1
|
Ferreira-Junior NC, Crestani CC, Lagatta DC, Resstel LBM, Correa FMA, Alves FHF. Nitric oxide in the insular cortex modulates baroreflex responses in a cGMP-independent pathway. Brain Res 2020; 1747:147037. [PMID: 32738232 DOI: 10.1016/j.brainres.2020.147037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/01/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Abstract
Insular cortex is a brain structure involved in the modulation of autonomic activity and cardiovascular function. The nitric oxide/cyclic guanosine-3',5'-monophosphate pathway is a prominent signaling mechanism in the central nervous system, controlling behavioral and physiological responses. Nevertheless, despite evidence regarding the presence of nitric oxide-synthesizing neurons in the insular cortex, its role in the control of autonomic and cardiovascular function has never been reported. Thus, the present study aimed to investigate the involvement of nitric oxide/cyclic guanosine-3',5'-monophosphate pathway mediated by neuronal nitric oxide synthase (nNOS) activation within the insular cortex in the modulation of baroreflex responses in unanesthetized rats. For this, we evaluated the effect of bilateral microinjection of either the nitric oxide scavenger carboxy-PTIO, the selective neuronal nitric oxide synthase inhibitor Nω-Propyl-l-arginine or the soluble guanylate cyclase inhibitor ODQ into the insular cortex on the bradycardia evoked by blood pressure increases in response to intravenous infusion of phenylephrine, and the tachycardia caused by blood pressure decreases evoked by intravenous infusion of sodium nitroprusside. Bilateral microinjection of either NPLA or carboxy-PTIO into the insular cortex increased the reflex bradycardic response, whereas the reflex tachycardia was decreased by these treatments. Bilateral microinjection of the soluble guanylate cyclase inhibitor into the insular cortex did not affect any parameter of baroreflex function evaluated. Overall, our findings provide evidence that insular cortex nitrergic signaling, acting via neuronal nitric oxide synthase, plays a prominent role in control of baroreflex function. However, control of reflex responses seems to be independent of soluble guanylate cyclase activation.
Collapse
Affiliation(s)
- Nilson C Ferreira-Junior
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Carlos C Crestani
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Davi C Lagatta
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Leonardo B M Resstel
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Fernando M A Correa
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Fernando H F Alves
- Department of Health Sciences, Faculty of Medicine - Federal University of Lavras, Lavras, MG, Brazil.
| |
Collapse
|
2
|
Huma Z, Du Beau A, Brown C, Maxwell DJ. Origin and neurochemical properties of bulbospinal neurons projecting to the rat lumbar spinal cord via the medial longitudinal fasciculus and caudal ventrolateral medulla. Front Neural Circuits 2014; 8:40. [PMID: 24808828 PMCID: PMC4009430 DOI: 10.3389/fncir.2014.00040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/04/2014] [Indexed: 12/28/2022] Open
Abstract
Bulbospinal systems (BS) originate from various regions of the brainstem and influence spinal neurons by classical synaptic and modulatory mechanisms. Our aim was to determine the brainstem locations of cells of origin of BS pathways passing through the medial longitudinal fasciculus (MLF) and the caudal ventrolateral medulla (CVLM). We also examined the transmitter content of spinal terminations of the CVLM pathway. Six adult rats received Fluorogold (FG) injections to the right intermediate gray matter of the lumbar cord (L1–L2) and the b-subunit of cholera toxin (CTb) was injected either into the MLF or the right CVLM (3 animals each). Double-labeled cells were identified within brainstem structures with confocal microscopy and mapped onto brainstem diagrams. An additional 3 rats were injected with CTb in the CVLM to label axon terminals in the lumbar spinal cord. Double-labeled cells projecting via the MLF or CVLM were found principally in reticular regions of the medulla and pons but small numbers of cells were also located within the midbrain. CVLM projections to the lumbar cord were almost exclusively ipsilateral and concentrated within the intermediate gray matter. Most (62%) of terminals were immunoreactive for the vesicular glutamate transporter 2 while 23% contained the vesicular GABA transporter. The inhibitory subpopulation was glycinergic, GABAergic or contained both transmitters. The proportions of excitatory and inhibitory axons projecting via the CVLM to the lumbar cord are similar to those projecting via the MLF. Unlike the MLF pathway, CVLM projections are predominantly ipsilateral and concentrated within intermediate gray but do not extend into motor nuclei or laminia VIII. Terminations of the CVLM pathway are located in a region of the gray matter that is rich in premotor interneurons; thus its primary function may be to coordinate activity of premotor networks.
Collapse
Affiliation(s)
- Zilli Huma
- Spinal Cord Group, Institute of Neuroscience and Psychology, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow Glasgow, UK
| | - Amy Du Beau
- Spinal Cord Group, Institute of Neuroscience and Psychology, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow Glasgow, UK
| | - Christina Brown
- Spinal Cord Group, Institute of Neuroscience and Psychology, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow Glasgow, UK
| | - David J Maxwell
- Spinal Cord Group, Institute of Neuroscience and Psychology, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow Glasgow, UK
| |
Collapse
|
3
|
King TL, Kline DD, Ruyle BC, Heesch CM, Hasser EM. Acute systemic hypoxia activates hypothalamic paraventricular nucleus-projecting catecholaminergic neurons in the caudal ventrolateral medulla. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1112-23. [PMID: 24049118 DOI: 10.1152/ajpregu.00280.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hypoxia activates catecholamine neurons in the caudal ventrolateral medulla (CVLM). The hypothalamic paraventricular nucleus (PVN) modulates arterial chemoreflex responses and receives catecholaminergic projections from the CVLM, but it is not known whether the CVLM-PVN projection is activated by chemoreflex stimulation. We hypothesized that acute hypoxia (AH) activates PVN-projecting catecholaminergic neurons in the CVLM. Fluoro-Gold (2%, 60-90 nl) was microinjected into the PVN of rats to retrogradely label CVLM neurons. After recovery, conscious rats underwent 3 h of normoxia (21% O2, n = 4) or AH (12, 10, or 8% O2; n = 5 each group). We used Fos immunoreactivity as an index of CVLM neuronal activation and tyrosine hydroxylase (TH) immunoreactivity to identify catecholaminergic neurons. Positively labeled neurons were counted in six caudal-rostral sections containing CVLM. Hypoxia progressively increased the number of Fos-immunoreactive CVLM cells (21%, 19 ± 6; 12%, 49 ± 2; 10%, 117 ± 8; 8%, 179 ± 7; P < 0.001). Catecholaminergic cells colabeled with Fos immunoreactivity in the CVLM were observed following 12% O2, and further increases in hypoxia severity caused markedly more activation. PVN-projecting CVLM cells were activated following more severe hypoxia (10% and 8% O2). A large proportion (89 ± 3%) of all activated PVN-projecting CVLM neurons were catecholaminergic, regardless of hypoxia intensity. Data suggest that catecholaminergic, PVN-projecting CVLM neurons are particularly hypoxia-sensitive, and these neurons may be important in the cardiorespiratory and/or neuroendocrine responses elicited by the chemoreflex.
Collapse
Affiliation(s)
- T Luise King
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | | | | | | | | |
Collapse
|
4
|
de Almeida ATR, Kirkwood PA. Specificity in monosynaptic and disynaptic bulbospinal connections to thoracic motoneurones in the rat. J Physiol 2013; 591:4043-63. [PMID: 23774278 DOI: 10.1113/jphysiol.2013.256503] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The respiratory activity in the intercostal nerves of the rat is unusual, in that motoneurones of both branches of the intercostal nerves, internal and external, are activated during expiration. Here, the pathways involved in that activation were investigated in anaesthetised and in decerebrate rats by cross-correlation and by intracellular spike-triggered averaging from expiratory bulbospinal neurones (EBSNs), with a view to revealing specific connections that could be used in studies of experimental spinal cord injury. Decerebrate preparations, which showed the strongest expiratory activity, were found to be the most suitable for these measurements. Cross-correlations in these preparations showed monosynaptic connections from 16/19 (84%) of EBSNs, but only to internal intercostal nerve motoneurones (24/37, 65% of EBSN/nerve pairs), whereas disynaptic connections were seen for external intercostal nerve motoneurones (4/19, 21% of EBSNs or 7/25, 28% of EBSN/nerve pairs). There was evidence for additional disynaptic connections to internal intercostal nerve motoneurones. Intracellular spike-triggered averaging revealed excitatory postsynaptic potentials, which confirmed these connections. This is believed to be the first report of single descending fibres that participate in two different pathways to two different groups of motoneurones. It is of interest compared with the cat, where only one group of motoneurones is activated during expiration and only one of the pathways has been detected. The specificity of the connections could be valuable in studies of plasticity in pathological situations, but care will be needed in studying connections in such situations, because their strength was found here to be relatively weak.
Collapse
Affiliation(s)
- Anoushka T R de Almeida
- Sobell Department for Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | | |
Collapse
|
5
|
Gerrits PO, Kortekaas R, Veening JG, de Weerd H, van der Want JJL. Reduced aging defects in estrogen receptive brainstem nuclei in the female hamster. Neurobiol Aging 2012; 33:2920-34. [PMID: 22445324 DOI: 10.1016/j.neurobiolaging.2012.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 02/15/2012] [Accepted: 02/15/2012] [Indexed: 10/28/2022]
Abstract
UNLABELLED The nucleus pararetroambiguus (NPRA) and the commissural nucleus of the solitary tract (NTScom) show estrogen nuclear receptor-α immunoreactivity (nuclear ER-α-IR). Both cell groups are involved in estrous cycle related adaptations. We examined in normally cycling aged hamsters the occurrence/amount/frequency of age-related degenerative changes in NPRA and NTScom during estrus and diestrus. In 2640 electron microscopy photomicrographs plasticity reflected in the ratio of axon terminal surface/dendrite surface (t/d) was morphometrically analyzed. Medial tegmental field (mtf, nuclear ER-α-IR poor), served as control. In aged animals, irrespective of nuclear ER-α-IR+ or nuclear ER-α-IR- related cell groups, extensive diffuse degenerative structural aberrations were observed. The hormonal state had a strong influence on t/d ratios in NPRA and NTScom, but not in mtf. In NPRA and NTScom, diestrous hamsters had significantly smaller t/d ratios (NPRA, 0.750 ± 0.050; NTScom, 0.900 ± 0.039) than the estrous hamsters (NPRA, 1.083 ± 0.075; NTScom, 1.204 ± 0.076). Aging affected axodendritic ratios only in mtf (p < 0.001). IN CONCLUSION in the female hamster brain, estrous cycle-induced structural plasticity is preserved in NPRA and NTScom during aging despite the presence of diffuse age-related neurodegenerative changes.
Collapse
Affiliation(s)
- Peter O Gerrits
- Department of Neuroscience, Section of Anatomy, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
6
|
Korim WS, McMullan S, Cravo SL, Pilowsky PM. Asymmetrical changes in lumbar sympathetic nerve activity following stimulation of the sciatic nerve in rat. Brain Res 2011; 1391:60-70. [PMID: 21458430 DOI: 10.1016/j.brainres.2011.03.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 02/28/2011] [Accepted: 03/23/2011] [Indexed: 01/17/2023]
Abstract
Noxious stimulation of the leg increases hind limb blood flow (HBF) to the ipsilateral side and decreases to the contralateral in rat. Whether or not this asymmetrical response is due to direct control by sympathetic terminals or mediated by other factors such as local metabolism and hormones remains unclear. The aim of this study was to compare responses in lumbar sympathetic nerve activity, evoked by stimulation of the ipsilateral and contralateral sciatic nerve (SN). We also sought to determine the supraspinal mechanisms involved in the observed responses. In anesthetized and paralyzed rats, intermittent electrical stimulation (1 mA, 0.5 Hz) of the contralateral SN evoked a biphasic sympathoexcitation. Following ipsilateral SN stimulation, the response is preceded by an inhibitory potential with a latency of 50 ms (N=26). Both excitatory and inhibitory potentials are abolished following cervical C1 spinal transection (N=6) or bilateral microinjections of muscimol (N=6) in the rostral ventrolateral medulla (RVLM). This evidence is suggestive that both sympathetic potentials are supraspinally mediated in this nucleus. Blockade of RVLM glutamate receptors by microinjection of kynurenic acid (N=4) selectively abolished the excitatory potential elicited by ipsilateral SN stimulation. This study supports the physiological model that activation of hind limb nociceptors evokes a generalized sympathoexcitation, with the exception of the ipsilateral side where there is a withdrawal of sympathetic tone resulting in an increase in HBF.
Collapse
Affiliation(s)
- Willian Seiji Korim
- Australian School of Advanced Medicine, Macquarie University, Sydney, Australia
| | | | | | | |
Collapse
|
7
|
Projections from the brain to the spinal cord in the mouse. Brain Struct Funct 2010; 215:159-86. [DOI: 10.1007/s00429-010-0281-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 09/23/2010] [Indexed: 12/20/2022]
|
8
|
Columnar organization of estrogen receptor-α immunoreactive neurons in the periaqueductal gray projecting to the nucleus para-retroambiguus in the caudal brainstem of the female golden hamster. Neuroscience 2009; 161:459-74. [DOI: 10.1016/j.neuroscience.2009.03.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 03/12/2009] [Accepted: 03/14/2009] [Indexed: 11/18/2022]
|
9
|
Gerrits PO, Veening JG, Blomsma SA, Mouton LJ. The nucleus para-retroambiguus: a new group of estrogen receptive cells in the caudal ventrolateral medulla of the female golden hamster. Horm Behav 2008; 53:329-41. [PMID: 18076882 DOI: 10.1016/j.yhbeh.2007.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 10/19/2007] [Accepted: 10/26/2007] [Indexed: 10/22/2022]
Abstract
Receptive female hamsters display very rigid lordotic postures. Estradiol facilitates this behavior via activation of estrogen receptors. In the hamster brainstem estrogen receptor-alpha-immunoreactive neurons (ER-alpha-IR) are present in various brainstem regions including nucleus retroambiguus (NRA) in the caudal ventrolateral medulla (CVLM) and nucleus of the solitary tract. ER-alpha-IR neurons in the CVLM project to the thoracic and upper lumbar cord. However, A1 neurons in this region do not project to the spinal cord, in contrast to overlapping C1 neurons. The question now arises: are ER-alpha-IR cells in the CVLM part of the A1/C1 group, or do they belong to the NRA or do they compose a separate cluster. A study in ovariectomized female hamsters using a combination of double immunostaining and retrograde tracing techniques and measurement of soma diameters was carried out. The results showed that A1/C1 neurons in the CVLM are almost never ER-alpha-positive; neurons inside or bordering the NRA can be divided in two different types: large multipolar and small; the large NRA-neurons, projecting caudally, are neither tyrosine hydroxylase- (TH) nor ER-alpha-IR; the small neurons, bordering the NRA and projecting caudally, are ER-alpha-IR but not TH-IR. From the available evidence and the present findings it can be concluded that the group of small ER-alpha-IR neurons in the CVLM has to be considered as a distinct entity, probably involved in the autonomic physiological changes concurring with successive phases of the estrous cycle. Because the location is closely related to the NRA itself the nucleus is called nucleus para-retroambiguus, abbreviated (NPRA).
Collapse
Affiliation(s)
- P O Gerrits
- Department of Anatomy and Embryology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | | | |
Collapse
|
10
|
Iigaya K, Kumagai H, Onimaru H, Kawai A, Oshima N, Onami T, Takimoto C, Kamayachi T, Hayashi K, Saruta T, Itoh H. Novel axonal projection from the caudal end of the ventrolateral medulla to the intermediolateral cell column. Am J Physiol Regul Integr Comp Physiol 2007; 292:R927-36. [PMID: 17082356 DOI: 10.1152/ajpregu.00254.2006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We used an optical imaging technique to investigate whether axons of neurons in the caudal end of the ventrolateral medulla (CeVLM), as well as axons of neurons in the rostral ventrolateral medulla (RVLM), project to neurons in the intermediolateral cell column (IML) of the spinal cord. Brain stem-spinal cord preparations from neonatal normotensive Wistar-Kyoto and spontaneously hypertensive rats were stained with a voltage-sensitive dye, and responses to electrical stimulation of the IML at the Th2level were detected as changes in fluorescence intensity with an optical imaging apparatus (MiCAM-01). The results were as follows: 1) depolarizing responses to IML stimulation during low-Ca high-Mg superfusion were detected on the ventral surface of the medulla at the level of the CeVLM, as well as at the level of the RVLM, 2) depolarizing responses were also detected on cross sections at the level of the CeVLM, and they had a latency of 24.0 ± 5.5 (SD) ms, 3) antidromic action potentials in response to IML stimulation were demonstrated in the CeVLM neurons where optical images were detected, and 4) glutamate application to the CeVLM increased the frequency of excitatory postsynaptic potentials (EPSPs) and induced depolarization of the IML neurons. The optical imaging findings suggested a novel axonal and functional projection from neurons in the CeVLM to the IML. The increase in EPSPs of the IML neurons in response to glutamate application suggests that the CeVLM participates in the regulation of sympathetic nerve activity and blood pressure and may correspond to the caudal pressor area.
Collapse
Affiliation(s)
- Kamon Iigaya
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sun W, Panneton WM. Defining projections from the caudal pressor area of the caudal ventrolateral medulla. J Comp Neurol 2004; 482:273-93. [PMID: 15690490 DOI: 10.1002/cne.20434] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We previously defined a functional area in the caudal medulla oblongata that elicits an increase in arterial pressure when stimulated (Sun and Panneton [2002] Am. J. Physiol. 283:R768-R778). In the present study, anterograde and retrograde tracing techniques were used to investigate the projections of this caudal pressor area (CPA) to the medulla and pons. Injections of biotinylated dextran amine into the CPA resulted in numerous labeled fibers with varicosities in the ipsilateral subnucleus reticularis dorsalis, commissural subnucleus of the nucleus tractus solitarii, lateral medulla, medial facial nucleus, A5 area, lateral vestibular nucleus, and internal lateral subnucleus of the parabrachial complex. Sparser projections were found ipsilaterally in the pressor and depressor areas of the medulla and the spinal trigeminal nucleus and contralaterally in the CPA. Injections of the retrograde tracer Fluoro-Gold into these areas labeled neurons in the CPA as well as the nearby medullary dorsal horn and reticular formation. However, we conclude that the CPA projects preferentially to the subnucleus reticularis dorsalis, commissural nucleus tractus solitarii, lateral medulla, A5 area, and internal lateral parabrachial nucleus. Weaker projections were seen to the CVLM and RVLM and to the contralateral CPA. The projection to the facial nucleus arises from nearby reticular neurons, whereas projections to the vestibular nucleus arise from the lateral reticular nucleus. Labeled neurons in the CPA consisted mostly of small bipolar and some triangular neurons. The projection to the CVLM, or to A5 area, may provide for the increase in arterial pressure with CPA stimulation. However, most of the projections described herein are to nuclei implicated in the processing of noxious information. This implies a unique role for the CPA in somatoautonomic regulation.
Collapse
Affiliation(s)
- Wei Sun
- Department of Anatomy and Neurobiology, St. Louis University School of Medicine, St. Louis, Missouri 63104-1004, USA
| | | |
Collapse
|
12
|
Viltart O, Mullier O, Bernet F, Poulain P, Ba-M'Hamed S, Sequeira H. Motor cortical control of cardiovascular bulbar neurones projecting to spinal autonomic areas. J Neurosci Res 2003; 73:122-35. [PMID: 12815716 DOI: 10.1002/jnr.10598] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
There is evidence that the motor cortex is involved in cardiovascular adjustments associated with somatic motor activity, as it has functional connections with the ventrolateral medulla, a brainstem region critically involved in the control of blood pressure and the regulation of plasma catecholamine levels. The ventrolateral medulla sends projections to the spinal intermediolateral nucleus, where preganglionic neurones controlling heart and blood vessels (T2 segment) and adrenal medulla (T8 segment) are found. The aim of the present study was to determine whether electrical stimulation of the rat motor cortex induces cardiovascular responses and Fos expression in ventrolateral medulla neurones projecting to the T2 and T8 segments. After a set of experiments designed to record cardiovascular parameters (blood pressure and plasma catecholamine levels), injections of retrograde tracer (Fluorogold) were performed in the intermediolateral nucleus of two groups of rats, at the T2 or at the T8 segmental levels. Five days later, the motor cortex was stimulated in order to induce Fos expression in the ventrolateral medulla. Stimulation of the motor cortex induced: (1). hypotension and a significant decrease in plasma noradrenaline levels, and (2). a significant increase in the number of the double-labelled neurones in the rostral ventrolateral medulla projecting to T2. These data demonstrate that cardiovascular adjustments, preparatory to, or concomitant with, motor activity may be initiated in the motor cortex and transmitted to cardiac and vasomotor spinal preganglionic neurones, via the ventrolateral medulla.
Collapse
Affiliation(s)
- Odile Viltart
- Laboratoire Stress Périnatal JE 2365, Université de Lille I, Villeneuve d'Ascq, France.
| | | | | | | | | | | |
Collapse
|
13
|
Saito Y, Tanaka I, Ezure K. Morphology of the decrementing expiratory neurons in the brainstem of the rat. Neurosci Res 2002; 44:141-53. [PMID: 12354629 DOI: 10.1016/s0168-0102(02)00095-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In anesthetized and artificially-ventilated rats, the morphological properties of decrementing expiratory (E-DEC) neurons were studied using intracellular recording and labeling with Neurobiotin. Sixteen E-DEC neurons were successfully labeled; ten of which were cranial motoneurons located in the facial (FN) and ambiguus (NA) nuclei. Two interneurons were labeled in the Bötzinger complex (BOT) and the ventral respiratory group (VRG) rostral to the obex, and the remaining four in the VRG caudal to the obex. All the interneurons had extensive intramedullary collaterals within the ventrolateral medulla. Terminal-like boutons were distributed ventral to the NA at the level of the BOT, both ventral to and within the NA at the level rostral to the obex and largely within the cell column tentatively designed as the ambiguous-retroambiguus complex (NA/NRA) caudal to the obex. The four interneurons in the NA/NRA had axons projecting to the spinal cord as well. The extensive intramedullary projections suggest that these E-DEC interneurons of the BOT and the VRG play a significant role in respiration. The simultaneous projections from the caudal E-DEC neurons to both the spinal cord and the NA suggest that these neurons also play integrative roles in non-respiratory behaviors including vocalization, swallowing and defecation.
Collapse
Affiliation(s)
- Yoshiaki Saito
- Department of Neurobiology, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashi-dai, Fuchu, Tokyo 183-8526, Japan
| | | | | |
Collapse
|
14
|
Abstract
Vocalization is a complex behaviour pattern, consisting of essentially three components: laryngeal activity, respiratory movements and supralaryngeal (articulatory) activity. The motoneurones controlling this behaviour are located in various nuclei in the pons (trigeminal motor nucleus), medulla (facial nucleus, nucl. ambiguus, hypoglossal nucleus) and ventral horn of the spinal cord (cervical, thoracic and lumbar region). Coordination of the different motoneurone pools is carried out by an extensive network comprising the ventrolateral parabrachial area, lateral pontine reticular formation, anterolateral and caudal medullary reticular formation, and the nucl. retroambiguus. This network has a direct access to the phonatory motoneurone pools and receives proprioceptive input from laryngeal, pulmonary and oral mechanoreceptors via the solitary tract nucleus and principal as well as spinal trigeminal nuclei. The motor-coordinating network needs a facilitatory input from the periaqueductal grey of the midbrain and laterally bordering tegmentum in order to be able to produce vocalizations. Voluntary control of vocalization, in contrast to completely innate vocal reactions, such as pain shrieking, needs the intactness of the forebrain. Voluntary control over the initiation and suppression of vocal utterances is carried out by the mediofrontal cortex (including anterior cingulate gyrus and supplementary as well as pre-supplementary motor area). Voluntary control over the acoustic structure of vocalizations is carried out by the motor cortex via pyramidal/corticobulbar as well as extrapyramidal pathways. The most important extrapyramidal pathway seems to be the connection motor cortex-putamen-substantia nigra-parvocellular reticular formation-phonatory motoneurones. The motor cortex depends upon a number of inputs for fulfilling its task. It needs a cerebellar input via the ventrolateral thalamus for allowing a smooth transition between consecutive vocal elements. It needs a proprioceptive input from the phonatory organs via nucl. ventralis posterior medialis thalami, somatosensory cortex and inferior parietal cortex. It needs an input from the ventral premotor and prefrontal cortex, including Broca's area, for motor planning of longer purposeful utterances. And it needs an input from the supplementary and pre-supplementary motor area which give rise to the motor commands executed by the motor cortex.
Collapse
Affiliation(s)
- Uwe Jürgens
- German Primate Centre, Kellnerweg 4, 37077 Göttingen, Germany
| |
Collapse
|
15
|
Salomé N, Viltart O, Leman S, Sequeira H. Activation of ventrolateral medullary neurons projecting to spinal autonomic areas after chemical stimulation of the central nucleus of amygdala: a neuroanatomical study in the rat. Brain Res 2001; 890:287-95. [PMID: 11164795 DOI: 10.1016/s0006-8993(00)03178-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Several studies have shown that the central nucleus of amygdala is involved in cardiovascular regulation. The control of this function may be mediated by activation of the ventrolateral medulla neurons that project to preganglionic neurons located in the intermediolateral nucleus of the spinal cord. The aim of the present study was to examine whether stimulation of the central nucleus of amygdala activated ventrolateral medulla neurons projecting to the intermediolateral nucleus. For this purpose, the injection of a retrograde tracer, the cholera toxin b subunit (CTb), into the intermediolateral nucleus of the T2 segment was combined with immunohistochemical detection of Fos protein following chemical stimulation of the central nucleus of amygdala. Results showed that retrogradely labeled neurons were found throughout the ventrolateral medulla. Moreover, chemical stimulation of the central nucleus of amygdala induced: (1) a decrease of arterial blood pressure; (2) an expression of Fos protein mainly in sub-populations of neurons located in the intermediate and caudal parts of the ventrolateral medulla; (3) a significantly higher number of double labeled neurons (CTb-immunoreactive/Fos-immunoreactive) in the rostral part of the ventrolateral medulla than in the other parts of this region. These results show that the central nucleus of amygdala influences the activity of brainstem neurons projecting to the intermediolateral nucleus. Data were discussed in terms of descending amygdalofugal pathways involved in the hypotension.
Collapse
Affiliation(s)
- N Salomé
- Laboratoire de Neurosciences du Comportement, SN4, Université de Lille 1, 59655 Villeneuve d'Ascq, France
| | | | | | | |
Collapse
|
16
|
Leman S, Viltart O, Sequeira H. Expression of Fos protein in adrenal preganglionic neurons following chemical stimulation of the rostral ventrolateral medulla of the rat. Brain Res 2000; 854:189-96. [PMID: 10784121 DOI: 10.1016/s0006-8993(99)02343-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The ventrolateral medulla is known to be involved in the regulation of arterial blood pressure, especially via its connections with sympathetic preganglionic neurons (SPNs) mainly located in the intermediolateral nucleus of the spinal cord. It has been shown that stimulation of the rostral part of the ventrolateral medulla (RVLM) elicits a release of catecholamines from the adrenal medulla. The aim of the present study was to demonstrate the existence of a functional pathway between the RVLM and adrenal SPNs using the combination of a retrograde tract tracing technique (cholera toxin B subunit) with the immunohistochemical detection of Fos protein following the chemical stimulation of RVLM. The data obtained showed that: (1) chemical stimulation of the RVLM induced Fos immunoreactivity in the intermediolateral nucleus and particularly in SPNs projecting to the adrenal medulla; (2) along the thoracic segments T2-T12, 26.1% of retrogradely identified adrenal SPNs were Fos-immunoreactive with the greatest percentage (30.9%) in the T8 segment. These results favored a functional control of the RVLM on adrenal SPNs which may contribute to a substantial activation of the cardiovascular system via the release of adrenal catecholamines.
Collapse
Affiliation(s)
- S Leman
- Laboratoire de Neurosciences du Comportement, Université de Lille I, Villeneuve d'Ascq, France
| | | | | |
Collapse
|
17
|
Yang KT, Su CK, Chai CY. Correlation of vasomotor- and respiratory-controlling mechanisms around the caudal ventrolateral medulla in cats. Neurosci Lett 1999; 269:79-82. [PMID: 10430509 DOI: 10.1016/s0304-3940(99)00428-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We examined the involvement of caudal ventrolateral medulla (CVLM) in respiratory control. Microinjection of glutamate (Glu) into CVLM decreased systemic arterial blood pressure (SAP) and altered phrenic nerve activities (PNA). Among 143 depressor sites, 55% (78/143) increased respiratory frequency (Rf), while 72% altered PNA amplitude (36% increased and 36% decreased). A small but significant positive correlation was observed between the magnitudes of depressor responses and inhibition of PNA amplitude (r = 0.1718, n = 143), indicating a substantial cross-talk between depressor and PNA inhibitory neurons. Furthermore, microinjections of acetylcholine (ACh) mimicked the Glu-induced depressor responses. However, ACh did not alter Rf, but still reduced PNA amplitude. Our findings suggest that Rf-regulating and depressor neurons are two separate neuronal populations, coexisting in CVLM. The PNA inhibitory and depressor neurons, in contrast, could have stronger correlation.
Collapse
Affiliation(s)
- K T Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC
| | | | | |
Collapse
|