1
|
Kwon JK, Choi DJ, Yang H, Ko DW, Jou I, Park SM, Joe EH. Kir4.1 is coexpressed with stemness markers in activated astrocytes in the injured brain and a Kir4.1 inhibitor BaCl 2 negatively regulates neurosphere formation in culture. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:565-574. [PMID: 34697267 PMCID: PMC8552822 DOI: 10.4196/kjpp.2021.25.6.565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/10/2021] [Accepted: 09/07/2021] [Indexed: 11/15/2022]
Abstract
Astrocytes are activated in response to brain damage. Here, we found that expression of Kir4.1, a major potassium channel in astrocytes, is increased in activated astrocytes in the injured brain together with upregulation of the neural stem cell markers, Sox2 and Nestin. Expression of Kir4.1 was also increased together with that of Nestin and Sox2 in neurospheres formed from dissociated P7 mouse brains. Using the Kir4.1 blocker BaCl2 to determine whether Kir4.1 is involved in acquisition of stemness, we found that inhibition of Kir4.1 activity caused a concentration-dependent increase in sphere size and Sox2 levels, but had little effect on Nestin levels. Moreover, induction of differentiation of cultured neural stem cells by withdrawing epidermal growth factor and fibroblast growth factor from the culture medium caused a sharp initial increase in Kir4.1 expression followed by a decrease, whereas Sox2 and Nestin levels continuously decreased. Inhibition of Kir4.1 had no effect on expression levels of Sox2 or Nestin, or the astrocyte and neuron markers glial fibrillary acidic protein and β-tubulin III, respectively. Taken together, these results indicate that Kir4.1 may control gain of stemness but not differentiation of stem cells.
Collapse
Affiliation(s)
- Jae-Kyung Kwon
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Korea
| | - Dong-Joo Choi
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 16499, Korea
| | - Haijie Yang
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea.,Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon 16499, Korea
| | - Dong Wan Ko
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Ilo Jou
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 16499, Korea
| | - Sang Myun Park
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 16499, Korea
| | - Eun-Hye Joe
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 16499, Korea.,Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Brain Science, Ajou University School of Medicine, Suwon 16499, Korea
| |
Collapse
|
2
|
Murakami S, Kurachi Y. Mechanisms of astrocytic K(+) clearance and swelling under high extracellular K(+) concentrations. J Physiol Sci 2016; 66:127-42. [PMID: 26507417 PMCID: PMC10717000 DOI: 10.1007/s12576-015-0404-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/16/2015] [Indexed: 12/24/2022]
Abstract
In response to the elevation of extracellular K(+) concentration ([K(+)]out), astrocytes clear excessive K(+) to maintain conditions necessary for neural activity. K(+) clearance in astrocytes occurs via two processes: K(+) uptake and K(+) spatial buffering. High [K(+)]out also induces swelling in astrocytes, leading to edema and cell death in the brain. Despite the importance of astrocytic K(+) clearance and swelling, the underlying mechanisms remain unclear. Here, we report results from a simulation analysis of astrocytic K(+) clearance and swelling. Astrocyte models were constructed by incorporating various mechanisms such as intra/extracellular ion concentrations of Na(+), K(+), and Cl(-), cell volume, and models of Na,K-ATPase, Na-K-Cl cotransporter (NKCC), K-Cl cotransporter, inwardly-rectifying K(+) (KIR) channel, passive Cl(-) current, and aquaporin channel. The simulated response of astrocyte models under the uniform distribution of high [K(+)]out revealed significant contributions of NKCC and Na,K-ATPase to increases of intracellular K(+) and Cl(-) concentrations, and swelling. Moreover, we found that, under the non-uniform distribution of high [K(+)]out, KIR channels localized at synaptic clefts absorbed excess K(+) by depolarizing the equivalent potential of K(+) (E K) above membrane potential, while K(+) released through perivascular KIR channels was enhanced by hyperpolarizing E K and depolarizing membrane potential. Further analysis of simulated drug effects revealed that astrocyte swelling was modulated by blocking each of the ion channels and transporters. Our simulation analysis revealed controversial mechanisms of astrocytic K(+) clearance and swelling resulting from complex interactions among ion channels and transporters.
Collapse
Affiliation(s)
- Shingo Murakami
- Division of Molecular and Cellular Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.
- The Global Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Yoshihisa Kurachi
- Division of Molecular and Cellular Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.
- The Global Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
3
|
Fujita A, Inanobe A, Hibino H, Nielsen S, Ottersen OP, Kurachi Y. Clustering of Kir4.1 at specialized compartments of the lateral membrane in ependymal cells of rat brain. Cell Tissue Res 2014; 359:627-634. [PMID: 25380566 DOI: 10.1007/s00441-014-2030-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/09/2014] [Indexed: 10/24/2022]
Abstract
Brain ependymal cells, which form an epithelial layer covering the cerebral ventricles, have been shown to play a role in the regulation of cerebrospinal and interstitial fluids. The machinery underlying this, however, remains largely unknown. Here, we report the specific localization of an inwardly rectifying K(+) channel, Kir4.1, on the ependymal cell membrane suggesting involvement of the channel in this function. Immunohistochemical study with confocal microscopy identified Kir4.1 labeling on the lateral but not apical membrane of ependymal cells. Ultrastructural analysis revealed that Kir4.1-immunogold particles were specifically localized and clustered on adjacent membranes at puncta adherens type junctions, whereas an aquaporin water channel, AQP4, that was also detected on the lateral membrane only occurred at components other than adherens junctions. Therefore, in ependymal cells, Kir4.1 and AQP4 are partitioned into distinct membrane compartments that might respectively transport either K(+) or water. Kir4.1 was also expressed in a specialized form of ependymal cell, namely the tanycyte, being abundant in tanycyte processes wrapping neuropils and blood vessels. These specific localizations suggest that Kir4.1 mediates intercellular K(+) exchange between ependymal cells and also K(+)-buffering transport via tanycytes that can interconnect neurons and vessels/ventricles. We propose that ependymal cells and tanycytes differentially operate Kir4.1 and AQP4 actively to control the property of fluids at local areas in the brain.
Collapse
Affiliation(s)
- Akikazu Fujita
- Division of Molecular and Cellular Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan. .,Field of Veterinary Pathobiology, Basic Veterinary Science, Department of Veterinary Medicine, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima, 890-0065, Japan.
| | - Atsushi Inanobe
- Division of Molecular and Cellular Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Hibino
- Division of Molecular and Cellular Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.,Department of Molecular Physiology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 951-8510, Japan
| | - Søren Nielsen
- Water and Salt Research Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ole Petter Ottersen
- Center for Molecular Biology and Neuroscience and Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Yoshihisa Kurachi
- Division of Molecular and Cellular Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
4
|
Hibino H, Kurachi Y. Distinct detergent-resistant membrane microdomains (lipid rafts) respectively harvest K(+) and water transport systems in brain astroglia. Eur J Neurosci 2007; 26:2539-55. [PMID: 17970725 DOI: 10.1111/j.1460-9568.2007.05876.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The detergent-resistant microdomains (DRM) of cell membranes scaffold different molecules and regulate cell functions by orchestrating various signaling pathways including G-proteins and tyrosine kinase. Here we report a novel role for DRM in astroglial cells. K(+)-buffering inwardly rectifying Kir4.1 channels and the water channel AQP4 are expressed in astrocytes and they may be functionally coupled to maintain ionic and osmotic homeostasis in the brain. Kir4.1 and AQP4 channel proteins were abundant in noncaveloar DRM in the brain and also in HEK293T cells when exogenously expressed. In HEK293T cells, depletion of membrane cholesterol by methyl-beta-cyclodextrin (MbetaCD) resulted in loss of Kir4.1 association with DRM and its channel activity but did not affect either the distribution or the function of AQP4. Immunolabeling showed that Kir4.1 and AQP4 were occasionally distributed in close proximity but in distinct compartments of the astroglial cell membrane. Astroglial noncaveolar DRM may therefore be made up of at least two distinct compartments, MbetaCD-sensitive and MbetaCD-resistant microdomains, which control localization and function of, respectively, Kir and AQP4 channels on the cell membrane.
Collapse
Affiliation(s)
- Hiroshi Hibino
- Division of Molecular and Cellular Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | |
Collapse
|
5
|
Badaut J, Lasbennes F, Magistretti PJ, Regli L. Aquaporins in brain: distribution, physiology, and pathophysiology. J Cereb Blood Flow Metab 2002; 22:367-78. [PMID: 11919508 DOI: 10.1097/00004647-200204000-00001] [Citation(s) in RCA: 396] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Water homeostasis in the brain is of central physiologic and clinical importance. Neuronal activity and ion water homeostasis are inextricably coupled. For example, the clearance of K+ from areas of high neuronal activity is associated with a concomitant water flux. Furthermore, cerebral edema, a final common pathway of numerous neurologic diseases, including stroke, may rapidly become life threatening because of the rigid encasement of the brain. A water channel family, the aquaporins, facilitates water flux through the plasma membrane of many cell types. In rodent brain, several recent studies have demonstrated the presence of different types of aquaporins. Aquaporin 1 (AQP1) was detected on epithelial cells in the choroid plexus whereas AQP4, AQP5 and AQP9 were localized on astrocytes and ependymal cells. In rodent brain, AQP4 is present on astrocytic end-feet in contact with brain vessels, and AQP9 is found on astrocytic processes and cell bodies. In basal physiologic conditions, AQP4 and AQP9 appear to be implicated in brain homeostasis and in central plasma osmolarity regulation. Aquaporin 4 may also play a role in pathophysiologic conditions, as shown by the reduced edema formation observed after water intoxication and focal cerebral ischemia in AQP4-knockout mice. Furthermore, pathophysiologic conditions may modulate AQP4 and AQP9 expression. For example, AQP4 and AQP9 were shown to be upregulated after ischemia or after traumatic injuries. Taken together, these recent reports suggest that water homeostasis in the brain is maintained by regulatory processes that, by control of aquaporin expression and distribution, induce and organize water movements. Facilitation of these movements may contribute to the development of edema formation after acute cerebral insults such as ischemia or traumatic injury.
Collapse
Affiliation(s)
- Jérôme Badaut
- Département de Neurochirurgie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| | | | | | | |
Collapse
|
6
|
Fujita A, Takeuchi T, Saitoh N, Hanai J, Hata F. Expression of Ca(2+)-activated K(+) channels, SK3, in the interstitial cells of Cajal in the gastrointestinal tract. Am J Physiol Cell Physiol 2001; 281:C1727-33. [PMID: 11600437 DOI: 10.1152/ajpcell.2001.281.5.c1727] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A role for small-conductance Ca(2+)-activated K(+) (SK) channels on spontaneous motility of the gastrointestinal tract has been suggested. Although four subtypes of SK channels were identified in mammalian tissues, the subtypes of SK channel expressed in the gastrointestinal tract are still unknown. In this study, we investigated the expression and localization of SK channels in the gastrointestinal tract. RT-PCR analysis shows expression of SK3 and SK4 mRNA, but not SK1 or SK2 mRNA, in the rat intestine. SK3 immunoreactivity was detected in the myenteric plexus and muscular layers of the stomach, ileum, and colon. SK3-immunoreactive cells were stained with antibody for c-kit, a marker for the interstitial cells of Cajal (ICC), but not with that for glial fibrillary acidic protein in the ileum and stomach. Immunoelectron microscopic analysis indicates that SK3 channels are localized on processes of ICC that are located close to the myenteric plexus between the longitudinal and circular muscle layers and within the muscular layers. Because ICC have been identified as pacemaker cells and are known to play a major role in generating the regular motility of the gastrointestinal tract, these results suggest that SK3 channels, which are expressed specifically in ICC, play an important role in generating a rhythmic pacemaker current in the gastrointestinal tract.
Collapse
Affiliation(s)
- A Fujita
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| | | | | | | | | |
Collapse
|
7
|
Badaut J, Verbavatz JM, Freund-Mercier MJ, Lasbennes F. Presence of aquaporin-4 and muscarinic receptors in astrocytes and ependymal cells in rat brain: a clue to a common function? Neurosci Lett 2000; 292:75-8. [PMID: 10998552 DOI: 10.1016/s0304-3940(00)01364-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Using combined double immunofluorescence and laser confocal microscopy, we studied the common cellular localization of cholinergic muscarinic receptors (mAChRs) and aquaporin-4 water channels (AQP4) in the cortex, the corpus callosum and in ependymal cells of the rat brain. In the cortex, AQP4 staining was restricted to the perivascular end-feet of astrocytes. It was more widely distributed on the astrocytes of the corpus callosum. On astrocytes, mAChRs were often present in regions immunoreactive to AQP4. Ependymal cells bordering the third ventricle were also stained by both antibodies. The double staining of mAChRs with AQP4 on two different cell-types might indicate that further interactions exist which may be important in the regulation of water and electrolyte movements in the brain.
Collapse
Affiliation(s)
- J Badaut
- Laboratoire de Neurophysiologie Cellulaire et Intégrée, UMR 7519, CNRS-ULP, 21 rue René Descartes, 67084 Strasbourg Cedex, France
| | | | | | | |
Collapse
|