1
|
Wang Y, Li S, Ren X, Yu S, Meng X. Nano-engineering nanomedicines with customized functions for tumor treatment applications. J Nanobiotechnology 2023; 21:250. [PMID: 37533106 PMCID: PMC10399036 DOI: 10.1186/s12951-023-01975-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/29/2023] [Indexed: 08/04/2023] Open
Abstract
Nano-engineering with unique "custom function" capability has shown great potential in solving technical difficulties of nanomaterials in tumor treatment. Through tuning the size and surface properties controllablly, nanoparticles can be endoewd with tailored structure, and then the characteristic functions to improve the therapeutic effect of nanomedicines. Based on nano-engineering, many have been carried out to advance nano-engineering nanomedicine. In this review, the main research related to cancer therapy attached to the development of nanoengineering nanomedicines has been presented as follows. Firstly, therapeutic agents that target to tumor area can exert the therapeutic effect effectively. Secondly, drug resistance of tumor cells can be overcome to enhance the efficacy. Thirdly, remodeling the immunosuppressive microenvironment makes the therapeutic agents work with the autoimmune system to eliminate the primary tumor and then prevent tumor recurrence and metastasis. Finally, the development prospects of nano-engineering nanomedicine are also outlined.
Collapse
Affiliation(s)
- Yuxin Wang
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shimei Li
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiangling Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Shiping Yu
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China.
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
2
|
Cheng G, Pi Z, Zhuang X, Zheng Z, Liu S, Liu Z, Song F. The effects and mechanisms of aloe-emodin on reversing adriamycin-induced resistance of MCF-7/ADR cells. Phytother Res 2021; 35:3886-3897. [PMID: 33792091 DOI: 10.1002/ptr.7096] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/13/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022]
Abstract
Multidrug resistance (MDR) is one of the major obstacles for clinical effective chemotherapy. In this study, the effects and possible mechanisms of aloe-emodin (AE) were investigated on reversing the adriamycin (ADR)-induced resistance of MCF-7/ADR cells. AE could significantly reverse the ADR resistance in MCF-7/ADR cells. The combination of AE (20 μM) and ADR had no effect on the P-glycoprotein (P-gp) level, but notably promoted the accumulation of ADR in drug-resistant cells. The efflux function of P-gp required ATP, but AE reduced the intracellular ATP level. AE played a reversal role might through inhibiting the efflux function of P-gp. The research result of energy metabolism pathways indicated that combination of AE and ADR could inhibit glycolysis, tricarboxylic acid (TCA) cycle, glutamine metabolism, and related amino acid synthesis pathways. Moreover, we found AE not only reversed ADR-induced resistant but also induced autophagy as a defense mechanism. In addition, the combination of AE and ADR arrested G2/M cell cycle and induced apoptosis through DNA damage, ROS generation, caspase-3 activation. Our study indicated that AE could be a potential reversal agent to resensitize ADR resistant in tumor chemotherapy and inhibiting autophagy might be an effective strategy to further enhance the reversal activity of AE.
Collapse
Affiliation(s)
- Guorong Cheng
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Zifeng Pi
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Xiaoyu Zhuang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhong Zheng
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Shu Liu
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Fengrui Song
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| |
Collapse
|
3
|
Non-Steroidal Anti-Inflammatory Drugs Increase Cisplatin, Paclitaxel, and Doxorubicin Efficacy against Human Cervix Cancer Cells. Pharmaceuticals (Basel) 2020; 13:ph13120463. [PMID: 33333716 PMCID: PMC7765098 DOI: 10.3390/ph13120463] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 12/26/2022] Open
Abstract
This study shows that the non-steroidal anti-inflammatory drug (NSAID) celecoxib and its non-cyclooxygenase-2 (COX2) analogue dimethylcelecoxib (DMC) exert a potent inhibitory effect on the growth of human cervix HeLa multi-cellular tumor spheroids (MCTS) when added either at the beginning (“preventive protocol”; IC50 = 1 ± 0.3 nM for celecoxib and 10 ± 2 nM for DMC) or after spheroid formation (“curative protocol”; IC50 = 7.5 ± 2 µM for celecoxib and 32 ± 10 µM for DMC). These NSAID IC50 values were significantly lower than those attained in bidimensional HeLa cells (IC50 = 55 ± 9 µM celecoxib and 48 ± 2 µM DMC) and bidimensional non-cancer cell cultures (3T3 fibroblasts and MCF-10A mammary gland cells with IC50 from 69 to >100 µM, after 24 h). The copper-based drug casiopeina II-gly showed similar potency against HeLa MCTS. Synergism analysis showed that celecoxib, DMC, and casiopeinaII-gly at sub-IC50 doses increased the potency of cisplatin, paclitaxel, and doxorubicin to hinder HeLa cell proliferation through a significant abolishment of oxidative phosphorylation in bidimensional cultures, with no apparent effect on non-cancer cells (therapeutic index >3.6). Similar results were attained with bidimensional human cervix cancer SiHa and human glioblastoma U373 cell cultures. In HeLa MCTS, celecoxib, DMC and casiopeina II-gly increased cisplatin toxicity by 41–85%. These observations indicated that celecoxib and DMC used as adjuvant therapy in combination with canonical anti-cancer drugs may provide more effective alternatives for cancer treatment.
Collapse
|
4
|
Zhang J, Duan D, Song ZL, Liu T, Hou Y, Fang J. Small molecules regulating reactive oxygen species homeostasis for cancer therapy. Med Res Rev 2020; 41:342-394. [PMID: 32981100 DOI: 10.1002/med.21734] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/27/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022]
Abstract
Elevated intracellular reactive oxygen species (ROS) and antioxidant defense systems have been recognized as one of the hallmarks of cancer cells. Compared with normal cells, cancer cells exhibit increased ROS to maintain their malignant phenotypes and are more dependent on the "redox adaptation" mechanism. Thus, there are two apparently contradictory but virtually complementary therapeutic strategies for the regulation of ROS to prevent or treat cancer. The first strategy, that is, chemoprevention, is to prevent or reduce intracellular ROS either by suppressing ROS production pathways or by employing antioxidants to enhance ROS clearance, which protects normal cells from malignant transformation and inhibits the early stage of tumorigenesis. The second strategy is the ROS-mediated anticancer therapy, which stimulates intracellular ROS to a toxicity threshold to activate ROS-induced cell death pathways. Therefore, targeting the regulation of intracellular ROS-related pathways by small-molecule candidates is considered to be a promising treatment for tumors. We herein first briefly introduce the source and regulation of ROS, and then focus on small molecules that regulate ROS-related pathways and show efficacy in cancer therapy from the perspective of pharmacophores. Finally, we discuss several challenges in developing cancer therapeutic agents based on ROS regulation and propose the direction of future development.
Collapse
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Dongzhu Duan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China.,Shaanxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji, China
| | - Zi-Long Song
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Tianyu Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yanan Hou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
5
|
Fontana F, Raimondi M, Marzagalli M, Sommariva M, Gagliano N, Limonta P. Three-Dimensional Cell Cultures as an In Vitro Tool for Prostate Cancer Modeling and Drug Discovery. Int J Mol Sci 2020; 21:E6806. [PMID: 32948069 PMCID: PMC7554845 DOI: 10.3390/ijms21186806] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
In the last decade, three-dimensional (3D) cell culture technology has gained a lot of interest due to its ability to better recapitulate the in vivo organization and microenvironment of in vitro cultured cancer cells. In particular, 3D tumor models have demonstrated several different characteristics compared with traditional two-dimensional (2D) cultures and have provided an interesting link between the latter and animal experiments. Indeed, 3D cell cultures represent a useful platform for the identification of the biological features of cancer cells as well as for the screening of novel antitumor agents. The present review is aimed at summarizing the most common 3D cell culture methods and applications, with a focus on prostate cancer modeling and drug discovery.
Collapse
MESH Headings
- Adenocarcinoma/drug therapy
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Androgens
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Cell Culture Techniques/instrumentation
- Cell Culture Techniques/methods
- Cell Hypoxia
- Drug Discovery/methods
- Drug Screening Assays, Antitumor/instrumentation
- Drug Screening Assays, Antitumor/methods
- Energy Metabolism
- Epithelial-Mesenchymal Transition
- Extracellular Matrix/metabolism
- Humans
- Inflammation
- Male
- Molecular Targeted Therapy
- Monitoring, Immunologic
- Neoplasm Metastasis
- Neoplasm Proteins/metabolism
- Neoplasms, Hormone-Dependent/drug therapy
- Neoplasms, Hormone-Dependent/metabolism
- Neoplasms, Hormone-Dependent/pathology
- Neoplastic Stem Cells/cytology
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neovascularization, Pathologic/drug therapy
- Oxidation-Reduction
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms/therapy
- Spheroids, Cellular/drug effects
- Therapies, Investigational
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milan, Italy; (M.R.); (M.M.); (P.L.)
| | - Michela Raimondi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milan, Italy; (M.R.); (M.M.); (P.L.)
| | - Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milan, Italy; (M.R.); (M.M.); (P.L.)
| | - Michele Sommariva
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, via Mangiagalli 31, 20133 Milan, Italy; (M.S.); (N.G.)
| | - Nicoletta Gagliano
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, via Mangiagalli 31, 20133 Milan, Italy; (M.S.); (N.G.)
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milan, Italy; (M.R.); (M.M.); (P.L.)
| |
Collapse
|
6
|
Influence of the Phenological State of in the Antioxidant Potential and Chemical Composition of Ageratina havanensis. Effects on the P-Glycoprotein Function. Molecules 2020; 25:molecules25092134. [PMID: 32370149 PMCID: PMC7248889 DOI: 10.3390/molecules25092134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/19/2020] [Accepted: 04/30/2020] [Indexed: 11/20/2022] Open
Abstract
Ageratina havanensis (Kunth) R. M. King & H. Robinson is a species of flowering shrub in the family Asteraceae, native to the Caribbean and Texas. The aim of this work was to compare the quantitative chemical composition of extracts obtained from Ageratina havanensis in its flowering and vegetative stages with the antioxidant potential and to determine the effects on P-glycoprotein (P-gp) function. The quantitative chemical composition of the extracts was determined quantifying their major flavonoids by UPLC-ESI-MS/MS and by PCA analysis. The effects of the extracts on P-gp activity was evaluated by Rhodamine 123 assay; antioxidant properties were determined by DPPH, FRAP and inhibition of lipid peroxidation methods. The obtained results show that major flavonoids were present in higher concentrations in vegetative stage than flowering stage. In particular, the extracts obtained in the flowering season showed a significantly higher ability to sequester free radicals compared to those of the vegetative season, meanwhile, the extracts obtained during the vegetative stage showed a significant inhibitory effect against brain lipid peroxidation and a strong reductive capacity. This study also showed the inhibitory effects of all ethanolic extracts on P-gp function in 4T1 cell line; these effects were unrelated to the phenological stage. This work shows, therefore, the first evidence on: the inhibition of P-gp function, the antioxidant effects and the content of major flavonoids of Ageratina havanensis. According to the obtained results, the species Ageratina havanensis (Kunth) R. M. King & H. Robinson could be a source of new potential inhibitors of drug efflux mediated by P-gp. A special focus on all these aspects must be taking into account for future studies.
Collapse
|
7
|
Jun S, Kim SW, Kim B, Chang IY, Park SJ. Oncogenic Ras downregulates mdr1b expression through generation of reactive oxygen species. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:267-276. [PMID: 32392918 PMCID: PMC7193907 DOI: 10.4196/kjpp.2020.24.3.267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/31/2020] [Accepted: 02/06/2020] [Indexed: 11/15/2022]
Abstract
In the present study, we investigated the effect of oncogenic H-Ras on rat mdr1b expression in NIH3T3 cells. The constitutive expression of H-RasV12 was found to downregulate the mdr1b promoter activity and mdr1b mRNA expression. The doxorubicin-induced mdr1b promoter activity of the H-RasV12 expressing NIH3T3 cells was markedly lower than that of control NIH3T3 cells. Additionally, there is a positive correlation between the level of H-RasV12 expression and a sensitivity to doxorubicin toxicity. To examine the detailed mechanism of H-RasV12-mediated down-regulation of mdr1b expression, antioxidant N-acetylcysteine (NAC) and NADPH oxidase inhibitor diphenylene iodonium (DPI) were used. Pretreating cells with either NAC or DPI significantly enhanced the oncogenic H-Ras-mediated down-regulation of mdr1b expression and markedly prevented doxorubicin-induced cell death. Moreover, NAC and DPI treatment led to a decrease in ERK activity, and the ERK inhibitors PD98059 or U0126 enhanced the mdr1b-Luc activity of H-RasV12-NIH3T3 and reduced doxorubicin-induced apoptosis. These data suggest that RasV12 expression could downregulate mdr1b expression through intracellular reactive oxygen species (ROS) production, and ERK activation induced by ROS, is at least in part, contributed to the downregulation of mdr1b expression.
Collapse
Affiliation(s)
- Semo Jun
- Departments of Premedical Sciences, College of Medicine, Chosun University, Gwangju 61452, Korea
| | - Seok Won Kim
- Departments of Neurosurgery, College of Medicine, Chosun University, Gwangju 61452, Korea
| | - Byeol Kim
- Departments of Premedical Sciences, College of Medicine, Chosun University, Gwangju 61452, Korea
| | - In-Youb Chang
- Departments of Anatomy, College of Medicine, Chosun University, Gwangju 61452, Korea
| | - Seon-Joo Park
- Departments of Premedical Sciences, College of Medicine, Chosun University, Gwangju 61452, Korea
| |
Collapse
|
8
|
Wang W, Cai Q, Zhou F, Liu J, Jin X, Ni P, Lu M, Wang G, Zhang J. Impaired pentose phosphate pathway in the development of 3D MCF-7 cells mediated intracellular redox disturbance and multi-cellular resistance without drug induction. Redox Biol 2017; 15:253-265. [PMID: 29291545 PMCID: PMC5752090 DOI: 10.1016/j.redox.2017.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/06/2017] [Accepted: 12/20/2017] [Indexed: 02/06/2023] Open
Abstract
Although metabolic reprogramming and redox imbalance are widely reported to be involved in chemo-resistance in cancer treatment, much more attention was paid to anti-cancer drug induced effect. Our previous studies showed that cancer cells can develop P-gp overexpression-mediated intrinsic drug resistance in the formation of 3D MCF-7 multi-cellular layers (MCLs) without any drug induction. However, whether metabolic reprogramming and redox imbalance functioned during this progress remained unrevealed. In our present study, LC-Q/TOF-MS and GC-MS were used in combination for analysing intracellular metabolites. The contribution of pentose phosphate pathway (PPP) and its related redox status were checked by chemical interfering and silencing/over-expression of glucose-6-phosphate dehydrogenase (G6PD). The downstream products of G6PD were assayed by quantitative real-time PCR, western blot and flow cytometry. Results showed that not only G6PD expression but also G6PD activity was significantly lowered along with 3D MCF-7 cells culture time. Impaired PPP disturbed redox-cycling, generated reactive oxygen species (ROS), which triggered cell cycle arrest and caused the switch to Chk2/p53/NF-κB pathway-mediated P-gp induction. Our results provided a new attempt to associate intrinsic small molecule metabolites (impaired PPP) communicating with cell signalling pathways through disturbed intracellular redox status to elucidate multi-cellular resistance (MCR) in 3D MCF-7 cells, which improved the understanding of the mechanisms of P-gp up-regulation in MCR with metabolomic and related redox status support. Impaired pentose phosphate pathway (PPP) in the development of 3D MCF-7 cells. PPP mediated intracellular redox disturbance and multi-cellular resistance (MCR). P-gp up-regulation in MCR with metabolomics and related redox status support. Intrinsic small molecule metabolites communicating with cell signalling pathway.
Collapse
Affiliation(s)
- Wenjie Wang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, China
| | - Qingyun Cai
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, China
| | - Fang Zhou
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, China
| | - Jiali Liu
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, China
| | - Xiaoliang Jin
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, China
| | - Ping Ni
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, China
| | - Meng Lu
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China.
| | - Guangji Wang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, China.
| | - Jingwei Zhang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, China.
| |
Collapse
|
9
|
P-glycoprotein (ABCB1) and Oxidative Stress: Focus on Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7905486. [PMID: 29317984 PMCID: PMC5727796 DOI: 10.1155/2017/7905486] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/30/2017] [Indexed: 11/23/2022]
Abstract
ATP-binding cassette (ABC) transporters, in particular P-glycoprotein (encoded by ABCB1), are important and selective elements of the blood-brain barrier (BBB), and they actively contribute to brain homeostasis. Changes in ABCB1 expression and/or function at the BBB may not only alter the expression and function of other molecules at the BBB but also affect brain environment. Over the last decade, a number of reports have shown that ABCB1 actively mediates the transport of beta amyloid (Aβ) peptide. This finding has opened up an entirely new line of research in the field of Alzheimer's disease (AD). Indeed, despite intense research efforts, AD remains an unsolved pathology and effective therapies are still unavailable. Here, we review the crucial role of ABCB1 in the Aβ transport and how oxidative stress may interfere with this process. A detailed understanding of ABCB1 regulation can provide the basis for improved neuroprotection in AD and also enhanced therapeutic drug delivery to the brain.
Collapse
|
10
|
Riffle S, Hegde RS. Modeling tumor cell adaptations to hypoxia in multicellular tumor spheroids. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:102. [PMID: 28774341 PMCID: PMC5543535 DOI: 10.1186/s13046-017-0570-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/18/2017] [Indexed: 12/17/2022]
Abstract
Under hypoxic conditions, tumor cells undergo a series of adaptations that promote evolution of a more aggressive tumor phenotype including the activation of DNA damage repair proteins, altered metabolism, and decreased proliferation. Together these changes mitigate the negative impact of oxygen deprivation and allow preservation of genomic integrity and proliferative capacity, thus contributing to tumor growth and metastasis. As a result the presence of a hypoxic microenvironment is considered a negative clinical feature of many solid tumors. Hypoxic niches in tumors also represent a therapeutically privileged environment in which chemo- and radiation therapy is less effective. Although the negative impact of tumor hypoxia has been well established, the precise effect of oxygen deprivation on tumor cell behavior, and the molecular signals that allow a tumor cell to survive in vivo are poorly understood. Multicellular tumor spheroids (MCTS) have been used as an in vitro model for the avascular tumor niche, capable of more accurately recreating tumor genomic profiles and predicting therapeutic response. However, relatively few studies have used MCTS to study the molecular mechanisms driving tumor cell adaptations within the hypoxic tumor environment. Here we will review what is known about cell proliferation, DNA damage repair, and metabolic pathways as modeled in MCTS in comparison to observations made in solid tumors. A more precise definition of the cell populations present within 3D tumor models in vitro could better inform our understanding of the heterogeneity within tumors as well as provide a more representative platform for the testing of therapeutic strategies.
Collapse
Affiliation(s)
- Stephen Riffle
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Rashmi S Hegde
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
| |
Collapse
|
11
|
Wang C, Liu Z, Sun Y, Chen T, Huo X, Meng Q, Liu Q, Sun H, Sun P, Peng J, Ma X, Liu K. A stronger reversal effect of the combination of dasatinib and menadione on P-gp-mediated multidrug resistance in human leukemia K562/Adr cell line. RSC Adv 2017. [DOI: 10.1039/c6ra27999f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Multidrug resistance (MDR) leads to poor efficiency of chemotherapy.
Collapse
|
12
|
Wang Z, Zhang L, Ni Z, Sun J, Gao H, Cheng Z, Xu J, Yin P. Resveratrol induces AMPK-dependent MDR1 inhibition in colorectal cancer HCT116/L-OHP cells by preventing activation of NF-κB signaling and suppressing cAMP-responsive element transcriptional activity. Tumour Biol 2015; 36:9499-510. [PMID: 26124005 DOI: 10.1007/s13277-015-3636-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/01/2015] [Indexed: 12/19/2022] Open
Abstract
Resveratrol, a natural polyphenolic compound found in foods and beverages, has attracted increasing attention in recent years because of its potent chemopreventive and anti-tumor effects. In this study, the effects of resveratrol on the expression of P-glycoprotein/multi-drug resistance protein 1 (P-gp/MDR1), and the underlying molecular mechanisms, were investigated in oxaliplatin (L-OHP)-resistant colorectal cancer cells (HCT116/L-OHP). Resveratrol downregulated MDR1 protein and mRNA expression levels and reduced MDR1 promoter activity. It also enhanced the intracellular accumulation of rhodamine 123, suggesting that resveratrol can reverse multi-drug resistance by downregulating MDR1 expression and reducing drug efflux. Resveratrol treatment also reduced nuclear factor-κB (NF-κB) activity, reduced phosphorylation levels of IκBα, and reduced nuclear translocation of the NF-κB subunit p65. Moreover, downregulation of MDR1 expression and promoter activity was mediated by resveratrol-induced AMP-activated protein kinase (AMPK) phosphorylation. The inhibitory effects of resveratrol on MDR1 expression and cAMP-responsive element-binding protein (CREB) phosphorylation were reversed by AMPKα siRNA transfection. We found that the transcriptional activity of cAMP-responsive element (CRE) was inhibited by resveratrol. These results demonstrated that the inhibitory effects of resveratrol on MDR1 expression in HCT116/L-OHP cells were closely associated with the inhibition of NF-κB signaling and CREB activation in an AMPK-dependent manner.
Collapse
Affiliation(s)
- Ziyuan Wang
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China
| | - Long Zhang
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China
| | - Zhenhua Ni
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China
| | - Jian Sun
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China
| | - Hong Gao
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China
| | - Zhuoan Cheng
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China
| | - Jianhua Xu
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China. .,Department of Clinical Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China.
| | - Peihao Yin
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China.
| |
Collapse
|
13
|
Cheng J, Liu Q, Shuhendler AJ, Rauth AM, Wu XY. Optimizing the design and in vitro evaluation of bioreactive glucose oxidase-microspheres for enhanced cytotoxicity against multidrug resistant breast cancer cells. Colloids Surf B Biointerfaces 2015; 130:164-72. [PMID: 25896537 DOI: 10.1016/j.colsurfb.2015.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 01/11/2023]
Abstract
Glucose oxidase (GOX) encapsulated in alginate-chitosan microspheres (GOX-MS) was shown in our previous work to produce reactive oxygen species (ROS) in situ and exhibit anticancer effects in vitro and in vivo. The purpose of present work was to optimize the design and thus enhance the efficacy of GOX-MS against multidrug resistant (MDR) cancer cells. GOX-MS with different mean diameters of 4, 20 or 140 μm were prepared using an emulsification-internal gelation-adsorption-chitosan coating method with varying compositions and conditions. The GOX loading efficiency, loading level, relative bioactivity of GOX-MS, and GOX leakage were determined and optimal chitosan concentrations in the coating solution were identified. The influence of particle size on cellular uptake, ROS generation, cytotoxicity and their underlying mechanisms was investigated. At the same GOX dose and incubation time, smaller sized GOX-MS produced larger amounts of H2O2 in cell culture medium and greater cytotoxicity toward murine breast cancer MDR (EMT6/AR1.0) and wild type (EMT6/WT) cells. Fluorescence and confocal laser scanning microscopy revealed significant uptake of small sized (4 μm) GOX-MS by both MDR and WT cells, but no cellular uptake of large (140 μm) GOX-MS. The GOX-MS were equally effective in killing both MDR cells and WT cells. The cytotoxicity of the GOX formulations was positively correlated with membrane damage and lipid peroxidation. GOX-MS induced greater membrane damage and lipid peroxidation in MDR cells than the WT cells. These results suggest that the optimized, small micron-sized GOX-MS are highly effective against MDR breast cancer cells.
Collapse
Affiliation(s)
- Ji Cheng
- Advanced Pharmaceutics & Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, Canada M5S 3M2
| | - Qun Liu
- Advanced Pharmaceutics & Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, Canada M5S 3M2
| | - Adam J Shuhendler
- Advanced Pharmaceutics & Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, Canada M5S 3M2
| | - Andrew M Rauth
- Departments of Medical Biophysics and Radiation Oncology, University of Toronto, 610 University Ave, Toronto, Ontario, Canada M5G 2M9
| | - Xiao Yu Wu
- Advanced Pharmaceutics & Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, Canada M5S 3M2.
| |
Collapse
|
14
|
In vitro 3D colon tumor penetrability of SRJ09, a new anti-cancer andrographolide analog. Invest New Drugs 2014; 32:806-14. [DOI: 10.1007/s10637-014-0105-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/15/2014] [Indexed: 01/13/2023]
|
15
|
Tolosa L, Rodeiro I, Donato MT, Herrera JA, Delgado R, Castell JV, Gómez-Lechón MJ. Multiparametric evaluation of the cytoprotective effect of the Mangifera indica L. stem bark extract and mangiferin in HepG2 cells. ACTA ACUST UNITED AC 2013; 65:1073-82. [PMID: 23738735 DOI: 10.1111/jphp.12071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 03/18/2013] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Mango (Mangifera indica L.) stem bark extract (MSBE) is a natural product with biological properties and mangiferin is the major component. This paper reported the evaluation of the protective effects of MSBE and mangiferin against the toxicity induced in HepG2 cells by tert-butyl hydroperoxide or amiodarone. METHOD Nuclear morphology, cell viability, intracellular calcium concentration and reactive oxygen species (ROS) production were measured by using a high-content screening multiparametric assay. KEY FINDINGS MSBE and mangiferin produced no toxicity below 500 mg/ml doses. A marked recovery in cell viability, which was reduced by the toxicants, was observed in cells pre-exposed to MSBE or mangiferin at 5-100 mg/ml doses. We also explored the possible interaction of both products over P-glycoprotein (P-gp). MSBE and mangiferin above 100 mg/ml inhibited the activity of P-gp in HepG2 cells. CONCLUSIONS MSBE and mangiferin showed cytoprotective effects of against oxidative damage and mitochondrial toxicity induced by xenobiotics to human hepatic cells but it seemed that other constituents of the extract could contribute to MSBE protective properties. In addition, the drug efflux should be taken into account because of the inhibition of the P-gp function observed in those cells exposed to both natural products.
Collapse
Affiliation(s)
- Laia Tolosa
- Unidad de Hepatología Experimental, Centro de Investigación, Hospital La Fe, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
16
|
Menadione serves as a substrate for P-glycoprotein: implication in chemosensitizing activity. Arch Pharm Res 2013; 36:509-16. [DOI: 10.1007/s12272-013-0052-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 01/10/2013] [Indexed: 11/26/2022]
|
17
|
Gupta SV, Sass EJ, Davis ME, Edwards RB, Lozanski G, Heerema NA, Lehman A, Zhang X, Jarjoura D, Byrd JC, Pan L, Chan KK, Kinghorn AD, Phelps MA, Grever MR, Lucas DM. Resistance to the translation initiation inhibitor silvestrol is mediated by ABCB1/P-glycoprotein overexpression in acute lymphoblastic leukemia cells. AAPS JOURNAL 2011; 13:357-64. [PMID: 21538216 DOI: 10.1208/s12248-011-9276-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 04/19/2011] [Indexed: 01/06/2023]
Abstract
Protein synthesis is a powerful therapeutic target in leukemias and other cancers, but few pharmacologically viable agents are available that affect this process directly. The plant-derived agent silvestrol specifically inhibits translation initiation by interfering with eIF4A/mRNA assembly with eIF4F. Silvestrol has potent in vitro and in vivo activity in multiple cancer models including acute lymphoblastic leukemia (ALL) and is under pre-clinical development by the US National Cancer Institute, but no information is available about potential mechanisms of resistance. In a separate report, we showed that intraperitoneal silvestrol is approximately 100% bioavailable systemically, although oral doses were only 1% bioavailable despite an apparent lack of metabolism. To explore mechanisms of silvestrol resistance and the possible role of efflux transporters in silvestrol disposition, we characterized multi-drug resistance transporter expression and function in a silvestrol-resistant ALL cell line generated via culture of the 697 ALL cell line in gradually increasing silvestrol concentrations. This resistant cell line, 697-R, shows significant upregulation of ABCB1 mRNA and P-glycoprotein (Pgp) as well as cross-resistance to known Pgp substrates vincristine and romidepsin. Furthermore, 697-R cells readily efflux the fluorescent Pgp substrate rhodamine 123. This effect is prevented by Pgp inhibitors verapamil and cyclosporin A, as well as siRNA to ABCB1, with concomitant re-sensitization to silvestrol. Together, these data indicate that silvestrol is a substrate of Pgp, a potential obstacle that must be considered in the development of silvestrol for oral delivery or targeting to tumors protected by Pgp overexpression.
Collapse
Affiliation(s)
- Sneha V Gupta
- College of Pharmacy, The Ohio State University, Columbus, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
OGURA J, FUJIKAWA A, MARUYAMA H, KOBAYASHI M, ITAGAKI S, ISEKI K. Alteration of P-gp Expression after Intestinal Ischemia-reperfusion Following 16-h Fasting in Rats. YAKUGAKU ZASSHI 2011; 131:453-62. [DOI: 10.1248/yakushi.131.453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jiro OGURA
- Laboratory of Clinical Pharmaceutics and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University
| | - Asuka FUJIKAWA
- Laboratory of Clinical Pharmaceutics and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University
| | - Hajime MARUYAMA
- Laboratory of Clinical Pharmaceutics and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University
| | - Masaki KOBAYASHI
- Laboratory of Clinical Pharmaceutics and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University
| | - Shirou ITAGAKI
- Laboratory of Clinical Pharmaceutics and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University
| | - Ken ISEKI
- Laboratory of Clinical Pharmaceutics and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University
| |
Collapse
|
19
|
Hien TT, Kim HG, Han EH, Kang KW, Jeong HG. Molecular mechanism of suppression of MDR1 by puerarin from Pueraria lobata via NF-kappaB pathway and cAMP-responsive element transcriptional activity-dependent up-regulation of AMP-activated protein kinase in breast cancer MCF-7/adr cells. Mol Nutr Food Res 2010; 54:918-28. [PMID: 20077420 DOI: 10.1002/mnfr.200900146] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Multidrug resistance (MDR) is a major obstacle in cancer chemotherapy and its inhibition is an effective way to reverse cancer drug resistance. In the present study, we investigated that puerarin, a natural isoflavonoid from Pueraria lobata, down-regulated MDR1 expression in MCF-7/adriamycin (MCF-7/adr), a human breast MDR cancer cell line. Puerarin treatment significantly inhibited MDR1 expression, MDR1 mRNA and MDR1 promoter activity in MCF-7/adr cells. The suppression of MDR1 was accompanied by partial recovery of intracellular drug accumulation, leading to increased toxicity of adriamycin and fluorescence of rhodamine 123, indicating that puerarin reversed the MDR phenotype by inhibiting the drug efflux function of MDR1. Moreover, nuclear factor kappa-B activity and IkappaB degradation were inhibited by puerarin. Puerarin stimulated AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase and glycogen synthase kinase-3beta phosphorylation, but puerarin decreased cAMP-responsive element-binding protein phosphorylation. The puerarin-induced suppression of MDR1 expression was reduced by AMPK inhibitor (compound C). Furthermore, both MDR1 protein expression and the transcriptional activity of cAMP-responsive element (CRE) were inhibited by puerarin and protein kinase A/CRE inhibitor (H89). Taken together, our results suggested that puerarin down-regulated MDR1 expression via nuclear factor kappa-B and CRE transcriptional activity-dependent up-regulation of AMPK in MCF-7/adr cells.
Collapse
Affiliation(s)
- Tran Thi Hien
- College of Pharmacy, Chosun University, Gwangju, Republic of Korea
| | | | | | | | | |
Collapse
|
20
|
Wartenberg M, Richter M, Datchev A, Günther S, Milosevic N, Bekhite MM, Figulla HR, Aran JM, Pétriz J, Sauer H. Glycolytic pyruvate regulates P-Glycoprotein expression in multicellular tumor spheroids via modulation of the intracellular redox state. J Cell Biochem 2010; 109:434-46. [PMID: 19950199 DOI: 10.1002/jcb.22422] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
UNLABELLED ABC transporters like P-glycoprotein (P-gp/ABCB1) are membrane proteins responsible for the transport of toxic compounds out of non-malignant cells and tumor tissue. AIM To investigate the effect of glycolysis and the tissue redox state on P-gp expression in multicellular tumor spheroids derived from prostate adenocarcinoma cells (DU-145), glioma cells (Gli36), and the human cervix carcinoma cell line KB-3-1 transfected with a P-gp-EGFP fusion gene that allows monitoring of P-gp expression in living cells. During cell culture of DU-145, Gli36, and KB-3-1 tumor spheroids P-gp expression was observed as well as increased lactate and decreased pyruvate levels and expression of glycolytic enzymes. Inhibition of glycolysis for 24 h by either iodoacetate (IA) or 2-deoxy-D-glucose (2-DDG) downregulated P-gp expression which was reversed upon coincubation with the radical scavenger ebselen as shown by semi-quantitative immunohistochemisty in DU-145 and Gli36 tumor spheroids, and by EGFP fluorescence in KB-3-1 tumor spheroids. Consequently endogenous ROS generation in DU-145 tumor spheroids was increased in the presence of either IA or 2-DDG, which was abolished upon coincubation with ebselen. Exogenous addition of pyruvate significantly reduced ROS generation, increased P-gp expression as well as efflux of the P-gp substrate doxorubicin. Doxorubicin transport was significantly blunted by 2-DDG and IA, indicating that inhibition of glycolysis reversed the multidrug resistance phenotype. In summary our data demonstrate that P-gp expression in tumor spheroids is closely related to the glycolytic metabolism of tumor cells and can be downregulated by glycolysis inhibitors via mechanisms that involve changes in the cellular redox state.
Collapse
Affiliation(s)
- Maria Wartenberg
- Department of Internal Medicine I, Cardiology Division, Friedrich Schiller University, Jena, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ding Z, Yang L, Xie X, Xie F, Pan F, Li J, He J, Liang H. Expression and significance of hypoxia-inducible factor-1 alpha and MDR1/P-glycoprotein in human colon carcinoma tissue and cells. J Cancer Res Clin Oncol 2010; 136:1697-707. [PMID: 20217131 PMCID: PMC2944968 DOI: 10.1007/s00432-010-0828-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Accepted: 02/08/2010] [Indexed: 12/11/2022]
Abstract
PURPOSE Hypoxia in tumors is generally associated with chemoresistance and radioresistance. However, the correlation between the heterodimeric hypoxia-inducible factor-1 (HIF-1) and the multidrug resistance (MDR1) gene/transporter P-glycoprotein (P-gp) has not been clearly investigated. This study aims at examining the expression levels of HIF-1α and MDR1/P-gp in human colon carcinoma tissues and cell lines (HCT-116, HT-29, LoVo, and SW480) and ascertaining whether HIF-1α plays an important role in tumor multidrug resistance with MDR1/P-gp. METHODS The expression and distribution of HIF-1α and P-gp proteins were detected in human colon carcinoma tissues and cell lines by immunohistochemistry and immunocytochemistry using streptavidin/peroxidase (SP) and double-label immunofluorescence methods. HIF-1α and MDR1 mRNA expression levels in cell lines were analyzed using RT-PCR under normoxic and hypoxic conditions, respectively. RESULTS The immunohistochemical method shows that HIF-1α and P-gp expression were not correlated with gender, age, location, and differentiation degree (P > 0.05). However, the expression of HIF-1α and P-gp at different Dukes' stages and whether involved in lymphatic invasion shows a significant difference (P < 0.05). Correlation analysis displays that HIF-1α protein expression was correlated significantly with P-gp expression (P < 0.01). Double-label immunofluorescence demonstrates that coexpression of HIF-1α and P-gp does exist in human colon carcinoma tissues. The mRNA expression of HIF-1α and MDR1 was detected in the four human colon carcinoma cell lines under both normoxia and hypoxia. Optical density values representing mRNA expression levels of HIF-1α and MDR1 were found to be significantly higher in the same type cells under hypoxic conditions than that under normoxic conditions, respectively (P < 0.01). However, no significant differences of HIF-1α or MDR1 mRNA expression were found among these cell lines, which exposed under the same PaO(2) cultural conditions (P > 0.05). And the immunocytochemistry results were corresponding with the analysis of mRNA expression. CONCLUSIONS These results suggest that hypoxia induce the expression of HIF-1α and MDR1/P-gp in colon carcinoma and HIF-1α expression may be associated with the gene MDR1 (P-gp) and interactively involved in the occurrence of tumor multidrug resistance.
Collapse
Affiliation(s)
- Zhenyu Ding
- Department of Oncology, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Xiao-Dong L, Zhi-Hong Y, Hui-Wen Y. Repetitive/temporal hypoxia increased P-glycoprotein expression in cultured rat brain microvascular endothelial cells in vitro. Neurosci Lett 2008; 432:184-7. [PMID: 18241990 DOI: 10.1016/j.neulet.2007.12.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 12/07/2007] [Accepted: 12/10/2007] [Indexed: 10/22/2022]
Abstract
The aim of the study was to investigate whether repetitive/temporal hypoxia up-regulated P-glycoprotein (P-gp) in cultured rat brain microvascular endothelial cells (rBMECs). Cultured rBMECs were used as in vitro blood brain barrier (BBB) model. Cells reached confluence were subjected to temporal hypoxic exposure. Under free-glucose cultured medium, the cells were covered by sterile paraffin oil for 15 min, inducing temporal hypoxic exposure. The hypoxic-exposure was carried out once every day up to 8 days, leading to the repetitive/temporal hypoxia in rBMECs. The cell viability was tested using CCK-8 kit, function and levels of P-gp in the cells were measured using rhodamine 123 uptake and western blot, respectively. It was found that 8-temporal hypoxic exposure induced 1.6-fold increase of P-gp level in cells, accompanied by decrease of cellular accumulation of rhodamine 123. Cellular accumulation of phenobarbital was also decreased. These findings indicated that repetitive/temporal hypoxia may be one of the factors resulting in P-gp overexpression in refractory epilepsy.
Collapse
Affiliation(s)
- Liu Xiao-Dong
- Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China.
| | | | | |
Collapse
|
23
|
Korystov YN, Shaposhnikova VV, Korystova AF, Emel'yanov MO, Kublik LN. Modification of multidrug resistance of tumor cells by ionizing radiation. Cancer Chemother Pharmacol 2007; 61:15-21. [PMID: 17356823 DOI: 10.1007/s00280-007-0439-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 02/13/2007] [Indexed: 10/23/2022]
Abstract
PURPOSE The effect of ionizing radiation on multidrug resistance (MDR) of human larynx cancer HEp-2 cells has been investigated. We studied the dependence of the radiation effect on radiation dose, time after irradiation and cell density. METHODS MDR was determined from an increase in cell sensitivity to daunorubicin, taxol and vincristine by the inhibitors of multidrug resistance cyclosporin A and avermectin B(1), and from the suppression by cyclosporin A of the transport of rhodamine 123 out of the cells. The cells were irradiated with X-ray beams (dose rate 1.12 Gy min(-1)) at room temperature. RESULTS It was shown that, at 8 and 16 h after irradiation with doses up to 4 Gy, the multidrug resistance of cells increases, and at 24 h it decreases to the control level. The effect was maximal by 16 h after irradiation with a dose of 1 Gy. Both, the contribution of active transport to the rate of rhodamine 123 efflux from cells and their resistance to vincristine, increased. The effect of irradiation on multidrug resistance of HEp-2 cells depended on the density of cells on the substrate, being maximal at a density of 80,000-100,000 cm(-2). CONCLUSION The irradiation-induced changes in the MDR of tumor cells should be taken into account when combining radiotherapy with chemotherapy. It was assumed that the dependence of multidrug resistance of HEp-2 cells on radiation dose and cell density is determined by changes in the amount of reactive oxygen species in the cells.
Collapse
Affiliation(s)
- Yuri N Korystov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region, 142290, Russia.
| | | | | | | | | |
Collapse
|
24
|
Khaitan D, Dwarakanath BS. Multicellular spheroids as anin vitromodel in experimental oncology: applications in translational medicine. Expert Opin Drug Discov 2006; 1:663-75. [DOI: 10.1517/17460441.1.7.663] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
25
|
Hong H, Lu Y, Ji ZN, Liu GQ. Up-regulation of P-glycoprotein expression by glutathione depletion-induced oxidative stress in rat brain microvessel endothelial cells. J Neurochem 2006; 98:1465-73. [PMID: 16923159 DOI: 10.1111/j.1471-4159.2006.03993.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Glutathione (GSH) depletion has been implicated in the pathogenesis of neurological diseases. During GSH depletion, cells of the blood-brain barrier (BBB) are subjected to chronic oxidative stress. In this study, we investigated the effect of such stress, produced with the GSH synthesis inhibitor l-buthionine-(S,R)-sulfoximine (BSO), on expression of P-glycoprotein (Pgp) in primary cultured rat brain microvessel endothelial cells that comprise the blood-brain barrier (BBB). Application of BSO to cell monolayers at concentrations up to 800 microm caused increases in expression of Pgp. Concentrations >or= 400 microm BSO decreased cell viability. Application of 200 microm BSO caused a significant increase in Pgp function activity, as assessed by rhodamine 123 (Rh123) accumulation experiments. At this concentration, BSO produced time-dependent decreases in levels of intracellular GSH and increases in levels of intracellular reactive oxygen species (iROS). The increases were also observed within 48 h following BSO treatment in mdr1a and mdr1b mRNA. Exposure of cells to BSO for 24 h produced maximal effects in the accumulation of iROS, and in expression and function of Pgp. The ROS scavenger N-acetylcysteine prevented ROS generation and attenuated the changes of both expression and activity of Pgp induced by BSO. Therefore, the transport of Pgp substrates may be affected by changing Pgp expression under conditions of chronic oxidative stress induced by GSH depletion.
Collapse
Affiliation(s)
- Hao Hong
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China.
| | | | | | | |
Collapse
|
26
|
Thews O, Gassner B, Kelleher DK, Schwerdt G, Gekle M. Impact of extracellular acidity on the activity of P-glycoprotein and the cytotoxicity of chemotherapeutic drugs. Neoplasia 2006; 8:143-52. [PMID: 16611407 PMCID: PMC1578510 DOI: 10.1593/neo.05697] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The expression and activity of P-glycoprotein (pGP) play a role in the multidrug resistance of tumors. Because solid-growing tumors often show pronounced hypoxia or extracellular acidosis, this study attempted to analyze the impact of an acidic environment on the expression and activity of pGP and on the cytotoxicity of chemotherapeutic agents. For this, prostate carcinoma cells were exposed to an acidic extracellular environment (pH 6.6) for up to 24 hours. pGP activity was more than doubled after 3 to 6 hours of incubation in acidic medium, whereas cellular pGP expression remained constant, indicating that increased transport rate is the result of functional modulation. In parallel, the cytotoxic efficacy of daunorubicin showed pronounced reduction at low pH, an effect that was reversible on coincubation with a pGP inhibitor. A reduction of intracellular Ca2+ concentration by 35% under acidic conditions induced a higher transport rate of pGP, an effect comparable to that found on inhibition of protein kinase C (PKC). These data indicate that pGP activity is increased by low extracellular pH presumably as a result of lowered intracellular calcium levels and inhibition of PKC. These findings may explain the reduced cytotoxicity of chemotherapeutic agents in hypoxic/acidic tumors.
Collapse
Affiliation(s)
- Oliver Thews
- Institute of Physiology and Pathophysiology, University of Mainz, H-55099 Mainz, Germany.
| | | | | | | | | |
Collapse
|
27
|
Ziemann C, Riecke A, Rüdell G, Oetjen E, Steinfelder HJ, Lass C, Kahl GF, Hirsch-Ernst KI. The role of prostaglandin E receptor-dependent signaling via cAMP in Mdr1b gene activation in primary rat hepatocyte cultures. J Pharmacol Exp Ther 2006; 317:378-86. [PMID: 16415092 DOI: 10.1124/jpet.105.094193] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Multidrug resistance (mdr) proteins of the mdr1 type function as multispecific xenobiotic transporters in hepatocytes. In the liver, mdr1 overexpression occurs during regeneration, cirrhosis, and hepatocarcinogenesis and may contribute to primary chemotherapy resistance. Cultured rat hepatocytes exhibit a time-dependent "intrinsic" increase in functional mdr1b expression, which depends on cyclooxygenase-catalyzed prostaglandin E(2) release. In the present study, the prostaglandin E (EP) receptor agonist misoprostol (1-10 microg/ml) further enhanced intrinsic mdr1b mRNA expression in primary rat hepatocytes. On the other hand, [1alpha(z),2beta,5alpha]-(+)-7-[5-[1,1'-(biphenyl)-4-yl]methoxy]-2-(4-morpholinyl)-3-oxocyclopentyl]-4-heptenoic acid (AH23848B) (30 microM), an antagonist of the cAMP-coupled EP4 receptor, and the protein kinase A (PKA) inhibitor, N-(2-[bromocinnamylamino]ethyl)-5-isoquinolinesulfonamide (H89) (10 nM), repressed intrinsic mdr1b mRNA up-regulation, whereas the stable cAMP analog 8-bromo-cAMP (10 microM) and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) (100 microM) further enhanced intrinsic mdr1b expression. Primary rat hepatocytes, transiently transfected with reporter gene constructs controlled by mdr1b 5'-gene-flanking regions [-1074 to +154 base pairs (bp) or -250 to +154 bp], demonstrated pronounced mdr1b promoter activity, already without the addition of exogenous modulators. Nevertheless, activity was further stimulated by misoprostol, 8-bromo-cAMP, or IBMX. Cotransfection with expression vectors for PKI, an inhibitor protein of cAMP-dependent PKA, or KCREB, a dominant-negative mutant of the cAMP-responsive element-binding protein (CREB), decreased high-intrinsic mdr1b promoter activity. KCREB also counteracted misoprostol-induced mdr1b promoter activation. In conclusion, these data provide evidence for a pivotal role of EP receptor-stimulated, cAMP-dependent activation of PKA and CREB or CREB-related proteins in mdr1b gene activation in primary rat hepatocytes. Thus, these data might offer potential new target structures for the reversal of primary drug resistance, for example, of liver tumors.
Collapse
Affiliation(s)
- Christina Ziemann
- Department of Toxicology, Institute of Pharmacology and Toxicology, University of Göttingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Wartenberg M, Hoffmann E, Schwindt H, Grünheck F, Petros J, Arnold JRS, Hescheler J, Sauer H. Reactive oxygen species-linked regulation of the multidrug resistance transporter P-glycoprotein in Nox-1 overexpressing prostate tumor spheroids. FEBS Lett 2005; 579:4541-4549. [PMID: 16083877 DOI: 10.1016/j.febslet.2005.06.078] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 06/21/2005] [Accepted: 06/23/2005] [Indexed: 12/14/2022]
Abstract
Expression of the multidrug resistance (MDR) transporter P-glycoprotein (P-gp) has been demonstrated to be regulated by hypoxia-inducible factor-1alpha (HIF-1alpha) and inhibited by intracellular reactive oxygen species (ROS). Herein, P-gp and HIF-1alpha expression were investigated in multicellular prostate tumor spheroids overexpressing the ROS-generating enzyme Nox-1 in comparison to the mother cell line DU-145. In Nox-1-overexpressing tumor spheroids (DU-145Nox1) generation of ROS as well as expression of Nox-1 was significantly increased as compared to DU-145 tumor spheroids. ROS generation was significantly inhibited in the presence of the NADPH-oxidase antagonists diphenylen-iodonium chloride (DPI) and 4-(2-aminoethyl)benzenesulfonyl fluoride (AEBSF). Albeit growth kinetic of DU-145Nox1 tumor spheroids was decreased as compared to DU-145 spheroids, elevated expression of Ki-67 was observed indicating increased cell cycle activity. In DU-145Nox1 tumor spheroids, expression of HIF-1alpha as well as P-gp was significantly decreased as compared to DU-145 spheroids, which resulted in an increased retention of the anticancer agent doxorubicin. Pretreatment with the free radical scavengers vitamin E and vitamin C increased the expression of P-gp as well as HIF-1alpha in Nox-1-overexpressing cells, whereas no effect of free radical scavengers was observed on mdr-1 mRNA expression. In summary, the data of the present study demonstrate that the development of P-gp-mediated MDR is abolished under conditions of elevated ROS levels, suggesting that the MDR phenotype can be circumvented by modest increase of intracellular ROS generation.
Collapse
Affiliation(s)
- Maria Wartenberg
- Department of Cell Biology, GKSS Research Center, Teltow, Germany
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Xing H, Wang S, Hu K, Tao W, Li J, Gao Q, Yang X, Weng D, Lu Y, Ma D. Effect of the cyclin-dependent kinases inhibitor p27 on resistance of ovarian cancer multicellular spheroids to anticancer chemotherapy. J Cancer Res Clin Oncol 2005; 131:511-9. [PMID: 15924242 DOI: 10.1007/s00432-005-0677-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Accepted: 02/14/2005] [Indexed: 10/25/2022]
Abstract
PURPOSE A low proliferating fraction in solid tumors limits the effectiveness of cell-cycle-dependent chemotherapeutic agents. To understand the molecular basis of such resistance, we examined the expression of the cyclin-dependent kinases inhibitor p27, and relationship with drug resistance and P-gp expression in ovarian cancer multicellular spheroids. METHODS We cultured ovarian cancer cells (A2780 and CAOV3) as multicellular spheroids and examined the expression of p27 and P-glycoprotein (P-gp) by western blot, flow cytometry and confocal. We also analyzed the cell-cycle distribution by flow cytometry. In addition, trypan blue exclusion testing and cell apoptosis analysis were used to detect the sensitivity to Taxol. RESULTS When transferred from monolayer to three-dimensional culture, a consistent upregulation of p27 protein and P-gp protein was observed in ovarian cancer cell lines. Compared with monolayer cells, there was a significant increase of G0-G1 phase cells and decrease of S and G2-M phase cells in spheroid cells. Aggregates of cells showed higher cell viability than monolayer cells. Antisense oligodeoxynucleotide (ASON) -mediated downregulation of p27 reduced intercellular adhesion, increased cell proliferation, downregulated P-gp expression and sensitized cells to Taxol. CONCLUSIONS Our results implicate that p27 serves as a regulator of drug resistance in ovarian tumors. ASON-mediated alteration of p27 reverses resistance of ovarian cancer to anticancer agents that are associated with increased sensitivity of ovarian cancer cells to chemotherapeutic agents.
Collapse
Affiliation(s)
- Hui Xing
- Department of Obsterics and Gynecology, Tongji Hospital Affiliated to Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wartenberg M, Gronczynska S, Bekhite MM, Saric T, Niedermeier W, Hescheler J, Sauer H. Regulation of the multidrug resistance transporter P-glycoprotein in multicellular prostate tumor spheroids by hyperthermia and reactive oxygen species. Int J Cancer 2005; 113:229-40. [PMID: 15389514 DOI: 10.1002/ijc.20596] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Hyperthermia is an important component of many cancer treatment protocols. In our study the regulation of the multidrug resistance (MDR) transporter P-glycoprotein by hyperthermia was studied in multicellular prostate tumor spheroids. Hyperthermia treatment of small (50-100 microm) tumor spheroids significantly increased P-glycoprotein and mdr-1 mRNA expression with a maximum effect at 42 degrees C, whereas only moderate elevation of P-glycoprotein was found in large (350-450 microm) tumor spheroids. Hyperthermia caused an elevation of intracellular reactive oxygen species (ROS). Inhibition of ROS generation with NADPH-oxidase inhibitors diphenylen iodonium (DPI) and 4-(2-aminoethyl)benzenesulfonyl fluoride (AEBSF) abolished P-glycoprotein expression but did not affect its transcript levels following heat treatment. This indicates that P-glycoprotein levels are controlled by regulating its translation rate or stability. Hyperthermia incubation resulted in a differential activation of p38 mitogen-activated protein kinase (MAPK), extracellular regulated kinase 1,2 (ERK1,2), and c-jun N-terminal kinase (JNK) immediately, 4 hr and 24 hr after treatment. Furthermore, upregulation of hypoxia-inducible factor 1alpha (HIF-1alpha) was observed. Elevation of HIF-1alpha and P-glycoprotein expression following hyperthermia treatment were abolished upon coadministration of the p38 inhibitor SB203580. In contrast the JNK inhibitor SP600125 and the ERK1,2 inhibitor UO126 resulted in increase of HIF-1alpha and P-glycoprotein in the control as well as the hyperthermia-treated samples, indicating negative regulation of intrinsic HIF-1alpha and P-glycoprotein expression by ERK1,2 and JNK signaling cascades. In summary our data demonstrate that hyperthermia-induced upregulation of P-glycoprotein and HIF-1alpha is mediated by activation of p38, whereas ERK1,2 and JNK are involved in repression of P-glycoprotein and HIF-1alpha under control conditions.
Collapse
Affiliation(s)
- Maria Wartenberg
- Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Ling S, Wu Y, Zheng J, Linden J, Holoshitz J. Genoprotective pathways. II. Attenuation of oxidative DNA damage by isopentenyl diphosphate. Mutat Res 2004; 554:33-43. [PMID: 15450402 DOI: 10.1016/j.mrfmmm.2004.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Revised: 02/28/2004] [Accepted: 02/29/2004] [Indexed: 10/26/2022]
Abstract
Oxidative stress is believed to play a role in the pathogenesis of many diseases. Here we report that isopentenyl diphosphate (IPP), the 5-carbon building unit of all isoprenoids, is a potent antioxidant that is capable of inhibiting oxidative DNA damage at picomolar concentrations (IC50 = 1.7 x 10(-11) M). The diphosphate moiety is essential, since isopentenyl monophosphate (IMP) is unable to trigger antioxidative signaling. The 20-carbon isoprenyl, geranylgeranyl diphosphate (GGPP), but not the 15-carbon farnesyl diphosphate, displays similar genoprotective effects. The pathway activated by IPP is distinct from that of 2-chloroadenosine (2CA). 2CA-mediated genoprotective signaling is transduced through an A2a or A2b adenosine receptor (AR) and can be blocked by the cyclic AMP (cAMP)-dependent protein kinase (PKA) inhibitor, H-89. In contrast, IPP signaling is independent of A2aAR, A2bAR, cAMP or PKA. Unlike the 2CA-mediated pathway, the effect of IPP is dependent on the mevalonate pathway, a geranylgeranylated protein and on intact proteasome activity. Thus, IPP is a potent activator of a novel genoprotective pathway. These findings shed new light on the role of isoprenoids in oxidative stress biology and may help to develop novel preventive strategies against oxidative damage.
Collapse
Affiliation(s)
- Song Ling
- Department of Internal Medicine, University of Michigan, 5520D MSRB1, Ann Arbor 48109-0680, USA
| | | | | | | | | |
Collapse
|
32
|
Francia G, Man S, Teicher B, Grasso L, Kerbel RS. Gene expression analysis of tumor spheroids reveals a role for suppressed DNA mismatch repair in multicellular resistance to alkylating agents. Mol Cell Biol 2004; 24:6837-49. [PMID: 15254249 PMCID: PMC444854 DOI: 10.1128/mcb.24.15.6837-6849.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Drug resistance is a major obstacle in the successful treatment of cancer. Thus, elucidation of the mechanisms responsible is a critical first step in trying to prevent or delay such manifestations of resistance. In this regard, three-dimensional multicellular tumor cell spheroids are intrinsically more resistant to virtually all anticancer cytotoxic drugs than conventional monolayer cultures. We have employed the EMT-6 subline PC5T, which forms highly compact spheroids, and differential display to identify candidate genes whose expression differs between monolayer and spheroids. Approximately 5,000 bands were analyzed, revealing 26 to be differentially expressed. Analysis of EMT-6 tumor variants selected in vivo for acquired resistance to alkylating agents identified eight genes whose expression correlated with drug resistance in tumor spheroids. Four genes (encoding Nop56, the NADH SDAP subunit, and two novel sequences) were found to be down-regulated in EMT-6 spheroids and four (encoding 2-oxoglutarate carrier protein, JTV-1, and two novel sequences) were up-regulated. Analysis of the DNA mismatch repair-associated PMS2 gene, which overlaps at the genomic level with the JTV-1 gene, revealed PMS2 mRNA to be down-regulated in tumor spheroids, which was confirmed at the protein level. Analysis of PMS2(-/-) mouse embryo fibroblasts confirmed a role for PMS2 in sensitivity to cisplatin, and DNA mismatch repair activity was found to be reduced in EMT-6 spheroids compared to monolayers. Dominant negative PMS2 transfection caused increased resistance to cisplatin in EMT-6 and CHO cells. Our results implicate reduced DNA mismatch repair as a determinant factor of reversible multicellular resistance of tumor cells to alkylating agents.
Collapse
MESH Headings
- Alkylating Agents/pharmacology
- Animals
- Base Pair Mismatch
- Base Sequence
- Blotting, Northern
- Blotting, Western
- CHO Cells
- Cell Line, Tumor
- Cisplatin/pharmacology
- Cricetinae
- DNA Repair
- Dose-Response Relationship, Drug
- Drug Resistance, Neoplasm
- Female
- Gene Expression Profiling
- Humans
- Mice
- Mice, Inbred BALB C
- Models, Genetic
- Molecular Sequence Data
- Oligonucleotide Array Sequence Analysis
- Polymerase Chain Reaction
- Protein Structure, Tertiary
- RNA/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Spheroids, Cellular/metabolism
- Time Factors
- Transfection
- Tumor Cells, Cultured
- Up-Regulation
Collapse
Affiliation(s)
- Giulio Francia
- Molecular and Cellular Biology Research, Sunnybrook and Women's College Health Sciences Centre, S-217 Research Building, 2075 Bayview Ave., Toronto, Ontario, Canada M4N 3M5
| | | | | | | | | |
Collapse
|
33
|
Wartenberg M, Schallenberg M, Hescheler J, Sauer H. Reactive oxygen species-mediated regulation of eNOS and iNOS expression in multicellular prostate tumor spheroids. Int J Cancer 2003; 104:274-82. [PMID: 12569550 DOI: 10.1002/ijc.10928] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nitric oxide (NO) generated by either endothelial nitric oxide synthase (eNOS) or inducible nitric oxide synthase (iNOS) may be involved in prostate tumorigenesis through the inhibition of reactive oxygen species (ROS)-induced apoptosis. Multicellular DU-145 prostate tumor spheroids endogenously generated NO that paralleled the production of ROS. With increasing spheroid size, eNOS expression was downregulated, whereas an upregulation of iNOS expression was observed. In parallel, NO generation declined, as evaluated by the NO indicator diaminofluorescein-2 diacetate (DAF-2DA), suggesting that NO generation in DU-145 tumor spheroids is mainly mediated by eNOS. Elevation of ROS by treatment of tumor spheroids with either buthionine sulfoximine (BSO) or hydrogen peroxide resulted in upregulation of eNOS, whereas iNOS was downregulated. Furthermore, eNOS expression was increased by epidermal growth factor (EGF) in a redox-sensitive manner. Upregulation of eNOS after treatment with hydrogen peroxide was apparently transduced through receptor tyrosine kinase signaling pathways since it was abolished by the protein kinase C (PKC) inhibitor bisindolylmaleimide-1 (BIM-1), the p21(ras) inhibitor S-trans-trans-farnesylthiosalicylic acid (FTS), the c-Raf inhibitor ZM 336372 and PD98059, which inhibits ERK1/2 activation. Endogenous NO may serve to escape from oxidative stress-induced apoptosis since treatment of tumor spheroids with the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl imidazoline-1-oxyl 3-oxide (carboxy-PTIO) as well as the NO synthase inhibitor N-omega-amino-L-arginine (L-NAA) increased cleaved caspase-3. Consequently, lowering intracellular NO levels with either L-NAA or PTIO significantly raised ROS levels, indicating that endogenously generated NO may play a role as a ROS scavenger, thereby protecting exponentially growing tumor spheroids from ROS-induced apoptosis.
Collapse
Affiliation(s)
- Maria Wartenberg
- Department of Neurophysiology, University of Cologne, Cologne, Germany
| | | | | | | |
Collapse
|
34
|
Gu Y, Wang C, Roifman CM, Cohen A. Role of MHC class I in immune surveillance of mitochondrial DNA integrity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:3603-7. [PMID: 12646623 DOI: 10.4049/jimmunol.170.7.3603] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mitochondrial DNA is subject to increased rates of mutations due to its proximity to the source of reactive oxygen species. Here we show that increased MHC class I (MHC I) expression serves to alert the immune system to cells with mitochondrial mutations. MHC I is overexpressed in fibroblasts with mitochondrial dysfunction from patients with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes and in lymphocytes from purine nucleoside phosphorylase-deficient immune-deficient mice with mitochondrial DNA deletions. Consistent with a role of MHC I in the elimination of cells containing mitochondrial DNA mutations, mice deficient in MHC I accumulate mitochondrial DNA deletions in various tissues. These observations in both mice and humans suggest a role for the immune system in preventing reversion of mitochondrial DNA back into a parasitic state following deleterious mutations affecting mitochondrial oxidative phosphorylation.
Collapse
Affiliation(s)
- Yiping Gu
- Division of Immunology and Allergy, Department of Pediatrics and Immunology, Research Institute, University of Toronto and Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
35
|
Mimeault M, Pommery N, Hénichart JP. New advances on prostate carcinogenesis and therapies: involvement of EGF-EGFR transduction system. Growth Factors 2003; 21:1-14. [PMID: 12795332 DOI: 10.1080/0897719031000094921] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The prostate cancers (PCs) are among the major causes of death because therapeutic treatments are not effective against advanced and metastatic forms of this cellular hyperproliferative disorder. In fact, although androgen-deprivation therapies permit to cure localized PC forms, the metastatic PC cells have acquired multiple functional features that confer to them resistance to ionizing radiations and anticarcinogenic drugs currently used in therapy. The present review describes last advances on molecular mechanisms that might be responsible for sustained growth and survival of PC cells. In particular, emphasis is on intracellular signaling cascades which are involved in the mitogenic and antiapoptotic effects of epidermal growth factor EGF-EGFR system. Of therapeutic interest, recent advances and prospects for development of new treatments against incurable forms of metastatic PC forms are also discussed.
Collapse
Affiliation(s)
- Murielle Mimeault
- Institut de Chimie Pharmaceutique Albert Lespagnol, Faculté de Pharmacie, 3 Rue du Professeur Laguesse, BP83, 59006 Lille, Cédex, France.
| | | | | |
Collapse
|
36
|
Wartenberg M, Ling FC, Müschen M, Klein F, Acker H, Gassmann M, Petrat K, Pütz V, Hescheler J, Sauer H. Regulation of the multidrug resistance transporter P-glycoprotein in multicellular tumor spheroids by hypoxia-inducible factor (HIF-1) and reactive oxygen species. FASEB J 2003; 17:503-5. [PMID: 12514119 DOI: 10.1096/fj.02-0358fje] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hypoxia in tumors is generally associated with chemoresistance and radioresistance. However, the correlation between the heterodimeric hypoxia-inducible factor-1 (HIF-1) and the multidrug resistance transporter P-glycoprotein (P-gp) has not been investigated. Herein, we demonstrate that with increasing size of DU-145 prostate multicellular tumor spheroids the pericellular oxygen pressure and the generation of reactive oxygen species decreased, whereas the alpha-subunit of HIF-1 (HIF-1alpha) and P-gp were up-regulated. Furthermore, P-gp was up-regulated under experimental physiological hypoxia and chemical hypoxia induced by either cobalt chloride or desferrioxamine. The pro-oxidants H2O2 and buthionine sulfoximine down-regulated HIF-1alpha and P-gp, whereas up-regulation was achieved with the radical scavengers dehydroascorbate, N-acetylcysteine, and vitamin E. The correlation of HIF-1alpha and P-gp expression was validated by the use of hepatoma tumor spheroids that were either wild type (Hepa1) or mutant (Hepa1C4) for aryl hydrocarbon receptor nuclear translocator (ARNT), i.e., HIF-1beta. Chemical hypoxia robustly increased HIF-1alpha as well as P-gp expression in Hepa1 tumor spheroids, whereas no changes were observed in Hepa1C4 spheroids. Hence, our data demonstrate that expression of P-gp in multicellular tumor spheroids is under the control of HIF-1.
Collapse
Affiliation(s)
- Maria Wartenberg
- Department of Neurophysiology, University of Cologne, D-50931 Cologne, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Sauer H, Stanelle R, Hescheler J, Wartenberg M. The DC electrical-field-induced Ca2+ response and growth stimulation of multicellular tumor spheroids are mediated by ATP release and purinergic receptor stimulation. J Cell Sci 2002; 115:3265-73. [PMID: 12140258 DOI: 10.1242/jcs.115.16.3265] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
It has been demonstrated that adenosine 5′-triphosphate (ATP) is actively secreted by cells, thereby eliciting Ca2+-dependent signal transduction cascades in an autocrine and paracrine manner. In the present study the effects of direct current (DC) electrical fields on ATP release, the intracellular Ca2+ concentration [Ca2+]i and growth of multicellular prostate tumor spheroids were investigated. Treatment of multicellular tumor spheroids by a single DC electrical field pulse with a field strength of 750 Vm-1 for 60 seconds resulted in a transient Ca2+ response, activation of c-Fos and growth stimulation. The initial [Ca2+]i signal was elicited at the anode-facing side of the spheroid and spread with a velocity of approximately 12 μm per second across the spheroid surface. The electrical-field-evoked Ca2+ response as well as c-Fos activation and growth stimulation of tumor spheroids were inhibited by pretreatment with the anion channel blockers NPPB, niflumic acid and tamoxifen. Furthermore, the Ca2+ response elicited by electrical field treatment was abolished following purinergic receptor desensitivation by repetitive treatment of tumor spheroids with ATP and pretreatment with the purinergic receptor antagonist suramin as well as with apyrase. Electrical field treatment of tumor spheroids resulted in release of ATP into the supernatant as evaluated by luciferin/luciferase bioluminescence. ATP release was efficiently inhibited in the presence of anion channel blockers. Our data suggest that electrical field treatment of multicellular tumor spheroids results in ATP release, which concomitantly activates purinergic receptors, elicits a Ca2+ wave spreading through the tumor spheroid tissue and stimulates tumor growth.
Collapse
Affiliation(s)
- Heinrich Sauer
- Department of Neurophysiology, University of Cologne, Robert-Koch-Strasse 39, D-50931 Cologne, Germany
| | | | | | | |
Collapse
|
38
|
Ziemann C, Schäfer D, Rüdell G, Kahl GF, Hirsch-Ernst KI. The cyclooxygenase system participates in functional mdr1b overexpression in primary rat hepatocyte cultures. Hepatology 2002; 35:579-88. [PMID: 11870370 DOI: 10.1053/jhep.2002.31778] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Overexpression of mdr1-type P-glycoproteins (P-gps) is thought to contribute to primary chemotherapy resistance of untreated hepatocellular carcinoma. However, mechanisms of endogenous multidrug resistance 1 (mdr1) gene activation still remain unclear. Because recent studies have demonstrated overexpression of cyclooxygenase-2 (COX-2) in hepatocytes during early stages of hepatocarcinogenesis, we investigated whether the COX system, which catalyzes the rate-limiting step in prostaglandin synthesis, participates in mdr1 gene regulation. In the present study, primary rat hepatocyte cultures, exhibiting time-dependent mdr1b overexpression, demonstrated basal COX-2 and COX-1 mRNA expression and liberation of prostaglandin E(2) (PGE(2)), indicative of an active COX-dependent arachidonic acid metabolism. PGE(2) accumulation in culture supernatants was further enhanced by arachidonic acid (1mumol/L) and epidermal growth factor (EGF) (16 nmol/L). PGE(2) and prostaglandin F(2alpha) (PGF(2)alpha) (3-6mug/mL), added directly to the culture medium, significantly up-regulated intrinsic mdr1b mRNA overexpression and mdr1-dependent transport activity. Up-regulation was maximal after 3 days of culture. Like prostaglandins, the COX substrate, arachidonic acid, also induced mdr1b gene expression. Apart from this, structurally different COX inhibitors (indomethacin, meloxicam, NS-398) mediated significant inhibition of time-dependent and EGF-induced mdr1b mRNA overexpression, resulting in enhanced intracellular accumulation of the mdr1 substrate, rhodamine 123 (Rho123). Thus, the present data support the conclusion that the release of prostaglandins through activation of the COX system participates in endogenous mdr1b gene regulation. COX-2 inhibition might constitute a new strategy to counteract primary mdr1-dependent chemotherapy resistance.
Collapse
Affiliation(s)
- Christina Ziemann
- Department of Toxicology, Institute of Pharmacology and Toxicology, University of Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany.
| | | | | | | | | |
Collapse
|
39
|
Wartenberg M, Fischer K, Hescheler J, Sauer H. Modulation of intrinsic P-glycoprotein expression in multicellular prostate tumor spheroids by cell cycle inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1589:49-62. [PMID: 11909640 DOI: 10.1016/s0167-4889(01)00185-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The effects of cell cycle inhibition on the expression of the multidrug resistance transporter P-glycoprotein (P-gp) as well as of the cyclin-dependent kinase (CDK) inhibitors p27(Kip1) and p21(WAF-1) were investigated in DU-145 prostate tumor spheroids. With increasing spheroid size the number of cells in the G0/G1 phase augmented, whereas the number of cells in the G2/M phase and the S phase of the cell cycle declined. The number of G0/G1 cells was elevated after incubation with either mimosine, staurosporine or serum-free medium. Mitomycin C and roscovitine increased the number of S phase cells. Roscovitine additionally increased cells in the G2/M phase. Incubation in serum-free medium upregulated p21(WAF-1), p27(Kip1) and P-gp. Mimosine treatment resulted in upregulation of p27(Kip1) and P-gp, whereas p21(WAF-1) remained unchanged. Upon roscovitine treatment p27(Kip1) and p21(WAF-1) were downregulated, whereas P-gp was unaltered. Mitomycin C treatment resulted in downregulation of p27(Kip1) and p21(WAF-1); no significant change in P-gp levels was observed. Staurosporine induced upregulation of p21(WAF-1) whereas p27(Kip1) remained unaltered. P-gp was downregulated upon staurosporine treatment, which was owing to an elevation of intracellular reactive oxygen species by this compound. It is concluded that upregulation of P-gp in G0/G1 phase cells requires coexpression of the CDK inhibitor p27(Kip1) but not the CDK inhibitor p21(WAF-1).
Collapse
Affiliation(s)
- Maria Wartenberg
- Department of Neurophysiology, University of Cologne, Robert-Koch-Strasse 39, D-50931 Cologne, Germany
| | | | | | | |
Collapse
|
40
|
Felix RA, Barrand MA. P-glycoprotein expression in rat brain endothelial cells: evidence for regulation by transient oxidative stress. J Neurochem 2002; 80:64-72. [PMID: 11796744 DOI: 10.1046/j.0022-3042.2001.00660.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During ischaemia/reperfusion, cells of the blood-brain barrier are subjected to oxidative stress. This study uses primary cultured rat brain endothelial cells to examine the effect of such stresses on expression of multidrug transporters. H(2)O(2) up to 500 microm applied to cell monolayers caused a concentration-dependent increase in expression of P-glycoprotein (Pgp) but not of multidrug resistance-associated protein (Mrp1). Concentrations > 250 microm H(2)O(2) decreased cell viability. Application of 100 microm H(2)O(2) caused a significant increase after 48 h in Pgp functional activity, as assessed from [(3)H]vincristine accumulation experiments. At this concentration, H(2)O(2) produced a transient increase within 10 min followed by a sustained decrease in levels of intracellular reactive oxygen species (iROS), detectable by flow cytometry. Reoxygenation of cell monolayers after 6 h hypoxia gave rise to a similar transient increase in iROS and this also led to increased Pgp expression by 24 h. Increases were also observed within 4 h after both H(2)O(2) and hypoxia/reoxygenation treatments in mdr1a and mdr1b mRNA. Evidence suggests this was due to enhanced transcription rather than mRNA stabilization. Therefore, oxidative stress, by changing Pgp expression, may affect movement of Pgp substrates in and out of the brain.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/physiology
- ATP-Binding Cassette Transporters/genetics
- Animals
- Cell Hypoxia/physiology
- Cell Survival/drug effects
- Cells, Cultured
- Cerebrovascular Circulation
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Hydrogen Peroxide/pharmacology
- Intracellular Membranes/metabolism
- Multidrug Resistance-Associated Proteins/genetics
- Osmolar Concentration
- Oxidants/pharmacology
- Oxidative Stress
- Oxygen/pharmacology
- RNA, Messenger/metabolism
- Rats
- Reactive Oxygen Species/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
Affiliation(s)
- Robert A Felix
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, UK.
| | | |
Collapse
|
41
|
Pariante CM, Makoff A, Lovestone S, Feroli S, Heyden A, Miller AH, Kerwin RW. Antidepressants enhance glucocorticoid receptor function in vitro by modulating the membrane steroid transporters. Br J Pharmacol 2001; 134:1335-43. [PMID: 11704655 PMCID: PMC1573058 DOI: 10.1038/sj.bjp.0704368] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. Previous data demonstrate that the tricyclic antidepressant, desipramine, induces glucocorticoid receptor (GR) translocation from the cytoplasm to the nucleus in L929 cells and increases dexamethasone-induced GR-mediated gene transcription in L929 cells stably transfected with the mouse mammary tumour virus-chloramphenicol acetyltransferase (MMTV-CAT) reporter gene (LMCAT cells) (Pariante et al., 1997). 2. To extend these findings, the present study has investigated the effects of 24 h coincubation of LMCAT cells with dexamethasone and amitriptyline, clomipramine, paroxetine, citalopram or fluoxetine. 3. All antidepressants, except fluoxetine, enhanced GR-mediated gene transcription, with clomipramine having the greatest effect (10 fold increase). Twenty-four hours coincubation of cells with desipramine, clomipramine or paroxetine, also enhanced GR function in the presence of cortisol, but not of corticosterone. 4. It is proposed that these effects are due to the antidepressants inhibiting the L929 membrane steroid transporter, which actively extrudes dexamethasone and cortisol from the cell, but not corticosterone. This is further confirmed by the fact that clomipramine failed to enhance GR-mediated gene transcription in the presence of dexamethasone when the membrane steroid transporter was blocked by verapamil. 5. The membrane steroid transporters that regulate access of glucocorticoids to the brain in vivo, like the multiple drug resistance p-glycoprotein, could be a fundamental target for antidepressant action.
Collapse
Affiliation(s)
- C M Pariante
- Section of Clinical Neuropharmacology, Institute of Psychiatry, King's College London, London SE5 8AF.
| | | | | | | | | | | | | |
Collapse
|
42
|
Sauer H, Klimm B, Hescheler J, Wartenberg M. Activation of p90RSK and growth stimulation of multicellular tumor spheroids are dependent on reactive oxygen species generated after purinergic receptor stimulation by ATP. FASEB J 2001; 15:2539-41. [PMID: 11641267 DOI: 10.1096/fj.01-0360fje] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mitogenic stimulation by growth factors may be mediated through intracellular reactive oxygen species (ROS) acting as signaling molecules. Incubation of multicellular prostate tumor spheroids with adenosine 5' triphosphate (ATP) dose-dependently stimulated tumor growth. ATP, uridine 5'-triphosphate (UTP), adenosine 5'-diphosphate (ADP), and 2-methylthio-ATP (2-MeS-ATP) increased intracellular ROS levels significantly. ROS generation by ATP was inhibited by the P2 receptor antagonist suramin, by the reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors diphenylene iodonium chloride (DPI) and 4-(2-aminoethyl) benzenesulfonylfluoride (AEBSF), as well as by the Ca2+-dependent phospholipase A2 (PLA2) inhibitors indomethacin and methyl arachidonyl fluorophosphonate (MAFP). The generation of ROS was dependent on the intracellular Ca2+ response evoked by ATP. Exogenous ATP activated the extracellular signal-regulated kinase 1/2 (ERK1/2) mitogen-activated protein kinase (MAPK) pathway, which was blunted by the MAPK/ERK kinase 1/2 (MEK1/2) antagonist PD98059. The radical scavengers vitamin E, dimethyl thiourea (DMTU), and N-acetyl cysteine (NAC) failed to inhibit ERK1/2 activation but abolished p90 ribosomal S6 kinase (p90RSK) activation downstream of ERK1/2, as well as the growth stimulation of tumor spheroids. Our data indicate that p90RSK downstream of ERK1/2 is the molecular target for ROS generated through stimulation of purinergic receptors by ATP.
Collapse
Affiliation(s)
- H Sauer
- Department of Neurophysiology, University of Cologne, D-50931 Cologne, Germany
| | | | | | | |
Collapse
|
43
|
Abstract
Recent literature regarding drug-drug, herb-drug, and food-drug interactions must not be ignored; nor can they always be taken at face value. Studies have shown that St. John's wort (SJW) (Hypericum perforatum) can reduce plasma levels of indinavir, cyclosporin, digoxin, and possibly other drugs as well. Current knowledge regarding the metabolism of these medications suggests that the cytochrome P450 (CYP) drug metabolizing enzyme systems cannot account for all these effects. It has been reported that the P-glycoprotein (Pgp) transmembrane pump is also induced by SJW. Medications that are substrates of both CYP 3A4 and Pgp are of particular concern and may pose special interaction risks when combined with certain foods or botanical products such as SJW.
Collapse
Affiliation(s)
- J M Cott
- PsychoFarmacology Consulting Services, College Park, MD, USA.
| |
Collapse
|
44
|
Wartenberg M, Ling FC, Schallenberg M, Bäumer AT, Petrat K, Hescheler J, Sauer H. Down-regulation of intrinsic P-glycoprotein expression in multicellular prostate tumor spheroids by reactive oxygen species. J Biol Chem 2001; 276:17420-8. [PMID: 11279018 DOI: 10.1074/jbc.m100141200] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Intrinsic expression of the multidrug resistance (MDR) transporter P-glycoprotein (Pgp) may be regulated by reactive oxygen species (ROS). A transient expression of Pgp was observed during the growth of multicellular tumor spheroids. Maximum Pgp expression occurred in tumor spheroids with a high percentage of quiescent, Ki-67-negative cells, elevated glutathione levels, increased expression of the cyclin-dependent kinase inhibitors p27Kip1 and p21WAF-1 as well as reduced ROS levels and minor activity of the mitogen-activated kinase (MAPK) members c-Jun amino-terminal kinase (JNK), extracellular signal-regulated kinase ERK1,2, and p38 MAPK. Raising intracellular ROS by depletion of glutathione with buthionine sulfoximine (BSO) or glutamine starvation resulted in down-regulation of Pgp and p27Kip1, whereas ERK1,2 and JNK were activated. Down-regulation of Pgp was furthermore observed with low concentrations of hydrogen peroxide and epidermal growth factor, indicating that ROS may regulate Pgp expression. The down-regulation of Pgp following BSO treatment was abolished by agents interfering with receptor tyrosine kinase signaling pathways, i.e. the protein kinase C inhibitors bisindolylmaleimide I (BIM-1) and Ro-31-8220, the p21ras farnesyl protein transferase inhibitor III, the c-Raf inhibitor ZM 336372 and PD98059, which inhibits ERK1,2 activation. ROS involved as second messengers in receptor tyrosine kinase signaling pathways may act as negative regulators of Pgp expression.
Collapse
Affiliation(s)
- M Wartenberg
- Department of Neurophysiology and the Department III for Internal Medicine, University of Cologne, D-50931 Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|