1
|
Hand AR, Abramson CXG, Dressler KA. Tlx1 regulates acinar and duct development in mouse salivary glands. J Anat 2024; 244:343-357. [PMID: 37837237 PMCID: PMC10780161 DOI: 10.1111/joa.13964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Tlx1 encodes a transcription factor expressed in several craniofacial structures of developing mice. The role of Tlx1 in salivary gland development was examined using morphological and immunohistochemical analyses of Tlx1 null mice. Tlx1 is expressed in submandibular and sublingual glands but not parotid glands of neonatal and adult male and female C57Bl/6J (Tlx1+/+ ) mice. TLX1 protein was localized to the nuclei of terminal tubule cells, developing duct cells and mesenchymal cells in neonatal submandibular and sublingual glands, and to nuclei of duct cells and connective tissue cells in adult glands. Occasionally, TLX1 was observed in nuclei of epithelial cells in or adjacent to the acini. Submandibular glands were smaller and sublingual glands were larger in size in mutant mice (Tlx1-/- ) compared to wild-type mice. Differentiation of terminal tubule and proacinar cells of neonatal Tlx1-/- submandibular glands was abnormal; expression of their characteristic products, submandibular gland protein C and parotid secretory protein, respectively, was reduced. At 3 weeks postnatally, terminal tubule cells at the acinar-intercalated duct junction were poorly developed or absent in Tlx1-/- mice. Granular convoluted ducts in adult mutant mice were decreased, and epidermal growth factor and nerve growth factor expression were reduced. Along with normal acinar cell proteins, adult acinar cells of Tlx1-/- mice continued to express neonatal proteins and expressed parotid proteins not normally present in submandibular glands. Sublingual gland mucous acinar and serous demilune cell differentiation were altered. Tlx1 is necessary for proper differentiation of submandibular and sublingual gland acinar cells, and granular convoluted ducts. The mechanism(s) underlying Tlx1 regulation of salivary gland development and differentiation remains unknown.
Collapse
Affiliation(s)
- Arthur R Hand
- Department of Craniofacial Sciences, University of Connecticut School of Dental Medicine, Farmington, Connecticut, USA
| | - Cailyn X G Abramson
- Department of Craniofacial Sciences, University of Connecticut School of Dental Medicine, Farmington, Connecticut, USA
| | - Keith A Dressler
- Department of Craniofacial Sciences, University of Connecticut School of Dental Medicine, Farmington, Connecticut, USA
| |
Collapse
|
2
|
Yousuf M, Ali A, Khan P, Anjum F, Elasbali AM, Islam A, Yadav DK, Shafie A, Rizwanul Haque QM, Hassan MI. Insights into the Antibacterial Activity of Prolactin-Inducible Protein against the Standard and Environmental MDR Bacterial Strains. Microorganisms 2022; 10:microorganisms10030597. [PMID: 35336169 PMCID: PMC8950685 DOI: 10.3390/microorganisms10030597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Prolactin inducible protein (PIP) is a small secretary glycoprotein present in most biological fluids and contributes to various cellular functions, including cell growth, fertility, antitumor, and antifungal activities. Objectives: The present study evaluated the antibacterial activities of recombinant PIP against multiple broad-spectrum MDR bacterial strains. Methods: The PIP gene was cloned, expressed and purified using affinity chromatography. Disk diffusion, broth microdilution, and growth kinetic assays were used to determine the antibacterial activities of PIP. Results: Disk diffusion assay showed that PIP has a minimum and maximum zone of inhibition against E. coli and P. aeruginosa, respectively, compared to the reference drug ampicillin. Furthermore, growth kinetics studies also suggested that PIP significantly inhibited the growth of E. coli and P. aeruginosa. The minimum inhibitory concentration of PIP was 32 µg/mL for E. coli (443), a standard bacterial strain, and 64 µg/mL for Bacillus sp. (LG1), an environmental multidrug-resistant (MDR) strain. The synergistic studies of PIP with ampicillin showed better efficacies towards selected bacterial strains having MDR properties. Conclusion: Our findings suggest that PIP has a broad range of antibacterial activities with important implications in alleviating MDR problems.
Collapse
Affiliation(s)
- Mohd Yousuf
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.Y.); (A.A.); (Q.M.R.H.)
| | - Asghar Ali
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.Y.); (A.A.); (Q.M.R.H.)
| | - Parvez Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (P.K.); (A.I.)
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (F.A.); (A.S.)
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Medical Sciences-Qurayyat, Jouf University, Sakakah 42421, Saudi Arabia;
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (P.K.); (A.I.)
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro 191, Yeonsu-gu, Incheon City 21924, Korea
- Correspondence: (D.K.Y.); (M.I.H.)
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (F.A.); (A.S.)
| | - Qazi Mohd. Rizwanul Haque
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.Y.); (A.A.); (Q.M.R.H.)
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (P.K.); (A.I.)
- Correspondence: (D.K.Y.); (M.I.H.)
| |
Collapse
|
3
|
Hakami Z, Hand AR. Expression of aquaporin 5 during murine palatine glands development: a light and electron microscopic immunocytochemical study. Eur J Oral Sci 2020; 128:379-385. [PMID: 32812295 DOI: 10.1111/eos.12734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2020] [Indexed: 11/28/2022]
Abstract
Although aquaporin 5 (AQP5) seems to play a role in cytodifferentiation and cell proliferation during the development of salivary glands, its distribution during minor salivary glands development has been scarcely reported. This study examined the temporal-spatial distribution of AQP5 in the developing rat palatine glands using light and electron microscopy. At embryonic (E) age E18, AQP5 labeling was observed on the cell membranes of some terminal bulb cells. After lumenization at E20, AQP5 labeled the apical membrane in acini where a lumen existed, in addition to displaying positive diffuse cytoplasmic and cell membrane staining. At the electron microscopic level, AQP5 labeled the supranuclear cytoplasm and the luminal microvilli along the apical membrane. At birth, AQP5 was also localized to the lateral membranes associated ultrastructurally with the microvilli of intercellular canaliculi. After postnatal (PN) day PN7, mucous acini and serous demilunes showed reactivity. AQP5 reached peak reactivity around PN13 with a similar staining pattern in all acini, but had reduced dramatically by PN21. Thereafter, AQP5 reactivity was mainly associated with serous cells in adults. In conclusion, the transitory expression of AQP5 during palatine glands development may reflect changing physiological functions of the secretory cells and/or AQP5 throughout the maturation of the glands.
Collapse
Affiliation(s)
- Zaki Hakami
- Division of Orthodontics, Department of Preventive Dental Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Arthur R Hand
- Departments of Craniofacial Sciences and Cell Biology, School of Dental Medicine, UConn Health, Farmington, CT, USA
| |
Collapse
|
4
|
Hakami Z, Hand AR. Developmental Morphology of the Palatine Glands in Rats: An Electron Microscope Study. Anat Rec (Hoboken) 2018; 301:1820-1833. [DOI: 10.1002/ar.23927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/23/2018] [Accepted: 04/19/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Zaki Hakami
- Department of Preventive Dental Sciences, Division of Orthodontics; College of Dentistry, Jazan University; Jazan Saudi Arabia
| | - Arthur R. Hand
- Department of Craniofacial Sciences and Cell Biology; School of Dental Medicine, University of Connecticut; Farmington Connecticut
| |
Collapse
|
5
|
Ahmad M, Piludu M, Oppenheim FG, Helmerhorst EJ, Hand AR. Immunocytochemical Localization of Histatins in Human Salivary Glands. J Histochem Cytochem 2016; 52:361-70. [PMID: 14966203 DOI: 10.1177/002215540405200307] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Histatins are a family of salivary proteins with bactericidal and fungicidal activities that contribute to the innate defense of the oral cavity. Histatins are present in the serous granules of the parotid and submandibular glands. The important role of histatins in saliva, and the limited information on their cellular and subcellular distribution, prompted us to further define the localization of histatins in the major salivary glands. Immunogold-silver staining of 1-μm sections of plastic-embedded tissue with anti-histatin antibody revealed histatin immunoreactivity in the serous acinar cells of the parotid and submandibular glands, the serous demilune cells of the submandibular and sublingual glands, and in occasional intercalated duct cells. No reactivity was seen in mucous cells or in striated or excretory duct cells. Electron microscopic observations of thin sections labeled with anti-histatin and gold-labeled secondary antibodies revealed immunoreactivity associated with the rough endoplasmic reticulum and Golgi complex and in secretory granules of serous acinar and demilune cells. The granules of parotid acinar cells exhibited relatively uniform labeling of their content, whereas the granules of serous cells in the submandibular and sublingual glands showed variable labeling of the dense and light regions of their content. A few intercalated duct cells adjacent to the acinar cells also exhibited labeled granules. These results suggest that the serous cells of the major glands are the main source of histatins in human saliva. They are also consistent with several previous studies demonstrating the variable distribution of different proteins within the granule content.
Collapse
Affiliation(s)
- Mansur Ahmad
- Department of Diagnostic and Surgical Science, University of Minnesota, School of Dentistry, Minneapolis, Minnesota, USA
| | | | | | | | | |
Collapse
|
6
|
Metzler MA, Appana S, Brock GN, Darling DS. Use of multiple time points to model parotid differentiation. GENOMICS DATA 2015; 5:82-8. [PMID: 26484231 PMCID: PMC4583626 DOI: 10.1016/j.gdata.2015.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 05/04/2015] [Indexed: 11/30/2022]
Abstract
In order to understand the process of terminal differentiation in salivary acinar cells, mRNA and microRNA expression was measured across the month long process of differentiation in the parotid gland of the rat. Acinar cells were isolated at either nine time points (mRNA) or four time points (microRNA) in triplicate using laser capture microdissection (LCM). One of the values of this dataset comes from the high quality RNA (RIN > 7) that was used in this study, which can be prohibitively difficult to obtain from such an RNaseI-rich tissue. Global mRNA expression was measured by rat genome microarray hybridization (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65586), and expression of microRNAs by qPCR array (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65324). Comparing expression at different ages, 2656 mRNAs and 64 microRNAs were identified as differentially expressed. Because mRNA expression was sampled at many time points, clustering and regression analysis were able to identify dynamic expression patterns that had not been implicated in acinar differentiation before. Integration of the two datasets allowed the identification of microRNA target genes, and a gene regulatory network. Bioinformatics R code and additional details of experimental methods and data analysis are provided.
Collapse
Affiliation(s)
- Melissa A Metzler
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY 40202, United States ; Department of Biochemistry & Molecular Biology, University of Louisville, Louisville, KY 40202, United States
| | - Savitri Appana
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY 40202, United States
| | - Guy N Brock
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY 40202, United States
| | - Douglas S Darling
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY 40202, United States ; Department of Biochemistry & Molecular Biology, University of Louisville, Louisville, KY 40202, United States
| |
Collapse
|
7
|
Metzler MA, Venkatesh SG, Lakshmanan J, Carenbauer AL, Perez SM, Andres SA, Appana S, Brock GN, Wittliff JL, Darling DS. A systems biology approach identifies a regulatory network in parotid acinar cell terminal differentiation. PLoS One 2015; 10:e0125153. [PMID: 25928148 PMCID: PMC4416001 DOI: 10.1371/journal.pone.0125153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/16/2015] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE The transcription factor networks that drive parotid salivary gland progenitor cells to terminally differentiate, remain largely unknown and are vital to understanding the regeneration process. METHODOLOGY A systems biology approach was taken to measure mRNA and microRNA expression in vivo across acinar cell terminal differentiation in the rat parotid salivary gland. Laser capture microdissection (LCM) was used to specifically isolate acinar cell RNA at times spanning the month-long period of parotid differentiation. RESULTS Clustering of microarray measurements suggests that expression occurs in four stages. mRNA expression patterns suggest a novel role for Pparg which is transiently increased during mid postnatal differentiation in concert with several target gene mRNAs. 79 microRNAs are significantly differentially expressed across time. Profiles of statistically significant changes of mRNA expression, combined with reciprocal correlations of microRNAs and their target mRNAs, suggest a putative network involving Klf4, a differentiation inhibiting transcription factor, which decreases as several targeting microRNAs increase late in differentiation. The network suggests a molecular switch (involving Prdm1, Sox11, Pax5, miR-200a, and miR-30a) progressively decreases repression of Xbp1 gene transcription, in concert with decreased translational repression by miR-214. The transcription factor Xbp1 mRNA is initially low, increases progressively, and may be maintained by a positive feedback loop with Atf6. Transfection studies show that Xbp1 activates the Mist1 promoter [corrected]. In addition, Xbp1 and Mist1 each activate the parotid secretory protein (Psp) gene, which encodes an abundant salivary protein, and is a marker of terminal differentiation. CONCLUSION This study identifies novel expression patterns of Pparg, Klf4, and Sox11 during parotid acinar cell differentiation, as well as numerous differentially expressed microRNAs. Network analysis identifies a novel stemness arm, a genetic switch involving transcription factors and microRNAs, and transition to an Xbp1 driven differentiation network. This proposed network suggests key regulatory interactions in parotid gland terminal differentiation.
Collapse
Affiliation(s)
- Melissa A. Metzler
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, United States of America
- Department of Biochemistry & Molecular Biology, University of Louisville, Louisville, Kentucky, United States of America
- Institute for Molecular Diversity and Drug Design, University of Louisville, Louisville, Kentucky, United States of America and
- * E-mail:
| | - Srirangapatnam G. Venkatesh
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, United States of America
- Institute for Molecular Diversity and Drug Design, University of Louisville, Louisville, Kentucky, United States of America and
| | - Jaganathan Lakshmanan
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, United States of America
| | - Anne L. Carenbauer
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, United States of America
| | - Sara M. Perez
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, United States of America
| | - Sarah A. Andres
- Department of Biochemistry & Molecular Biology, University of Louisville, Louisville, Kentucky, United States of America
- Institute for Molecular Diversity and Drug Design, University of Louisville, Louisville, Kentucky, United States of America and
| | - Savitri Appana
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, Kentucky, United States of America
| | - Guy N. Brock
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, Kentucky, United States of America
| | - James L. Wittliff
- Department of Biochemistry & Molecular Biology, University of Louisville, Louisville, Kentucky, United States of America
- Institute for Molecular Diversity and Drug Design, University of Louisville, Louisville, Kentucky, United States of America and
| | - Douglas S. Darling
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, United States of America
- Department of Biochemistry & Molecular Biology, University of Louisville, Louisville, Kentucky, United States of America
- Institute for Molecular Diversity and Drug Design, University of Louisville, Louisville, Kentucky, United States of America and
| |
Collapse
|
8
|
Yamagishi R, Wakayama T, Nakata H, Adthapanyawanich K, Kumchantuek T, Yamamoto M, Iseki S. Expression and Localization of α-amylase in the Submandibular and Sublingual Glands of Mice. Acta Histochem Cytochem 2014; 47:95-102. [PMID: 25320406 PMCID: PMC4164700 DOI: 10.1267/ahc.14005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 04/07/2014] [Indexed: 12/13/2022] Open
Abstract
In the major salivary glands of mice, acinar cells in the parotid gland (PG) are known to be the main site for the production of the digestive enzyme α-amylase, whereas α-amylase production in the submandibular gland (SMG) and sublingual gland (SLG), as well as the cell types responsible for α-amylase production, has been less firmly established. To clarify this issue, we examined the expression and localization of both the mRNA and protein of α-amylase in the major salivary glands of male and female mice by quantitative and histochemical methods. α-amylase mRNA levels were higher in the order of PG, SMG, and SLG. No sexual difference was observed in α-amylase mRNA levels in the PG and SLG, whereas α-amylase mRNA levels in the female SMG were approximately 30% those in the male SMG. Using in situ hybridization and immunohistochemistry, signals for α-amylase mRNA and protein were found to be strongly positive in acinar cells of the PG, serous demilune cells of the SLG, and granular convoluted tubule (GCT) cells of the male SMG, weakly positive in seromucous acinar cells of the male and female SMG, and negative in mucous acinar cells of the SLG. These results clarified that α-amylase is produced mainly by GCT cells and partly by acinar cells in the SMG, whereas it is produced exclusively by serous demilune cells in the SLG of mice.
Collapse
Affiliation(s)
- Ryoko Yamagishi
- Department of Histology and Embryology, Graduate School of Medical Sciences, Kanazawa University
| | - Tomohiko Wakayama
- Department of Histology and Embryology, Graduate School of Medical Sciences, Kanazawa University
| | - Hiroki Nakata
- Department of Histology and Embryology, Graduate School of Medical Sciences, Kanazawa University
| | - Kannika Adthapanyawanich
- Department of Histology and Embryology, Graduate School of Medical Sciences, Kanazawa University
| | - Tewarat Kumchantuek
- Department of Histology and Embryology, Graduate School of Medical Sciences, Kanazawa University
| | - Miyuki Yamamoto
- Department of Histology and Embryology, Graduate School of Medical Sciences, Kanazawa University
| | - Shoichi Iseki
- Department of Histology and Embryology, Graduate School of Medical Sciences, Kanazawa University
| |
Collapse
|
9
|
Moriguchi K, Utsumi M, Ohno N. Confocal laser scanning microscopic analysis of ectopic sublingual gland-like tissue inside the hamster submandibular gland. Microsc Res Tech 2013; 76:1284-91. [PMID: 24123513 DOI: 10.1002/jemt.22298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 09/17/2013] [Accepted: 09/17/2013] [Indexed: 11/07/2022]
Abstract
Based on its histochemical properties, the secretory portion of the hamster submandibular gland has been classified as seromucous cells. The presence of endogenous peroxidase (PO) reaction was shown in the nuclear envelope, cisternae of endoplasmic reticulum and Golgi apparatus. The 3,3'-diaminobenzidene, tetrahydrochloride (DAB) method revealed bipartite secretory granules containing a PO-positive dense core surrounded by a less dense halo in these cells. In the present investigation, serous and mucous-like cells were found in resin-embedded semi-thin sections of the DAB-reacted hamster submandibular gland. These sections were already on glass slides for routine light microscopic observations, therefore electron microscopic analysis could be unrealizable. We then used reflectance-mode confocal laser scanning microscopy to visualize additional sites of PO activity as detected in these sections. Using this approach, we found mucous cells with PO activity-negative secretory granules and seromucous cells with PO activity-positive spot-like secretory granules of the regular sublingual gland most frequently adjacent to the serous cells with typical electron-dense secretory granules. These cells clearly differ from the seromucous cells with bipartite secretory granules and the granular duct cells with typical electron-dense secretory granules of the hamster submandibular gland. Additionally, secretory endpieces of the ectopic sublingual gland-like tissue empty into the duct of the hamster submandibular gland lobule. Thus, our findings suggest that a mass of sublingual gland tissue extends into the hamster submandibular gland during its development, and PO may be synthesized and secreted into the same duct.
Collapse
Affiliation(s)
- Keiichi Moriguchi
- Department of Oral Anatomy, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi, 464-8650, Japan
| | | | | |
Collapse
|
10
|
McCall AD, Nelson JW, Leigh NJ, Duffey ME, Lei P, Andreadis ST, Baker OJ. Growth factors polymerized within fibrin hydrogel promote amylase production in parotid cells. Tissue Eng Part A 2013; 19:2215-25. [PMID: 23594102 DOI: 10.1089/ten.tea.2012.0674] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Salivary gland cell differentiation has been a recurring challenge for researchers as primary salivary cells show a loss of phenotype in culture. Particularly, parotid cells show a marked decrease in amylase expression, the loss of tight junction organization and proper cell function. Previously, Matrigel has been used successfully as an extracellular matrix; however, it is not practical for in vivo applications as it is tumorigenic. An alternative method could rely on the use of fibrin hydrogel (FH), which has been used extensively in biomedical engineering applications ranging from cardiovascular tissue engineering to wound-healing experiments. Although several groups have examined the effects of a three-dimensional (3D) environment on salivary cell cultures, little is known about the effects of FH on salivary cell cultures. The current study developed a 3D cell culture model to support parotid gland cell differentiation using a combination of FH and growth factor-reduced Matrigel (GFR-MG). Furthermore, FH polymerized with a combination of EGF and IGF-1 induced formation of 3D spheroids capable of amylase expression and an agonist-induced increase in the intracellular Ca(2+) concentration ([Ca(2+)]i) in salivary cells. These studies represent an initial step toward the construction of an artificial salivary gland to restore salivary gland dysfunction. This is necessary to reduce xerostomia in patients with compromised salivary function.
Collapse
Affiliation(s)
- Andrew D McCall
- Department of Oral Biology, School of Dental Medicine, University at Buffalo-The State University of New York, Buffalo, NY 14214, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Fedrowitz M, Löscher W. Gene expression in the mammary gland tissue of female Fischer 344 and Lewis rats after magnetic field exposure (50 Hz, 100 μT) for 2 weeks. Int J Radiat Biol 2012; 88:425-9. [PMID: 22280403 DOI: 10.3109/09553002.2012.660555] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE The issue of whether exposure to environmental power-frequency magnetic fields (MF) has impact on breast cancer development still remains equivocal. Previously, we observed rat strain differences in the MF response of breast tissue, so that the genetic background plays a role in MF effects. The present experiment aimed to elucidate candidate genes involved in MF effects by comparison of MF-susceptible Fischer 344 (F344) rats and MF-insensitive Lewis rats. MATERIALS AND METHODS Female F344 and Lewis rats were exposed to MF (50 Hz, 100 μT) for two weeks, and a whole genome microarray analysis in the mammary gland tissue was performed. RESULTS A remarkably decreased α-amylase gene expression, decreases in carbonic anhydrase 6 and lactoperoxidase, both relevant for pH regulation, and an increased gene expression of cystatin E/M, a tumor suppressor, were observed in MF-exposed F344, but not in Lewis rats. CONCLUSION The MF-exposed F344 breast tissue showed alterations in gene expression, which were absent in Lewis and may therefore be involved in the MF-susceptibility of F344. Notably α-amylase might serve as a promising target to study MF effects, because first experiments indicate that MF exposure alters the functionality of this enzyme in breast tissue.
Collapse
Affiliation(s)
- Maren Fedrowitz
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.
| | | |
Collapse
|
12
|
Yahiro J, Inai T, Tsutsui A, Sato A, Nagato T, Taniguchi K, Tsuruga E, Sawa Y. Immunohistochemical and Immunocytochemical Localization of Amylase in Rat Parotid Glands and von Ebner's Glands by Ion Etching-Immunoscanning Electron Microscopy. Acta Histochem Cytochem 2011; 44:201-12. [PMID: 22096260 PMCID: PMC3210425 DOI: 10.1267/ahc.10039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 06/23/2011] [Indexed: 11/26/2022] Open
Abstract
The distribution of amylase in rat parotid glands and von Ebner’s glands was examined using ion etching-immunoscanning electron microscopy, which enables both light and electron microscopic observations of identical semi-thin resin sections immunolabeled with anti-α-amylase and immunogold in association with silver enhancement. At the light microscopic level, most acinar secretory granules (SG) and striated duct secretions of parotid glands were strongly stained dark brown. In von Ebner’s glands, acinar SG and duct secretions were weakly to strongly stained light to dark brown. At the electron microscopic level, labeling was observed as bright gold-silver particles. The labeling intensity of acinar SG of parotid glands was higher than that of von Ebner’s glands. In parotid glands, weak labeling of SG in transitional cells between acini and intercalated ducts, very weak labeling of SG in intercalated ducts, and strong labeling of striated duct secretions were observed. In von Ebner’s glands, the secretions and some SG of interlobular ducts were strongly labeled compared to those of intralobular ducts and SG of acini. Less amylase was synthesized in von Ebner’s acini compared to parotid acini, whereas von Ebner’s ducts may secrete significantly more amylase to modify saliva than parotid ducts.
Collapse
Affiliation(s)
- Junko Yahiro
- Department of Morphological Biology, Fukuoka Dental College
| | | | - Akihito Tsutsui
- Department of Preventive and Public Health Dentistry, Fukuoka Dental College
| | - Atsuko Sato
- Department of Morphological Biology, Fukuoka Dental College
| | | | | | - Eichi Tsuruga
- Department of Morphological Biology, Fukuoka Dental College
| | - Yoshihiko Sawa
- Department of Morphological Biology, Fukuoka Dental College
| |
Collapse
|
13
|
Ikeda R. Morphological and Histochemical Changes in the Parenchyma of the Rat Parotid and Sublingual Glands with Growth and Aging. J Oral Biosci 2011. [DOI: 10.1016/s1349-0079(11)80021-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Redman RS. On approaches to the functional restoration of salivary glands damaged by radiation therapy for head and neck cancer, with a review of related aspects of salivary gland morphology and development. Biotech Histochem 2009; 83:103-30. [PMID: 18828044 DOI: 10.1080/10520290802374683] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Radiation therapy for cancer of the head and neck can devastate the salivary glands and partially devitalize the mandible and maxilla. As a result, saliva production is drastically reduced and its quality adversely altered. Without diligent home and professional care, the teeth are subject to rapid destruction by caries, necessitating extractions with attendant high risk of necrosis of the supporting bone. Innovative techniques in delivery of radiation therapy and administration of drugs that selectively protect normal tissues can reduce significantly the radiation effects on salivary glands. Nonetheless, many patients still suffer severe oral dryness. I review here the functional morphology and development of salivary glands as these relate to approaches to preventing and restoring radiation-induced loss of salivary function. The acinar cells are responsible for most of the fluid and organic material in saliva, while the larger ducts influence the inorganic content. A central theme of this review is the extent to which the several types of epithelial cells in salivary glands may be pluripotential and the circumstances that may influence their ability to replace cells that have been lost or functionally inactivated due to the effects of radiation. The evidence suggests that the highly differentiated cells of the acini and large ducts of mature glands can replace themselves except when the respective pools of available cells are greatly diminished via apoptosis or necrosis owing to severely stressful events. Under the latter circumstances, relatively undifferentiated cells in the intercalated ducts proliferate and redifferentiate as may be required to replenish the depleted pools. It is likely that some, if not many, acinar cells may de-differentiate into intercalated duct-like cells and thus add to the pool of progenitor cells in such situations. If the stress is heavy doses of radiation, however, the result is not only the death of acinar cells, but also a marked decline in functional differentiation and proliferative capacity of all of the surviving cells, including those with progenitor capability. Restoration of gland function, therefore, seems to require increasing the secretory capacity of the surviving cells, or replacing the acinar cells and their progenitors either in the existing gland remnants or with artificial glands.
Collapse
Affiliation(s)
- R S Redman
- Oral Pathology Research Laboratory, Department of Veterans Affairs Medical Center, Washington, DC, USA.
| |
Collapse
|
15
|
Ikeda R, Aiyama S, Redman RS. Effects of exogenous thyroid hormone on the postnatal morphogenesis of the rat parotid gland. Anat Rec (Hoboken) 2008; 291:94-104. [PMID: 18085625 DOI: 10.1002/ar.20620] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Administration of thyroid hormone has been shown to accelerate the early postnatal development of the rat parotid gland, but these studies have dwelt almost entirely on biochemical changes. The objective of this study was to describe the effects of exogenous thyroid hormone on morphologic aspects of the developing parotid gland, in particular the transient appearance of scattered mucous cells in this otherwise serous gland. Pups were given a daily subcutaneous injection of thyroxine (T(4)) of 0.1, 0.5, or 5.0 microg/g body weight, vehicle only (injection control), or no injection (normal control) beginning at 4 days, and killed for the collection of blood and parotid glands at intervals through 15 days. The serum was analyzed for T(4) and the glands were examined by light and electron microscopy. The results indicated that both serum T(4) and the pace of gland development were proportional to the dose of T(4). In particular, T(4) accelerated decreases in acinar size and gland area occupied by stroma and translocation of a subset of cells with small secretory granules, deeply stained with periodic acid-Schiff, from acini to intercalated ducts. However, the chronology of mucous cell disappearance was indifferent to treatment. In addition, signs of toxicity, including slower gain in body weight and greatly increased apoptosis and vacuoles in the glands, occurred with the higher doses of T(4).
Collapse
Affiliation(s)
- Rie Ikeda
- The Nippon Dental University, Tokyo, Japan.
| | | | | |
Collapse
|
16
|
Immunocytochemical analysis of cyclic AMP receptor proteins in the developing rat parotid gland. Arch Oral Biol 2008; 53:429-36. [PMID: 18187105 DOI: 10.1016/j.archoralbio.2007.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 10/23/2007] [Accepted: 11/26/2007] [Indexed: 11/20/2022]
Abstract
UNLABELLED Previous studies showed that regulatory subunits of type II cyclic AMP-dependent protein kinase (RII) are present in adult rat parotid acinar cells, and are secreted into saliva. If the synthesis and intracellular distribution of RII exhibit developmental specificity, then RII can be an indicator of secretory and regulatory activity of salivary glands. OBJECTIVE To determine the expression and distribution of RII in the rat parotid at specific ages representing defined developmental stages. METHODS Parotid glands of fetal, neonatal and adult rats were prepared for morphologic and immunocytochemical study. The cellular distribution of RII was studied using light microscopic immunogold silver staining with anti-RII, and its intracellular distribution using electron microscopic immunogold labeling. RESULTS In utero, parotid RII levels were low; 5-18 days after birth, labeling of secretory granules and cytoplasm rose to a peak, followed by a rapid decrease in both compartments at 25 days. At 60 days, granule labeling increased to levels near those at 18 days, whereas cytoplasmic labeling remained low. Nuclear labeling was highest during the first 3 weeks after birth, and then declined. CONCLUSIONS The higher nuclear and cytoplasmic labeling during the neonatal period may reflect RII involvement in acinar cell differentiation. The accumulation of RII in secretory granules is similar to the pattern of the major salivary proteins, amylase and PSP. The redistribution of RII in these compartments during development may reflect changing gene expression patterns, and may be useful for identification of genetic or metabolic abnormalities.
Collapse
|
17
|
Ikematsu K, Tsuda R, Nakasono I. Gene response of mouse skin to pressure injury in the neck region. Leg Med (Tokyo) 2006; 8:128-31. [PMID: 16338156 DOI: 10.1016/j.legalmed.2005.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 03/31/2005] [Accepted: 08/18/2005] [Indexed: 12/25/2022]
Abstract
We analyzed the gene expression pattern in mouse skin following compression of the neck by fluorescent mRNA differential display (FDD-PCR). RNA was isolated from the skin tissue immediately or 30 min after ligation at the neck for 25 min resulting in death (Group A-0, Group A-30). Control mice underwent no compression of the neck and were killed by decapitation (Group C-0, Group C-30). FDD-PCR and sequence analysis revealed that the faciogenital dysplasia gene (Rho member families) and secreted frizzled related protein 1 (modulator of Wnt networks) were enhanced only in the Group A-30. In addition, common salivary protein 1 and mouse 0 day neonate skin cDNA clone z4631433E12 from the RIKEN full-length enriched library were also induced in Groups A-0 and A-30. These findings were consistent with the results of statistical analysis by ANOVA following quantitative real-time PCR. No differences in band pattern were observed between Group C-0 and Group C-30. Therefore, our findings suggested that the altered expression of genes was associated with signal transduction. The results may contribute to clarifying the pathophysiology of compression of the skin and may be useful in the diagnosis of suffocation.
Collapse
Affiliation(s)
- Kazuya Ikematsu
- Division of Forensic Pathology and Science, Department of Translational Medical Sciences, Course of Medical and Dental Sciences, Graduate School of Biochemical Sciences, Nagasaki University, Nagasaki City, Nagasaki 852-8523, Japan.
| | | | | |
Collapse
|
18
|
Li ZB, Lehar M, Samlan R, Flint PW. Proteomic analysis of rat laryngeal muscle following denervation. Proteomics 2005; 5:4764-76. [PMID: 16281258 DOI: 10.1002/pmic.200401329] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Laryngeal muscle atrophy induced by nerve injury is a major factor contributing to the disabling symptoms associated with laryngeal paralysis. Alterations of global proteins in rat laryngeal muscle following denervation were, therefore, studied using proteomic techniques. Twenty-eight adult Sprague-Dawley rats were divided into normal control and denervated groups. The thyroarytenoid (TA) muscle was excised 60 days after right recurrent laryngeal nerve was resected. Protein separation and identification were preformed using 2-DE and MALDI-MS with database search. Forty-four proteins were found to have significant alteration in expression level after denervation. The majority of these proteins (57%), most of them associated with energy metabolism, cellular proliferation and differentiation, signal transduction and stress reaction, were decreased levels of expression in denervated TA muscle. The remaining 43% of the proteins, most of them involved with protein degradation, immunoreactivity, injury repair, contraction, and microtubular formation, were found to have increased levels of expression. The protein modification sites by phosphorylation were detected in 22% of the identified proteins that presented multiple-spot patterns on 2-D gel. Significant changes in protein expression in denervated laryngeal muscle may provide potential therapeutic strategies for the treatment of laryngeal paralysis.
Collapse
Affiliation(s)
- Zhao-Bo Li
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Johns Hopkins University, 601 N. Caroline Street, Baltimore, MD 21287, USA
| | | | | | | |
Collapse
|
19
|
Nguyen DH, Toshida H, Schurr J, Beuerman RW. Microarray analysis of the rat lacrimal gland following the loss of parasympathetic control of secretion. Physiol Genomics 2004; 18:108-18. [PMID: 15084711 PMCID: PMC2835548 DOI: 10.1152/physiolgenomics.00011.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Previous studies showed that loss of muscarinic parasympathetic input to the lacrimal gland (LG) leads to a dramatic reduction in tear secretion and profound changes to LG structure. In this study, we used DNA microarrays to examine the regulation of the gene expression of the genes for secretory function and organization of the LG. Long-Evans rats anesthetized with a mixture of ketamine/xylazine (80:10 mg/kg) underwent unilateral sectioning of the greater superficial petrosal nerve, the input to the pterygopalatine ganglion. After 7 days, tear secretion was measured, the animals were killed, and structural changes in the LG were examined by light microscopy. Total RNA from control and experimental LGs (n = 5) was used for DNA microarray analysis employing the U34A GeneChip. Three statistical algorithms (detection, change call, and signal log ratio) were used to determine differential gene expression using the Microarray Suite (5.0) and Data Mining Tools (3.0). Tear secretion was significantly reduced and corneal ulcers developed in all experimental eyes. Light microscopy showed breakdown of the acinar structure of the LG. DNA microarray analysis showed downregulation of genes associated with the endoplasmic reticulum and Golgi, including genes involved in protein folding and processing. Conversely, transcripts for cytoskeleton and extracellular matrix components, inflammation, and apoptosis were upregulated. The number of significantly upregulated genes (116) was substantially greater than the number of downregulated genes (49). Removal of the main secretory input to the rat LG resulted in clinical symptoms associated with severe dry eye. Components of the secretory pathway were negatively affected, and the increase in cell proliferation and inflammation may lead to loss of organization in the parasympathectomized lacrimal gland.
Collapse
Affiliation(s)
- Doan H Nguyen
- LSU Eye Center, Lions Eye Research Laboratories, Laboratory for the Molecular Biology of the Ocular Surface, New Orleans, Louisiana 70112, USA
| | | | | | | |
Collapse
|
20
|
Nicolau J, Ganzerla E, de Souza DN. Glycogen content and activities of enzymes involved in the carbohydrate metabolism of the salivary glands of rats during postnatal development. Arch Oral Biol 2003; 48:101-9. [PMID: 12642228 DOI: 10.1016/s0003-9969(02)00165-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Carbohydrate metabolism was examined in the developing rat salivary glands by analysing enzymatic activity and glycogen content in the postnatal parotid and submandibular glands. The following enzymes of the carbohydrate metabolism, hexokinase (HK), phosphofructokinase-1 (PFK-1), pyruvate kinase (PK), glucose-6-phosphate dehydrogenase (G6PD), and lactate dehydrogenase (LDH) as well as the content of glycogen were determined in the salivary glands of rats aged 2, 7, 14, 21, 30 and 60 days. The specific activity of HK increased from days 2 to 21 and then it decreased up to 60 days old. The values found for the submandibular glands were from 2.5 to 4.9 times higher than those found for the parotid gland, except for rats aged 60 days. PFK-1 showed a different pattern of variation between the glands. In the submandibular gland there was a statistically significant increase in PFK-1 specific activity from 2 to 30 days of age and then, in the 60 days old group a return to level of the rats aged 2 days. In parotid gland, the specific activity of PFK-1 decreased between 2 and 7 days of age, from 7 to 14 days the specific activity increased markedly and from 14 to 60 days old it gradually decreased. The specific activity of PK followed the same pattern of variation in the submandibular and parotid glands, showing no great variation. The specific activity of LDH decreased from 2 to 60 days old in the submandibular glands. In the parotid glands the mean values for this enzyme were higher for the 2 days old group, and then decreased to remained more or less constant. The potential capacity of the pentose phosphate pathway was greater than that of glycolysis at early ages. The glycogen content showed similar variation in both glands. It was initially high and then decreased. In conclusion, our results on the activities of enzymes involved in carbohydrate metabolism in submandibular and parotid glands may be relevant to the initiation of saliva secretion in these animals.
Collapse
Affiliation(s)
- José Nicolau
- Oral Biology Research Center, Faculty of Dentistry, University of São Paulo, Av. Prof. Lineu Prestes, 2227, Brazil.
| | | | | |
Collapse
|
21
|
Abstract
MECs are distributed on the basal aspect of the intercalated duct and acinus of human and rat salivary glands. However, they do not occur in the acinus of rat parotid glands, and sometimes occur in the striated duct of human salivary glands. MECs, as the name implies, have structural features of both epithelial and smooth muscle cells. They contract by autonomic nervous stimulation, and are thought to assist the secretion by compressing and/or reinforcing the underlying parenchyma. MECs can be best observed by immunocytochemistry. There are three types of immunocytochemical markers of MECs in salivary glands. The first type includes smooth muscle protein markers such as alpha-SMA, SMMHC, h-caldesmon and basic calponin, and these are expressed by MECs and the mesenchymal vasculature. The second type is expressed by MECs and the duct cells and includes keratins 14, 5 and 17, alpha 1 beta 1 integrin, and metallothionein. Vimentin is the third type and, in addition to MECs, is expressed by the mesenchymal cells and some duct cells. The same three types of markers are used for studying the developing gland. Development of MECs starts after the establishment of an extensively branched system of cellular cords each of which terminates as a spherical cell mass, a terminal bud. The pluripotent stem cell generates the acinar progenitor in the terminal bud and the ductal progenitor in the cellular cord. The acinar progenitor differentiates into MECs, acinar cells and intercalated duct cells, whereas the ductal progenitor differentiates into the striated and excretory duct cells. Both in the terminal bud and in the cellular cord, the immediate precursors of all types of the epithelial cells appear to express vimentin. The first identifiable MECs are seen at the periphery of the terminal bud or the immature acinus (the direct progeny of the terminal bud) as somewhat flattened cells with a single cilium projecting toward them. They express vimentin and later alpha-SMA and basic calponin. At the next developmental stage, MECs acquire cytoplasmic microfilaments and plasmalemmal caveolae but not as much as in the mature cell. They express SMMHC and, inconsistently, K14. This protein is consistently expressed in the mature cell. K14 is expressed by duct cells, and vimentin is expressed by both mesenchymal and epithelial cells. After development, the acinar progenitor and the ductal progenitor appear to reside in the acinus/intercalated duct and the larger ducts, respectively, and to contribute to the tissue homeostasis. Under unusual conditions such as massive parenchymal destruction, the acinar progenitor contributes to the maintenance of the larger ducts that result in the occurrence of striated ducts with MECs. The acinar progenitor is the origin of salivary gland tumors containing MECs. MECs in salivary gland tumors are best identified by immunocytochemistry for alpha-SMA. There are significant numbers of cells related to luminal tumor cells in the non-luminal tumor cells that have been believed to be neoplastic MECs.
Collapse
Affiliation(s)
- Yuzo Ogawa
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
22
|
Wolff MS, Mirels L, Lagner J, Hand AR. Development of the rat sublingual gland: a light and electron microscopic immunocytochemical study. THE ANATOMICAL RECORD 2002; 266:30-42. [PMID: 11748569 DOI: 10.1002/ar.10027] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cell differentiation in the rat sublingual gland occurs rapidly and is largely complete by birth. To study differentiation of the serous and mucous cells of the sublingual gland, we used antibodies to the secretory proteins CSP-1, SMGB, PSP, and SMGD, and sublingual mucin as specific cell markers. Glands from rats at ages 18, 19, and 20 days in utero, and postnatal days 0, 1, 5, 9, 14, 18, 25, 40, and 60 were fixed and prepared for morphological analysis and immunocytochemical labeling. At age 18 days in utero, a few cells in the developing terminal bulbs contained mucous-like apical granules that labeled with anti-mucin. Other cells had mixed granules with a peripheral lucent region and a dense core of variable size that occasionally labeled with anti-SMGD. Additionally, presumptive serous cells with small dense granules that contained CSP-1 and SMGB were present. At age 19 days in utero, the dense granules of these cells also labeled with anti-SMGD. By age 20 days in utero, mucous cells were filled with large, pale granules that labeled with anti-mucin, and serous cells had numerous dense granules containing CSP-1, SMGB, PSP, and SMGD. Fewer cells with mixed granules were seen, but dense regions present in some mucous granules (MGs) labeled with anti-SMGD. After birth, fewer MGs had dense regions, and serous cells were organized into well-formed demilunes. Except for PSP, which was undetectable after the fifth postnatal day, the pattern of immunoreactivity observed in glands of neonatal and adult animals was similar to that seen by age 20 days in utero. These results suggest that mucous and serous cells have separate developmental origins, mucous cells differentiate earlier than serous cells, and cells with mixed granules may become mucous cells.
Collapse
Affiliation(s)
- M S Wolff
- Department of Pediatric Dentistry, School of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | |
Collapse
|
23
|
Ikeda R, Aiyama S, Tsujimura T, Okamoto K. Developmental changes in the fine structure and histochemical properties of mucous cells in the parotid gland of the infant Japanese macaque. ARCHIVES OF HISTOLOGY AND CYTOLOGY 2001; 64:545-53. [PMID: 11838714 DOI: 10.1679/aohc.64.545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mucous cells have been known to occur in the terminal portions of the parotid gland in a few species of mammals during a limited period of their development. The aim of this study was to examine the occurrence and features of mucous cells in the parotid gland of the infant Japanese macaque. Light microscopy revealed that mucous cells in the macaque parotid gland were present in the terminal clusters and acini at postnatal day 15, were less prevalent at day 30, and continued to decrease in number over 3 months. Mucous cells were no longer recognized in the parotid gland in 6-month-old macaques. Electron microscopy showed that the mucous cells contained electron-lucent secretory granules and bipartite or tripartite secretory granules. By 3 months of age, there was a scarcity of mucous cells and a concomitant increase in transitional cells. These transitional cells were intermediate in structure between mucous and serous cells, and contained three types of granules: electron-lucent, bipartite or tripartite, and electron-dense. None of the cells showed apoptotic figures. Lectin histochemistry indicated that the mucous cells in the early postnatal period had sugar residues identical in nature to those seen in the granules from mature serous cells in the glands of 3-month-old macaques. Immunohistochemistry using an antibody against human alpha-amylase showed a weakly positive reactivity in the secretory granules of the mucous cells, starting from day 15. In the transitional cells, the electron-dense granules showed a stronger immunoreactivity than either the electron-lucent granules or the heterogeneously structured granules. These results suggest that the secretory granules of mucous cells have characteristics in common with those of serous cells, and that during the transitional period the mucous granules change from the initial electron-lucent to hetorogenous forms, finally becoming the electron-dense granules. The mucous cells in the parotid gland of the juvenile Japanese macaque are therefore suggested to be converted into serous cells.
Collapse
Affiliation(s)
- R Ikeda
- Department of Histology, The Nippon Dental University School of Dentistry at Tokyo, Japan.
| | | | | | | |
Collapse
|
24
|
Aiyama S, Ikeda R, Matsuoka T, Kikuchi KI, Koike K. Fine structure of transforming-type granules in mucous cells in the early postnatal rat parotid gland when processed by rapid freezing followed by freeze-substitution fixation. THE ANATOMICAL RECORD 2000; 260:387-91. [PMID: 11074404 DOI: 10.1002/1097-0185(20001201)260:4<387::aid-ar80>3.0.co;2-b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The present study was designed to clarify the more precise ultrastructural feature of granules, especially mucous granules in the early postnatal rat parotid gland by using rapid freezing followed by freeze-substitution fixation. The parotid gland of Wistar rats (aged 0-10 days) was removed under anesthesia and immediately underwent cryofixation followed by substitution with osmium tetroxide. After fixation, the samples were embedded in Epon-Araldite, cut into ultrathin section, and then examined by transmission electron microscopy. Electron microscopy showed that the mucous granules of samples treated by freeze-substitution fixation had low electron density and were almost spherical in shape with a clear limiting membrane. By Day 5, granules that were a little more electron dense than mucous granules, granules with a more electron dense portion at their periphery, and heterogeneous granules with an internal highly electron dense portion were found. Moreover, cells containing both homogeneous granules with a high electron density similar to that of mature serous granules and heterogeneous granules were observed. These findings demonstrated that the morphology of the transforming-type mucous granules by chemical fixation in the previous study was an artifact and, as a result, strongly suggested that on the sequential morphological changes of transitional mucous/serous granules by rapid freezing method in the present study, the mucous cells in the early postnatal rat parotid gland undergo transformation to serous cells.
Collapse
Affiliation(s)
- S Aiyama
- Department of Histology, School of Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
25
|
Abstract
SMGB and PSP are among the most abundant products of the immature acinar cells in developing rat parotid and submandibular glands and are also products of the sublingual gland serous demilunes. Previous analysis of Smgb and Psp cDNA clones demonstrated a high degree of sequence similarity between the signal peptide-encoding and 3' untranslated regions of these transcripts, although the secreted proteins themselves are more divergent. The current study reports the upstream sequences, genomic organization and localization of the Psp and Smgb genes. Both structural genes contain nine exons and are present at 3q41-3q42, where they are arranged in tandem and separated by 21kb. In addition to the previously observed sequence similarity, Psp and Smgb are highly homologous throughout exon 1 and at 365 of 600bp immediately upstream of the transcription start site. These findings indicate that the Psp and Smgb genes arose by tandem duplication and divergence. The similar neonatal submandibular and parotid gland expression patterns observed for these genes are likely to be due to closely conserved or shared enhancer(s).
Collapse
Affiliation(s)
- N Gupta
- Department of Molecular Biology, University of California, Berkeley, CA, USA
| | | | | | | |
Collapse
|
26
|
Ikeda R, Aiyama S. Developmental changes of sugar residues and secretory protein in mucous cells of the early postnatal rat parotid gland. Anat Rec (Hoboken) 1999; 255:155-61. [PMID: 10359516 DOI: 10.1002/(sici)1097-0185(19990601)255:2<155::aid-ar5>3.0.co;2-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mucous cells have been identified in the terminal portions of the early postnatal parotid gland in human and rat, although mature parotid gland acini are composed of serous cells or seromucous cells. Previously, Ikeda et al. demonstrated that mucous cells are present in the rat parotid gland on days 1 to 8 after birth and that the secretory granules within these mucous cells share some histochemical characteristics with mature serous cells. However, it is still not clear whether the mucous cells change into serous cells as the gland develops. The purpose of this study was to determine whether the mucous cells that appear in the early postnatal rat parotid gland change into serous cells. Parotid glands were obtained from male or female Wistar rats (aged 0-14 days and adults). Fixed tissue sections were reacted with soybean agglutinin (SBA) and wheat germ agglutinin (WGA) to detect glycoconjugates, or were stained using an anti-neonatal submandibular gland protein B1 (SMG-B1) antibody to identify serous acinar cells. The sections were observed by transmission electron microscopy. Electron microscopy revealed that cells with characteristics intermediate between those of mucous and serous cells (transitional cells) appeared around day 8 and that the nuclei of these cells did not show chromatin condensation, a characteristic of apoptotic cells. Lectin histochemistry showed that the mucous cells had the same sugar residues as the serous cells, which appeared after day 10. Immunohistochemistry with an anti-SMG-B1 antibody gave a positive reaction not only in the cells with highly electron-dense granules but also in the electron-dense cores of bipartite or tripartite granules in the transitional cells. Cells with morphological characteristics intermediate between those of mucous and serous cells (transitional cells) appearing in the early postnatal rat parotid gland begin to produce B1-immunoreactive protein common to serous acinar cells during development of the gland.
Collapse
Affiliation(s)
- R Ikeda
- Department of Histology, School of Dentistry at Tokyo, The Nippon Dental University, Japan.
| | | |
Collapse
|
27
|
Abstract
The minor salivary glands are important components of the oral cavity, present in most parts of the mouth, and their secretions directly bathe the tissues. Individual glands are usually in the submucosa between muscle fibres, and consist of groups of secretory endpieces made up of mucous acinar cells and serous or seromucous demilune cells. The ductal systems comprise intercalated ducts, intralobular ducts usually lacking basal striations, and excretory ducts opening directly through the mucosa Minor glands secrete highly glycosylated mucins, containing blood group determinants, and probably active in tissue lubrication and bacterial aggregation. They also secrete several antimicrobial proteins and immunoglobulins, and the lingual serous (von Ebner's) glands secrete digestive enzymes and proteins with possible taste perception functions. Minor gland morphology and function can conveniently be studied in the rat. There are substantial differences between major and minor salivary glands, as well as among the minor glands, in the nature and composition of their mucous and serous secretory products. The role of minor salivary glands in the function and defence of the oral cavity may be better understood as a result of new physiological and molecular methods applicable to samples of limited size and availability.
Collapse
Affiliation(s)
- A R Hand
- University of Connecticut, School of Dental Medicine, Farmington 06030, USA.
| | | | | |
Collapse
|