 receptor mRNA significantly increased after 3 days. IGF-1 protein levels biphasically increased (3 and 14 days), then gradually decreased thereafter. The IGF-1 protein levels tended to show a negative correlation with IGF-1 mRNA levels. These levels also showed a negative correlation with the ISP muscle weight, indicating that the increase in IGF-1 secretion may contribute to the ISP muscle growth. The pAkt/Akt protein ratio decreased transiently by 14 days, but recovered later. The IGF-1 protein levels were negatively correlated with the pAkt/Akt ratio. These results indicate that transection of the SSP tendon activates IGF-1/Akt signaling in the remaining ISP muscle for structural compensation. Thus, the remaining muscles after RCT can be a target for rehabilitation through the activation of IGF-1/Akt signaling.
Collapse
Affiliation(s)
- Tsuyoshi Ichinose
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan ; Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Ronny Lesmana
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan ; Department of Physiology, Universitas Padjadjaran, Bandung, Indonesia
| | - Atsushi Yamamoto
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Tsutomu Kobayashi
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hitoshi Shitara
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Daisuke Shimoyama
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Yusuke Takatsuru
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Toshiharu Iwasaki
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Noriaki Shimokawa
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Kenji Takagishi
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| |
Collapse
|
7
|
Swisher AK, Alway SE, Yeater R. The Effect of Exercise on Peripheral Muscle in Emphysema: A Preliminary Investigation. COPD 2009; 3:9-15. [PMID: 17175660 DOI: 10.1080/15412550500493287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Emphysema has been associated with loss of aerobic muscle fibers and decreased blood supply. However, when these changes begin and whether exercise can prevent these changes is unknown. The purpose of this study was to examine peripheral muscle at different time points during the development of emphysema and to determine the additional effects of muscle activity. In a series of 3 experiments, emphysema was induced in hamsters. Exercise was simulated through surgical overload (OV) of the plantaris muscle of one leg. Animals were sacrificed at 1, 3, and 5 months following emphysema induction. Fiber type composition and capillary-to-fiber ratio (CFR) were determined. There were no significant changes in fiber type composition in the 1-month group. A significant increase in type IIA fiber composition (mean 72.0 vs. 54.5%) and decrease in type IIB fiber (mean 13.3 vs. 28.1%) was seen in the non-overloaded muscles following 3 months. In the 5-month group, there was a significant decrease in percentage of type I fibers (mean 14.7 vs. 28.0%). There were no significant differences in fiber type composition in the OV limb, regardless of duration. The CFR was significantly lower in the OV limb after 5-months of emphysema (mean 0.92 vs. 1.55 cap/fiber). Muscle overload prevented emphysema-associated changes in fiber type composition, but not in CFR. Peripheral muscle is affected early in the course of emphysema and chronic overload may play an important role in preserving normal muscle composition.
Collapse
Affiliation(s)
- Anne K Swisher
- Division of Physical Therapy, West Virginia University, Morgantown, West Virginia 26506-9226, USA.
| | | | | |
Collapse
|
8
|
Tamaki T, Uchiyama Y, Okada Y, Tono K, Nitta M, Hoshi A, Akatsuka A. Multiple stimulations for muscle–nerve–blood vessel unit in compensatory hypertrophied skeletal muscle of rat surgical ablation model. Histochem Cell Biol 2009; 132:59-70. [DOI: 10.1007/s00418-009-0585-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2009] [Indexed: 10/21/2022]
|
9
|
Tamaki T, Uchiyama Y, Okada Y, Tono K, Nitta M, Hoshi A, Akatsuka A. Anabolic-androgenic steroid does not enhance compensatory muscle hypertrophy but significantly diminish muscle damages in the rat surgical ablation model. Histochem Cell Biol 2009; 132:71-81. [DOI: 10.1007/s00418-009-0584-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2009] [Indexed: 11/24/2022]
|
10
|
Plant DR, Beitzel F, Lynch GS. Length-tension relationships are altered in regenerating muscles of the rat after bupivacaine injection. J Appl Physiol (1985) 2005; 98:1998-2003. [PMID: 15718398 DOI: 10.1152/japplphysiol.01381.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intramuscular injection of bupivacaine causes complete degeneration of fibers in extensor digitorum longus (EDL) muscles of rats, followed by complete regeneration within 60 days. Previous studies have shown that regenerated EDL muscles are protected from contraction-induced injury 60 days after bupivacaine injection. It is possible that these regenerated muscles have altered length-tension relations because of fiber remodeling. We tested the hypothesis that length-tension relations are different in bupivacaine-injected and noninjected control muscles. EDL and soleus muscles of the right hindlimb of deeply anesthetized rats were injected with bupivacaine and then allowed to recover for 7, 14, 21, or 60 days (7D, 14D, 21D, 60D), and isometric contractile properties were assessed. Muscles of the contralateral limb were not injected and served as control. EDL muscles recovered from bupivacaine injection more rapidly than soleus muscles, with mass restored to control levels at 21D, and isometric tetanic force (Po) restored to control at 60D. In contrast, mass and Po of injected soleus muscles was not restored to control even at 60D. In 7D EDL muscles, length-tension curves were shifted leftward compared with control, but in 21D and 60D EDL muscles length-tension curves were right shifted significantly (treatment × muscle length: P < 0.001). Although no clear shift in the position of the length-tension curve was observed in regenerating soleus muscles, force production was enhanced on the descending limb of the curve in 60D soleus muscles (treatment × relative muscle length: P < 0.01). The rightward shift in the length-tension curve of EDL muscles 60 days after bupivacaine injection is likely to contribute to the mechanism for their previously observed protection from contraction-induced injury.
Collapse
Affiliation(s)
- David R Plant
- Dept. of Physiology, The University of Melbourne, Victoria 3010, Australia
| | | | | |
Collapse
|
11
|
Blough ER, Linderman JK. Lack of skeletal muscle hypertrophy in very aged male Fischer 344 x Brown Norway rats. J Appl Physiol (1985) 2000; 88:1265-70. [PMID: 10749817 DOI: 10.1152/jappl.2000.88.4.1265] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To examine the effect of extreme old age on muscle plasticity, 6- (adult) and 36-mo-old (old) male Fischer 344 x Brown Norway hybrid rats underwent bilateral surgical ablation of the gastrocnemius muscle to functionally overload (OV) the fast-twitch plantaris muscle for 8 wk. Plantaris muscle wet weight, muscle cross-sectional area (CSA), and average fiber CSA decreased by 44, 42, and 40%, respectively, in old compared with adult rats, and peak isometric tetanic tension decreased by 83%. Compared with muscles in age-matched controls, plantaris muscle mass increased by 53% and type I, IIA, and IIX/IIB CSA increased by 91, 76, and 103%, respectively, in adult-OV rats, but neither wet mass nor fiber CSA increased in old-OV rats. OV decreased type I, IIA, and IIX/IIB mean fiber CSA by 31, 35, and 30%, respectively, in old-OV rats. Collectively, our data indicate that in extreme old age the plantaris muscle undergoes significant loss of mass, fiber CSA, and contractile function, as well as its capacity to undergo hypertrophy in response to a chronic increase in mechanical load.
Collapse
Affiliation(s)
- E R Blough
- Laboratory of Basic and Applied Myology, School of Physical Activity and Educational Services, Ohio State University, Columbus, Ohio 43210-1284, USA
| | | |
Collapse
|