1
|
Kim EM, Bae YM, Choi MH, Hong ST. Connexin 43 plays an important role in the transformation of cholangiocytes with Clonochis sinensis excretory-secretory protein and N-nitrosodimethylamine. PLoS Negl Trop Dis 2019; 13:e0006843. [PMID: 30943209 PMCID: PMC6464552 DOI: 10.1371/journal.pntd.0006843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 04/15/2019] [Accepted: 12/11/2018] [Indexed: 12/13/2022] Open
Abstract
Background Clonorchis sinensis is a group I bio-carcinogen responsible for cholangiocarcinoma (CHCA) in humans. However, the mechanism by which C. sinensis promotes carcinogenesis is unclear. Methodology Using the human cholangiocyte line H69, we investigated cell proliferation and gap junction protein expression after stimulation with the hepatotoxin N-nitrosodimethylamine (NDMA) and/or excretory-secretory products (ESP) of C. sinensis, which induce inflammation. NDMA and ESP treatment increased proliferation by 146% and the proportion of cells in the G2/M phase by 37%. Moreover, the expression of the cell proliferation-related proteins E2F1, Ki-67, and cancer related protein cytokeratin 19 and Cox-2 increased in response to combined treatment with NDMA and ESP. The gap-junction proteins connexin (Cx) 43 and Cx26 increased. In contrast, Cx32 expression decreased in cells treated with NDMA and ESP. Silencing of Cx43 reduced cell proliferation and significantly suppressed Cx26 and Cox-2 expression. Conclusions These results suggest that Cx43 is an important factor in CHCA induced by C. sinensis ESP and NDMA and further investigations targeting this pathway may allow prevention of this deadly disease. Clonorchis sinensis, a human fluke, resides in the liver of humans and is commonly found in the common bile duct and gall bladder. This parasite is the main cause of cholangiocarcinoma, also called bile duct cancer, in humans. Of note, the excretory-secretory products (ESP) of C. sinensis are known to cause inflammation in the biliary epithelium, which may ultimately result in neoplasms via production of reactive oxygen species and subsequent DNA damage. Together with N-nitrosodimethylamine (NDMA), a potent hepatotoxin that can cause fibrosis and tumors in the liver, ESP led to an increase in the growth and proliferation of cholangiocytes. Our results showed that examination of changes in the expression of gap junction proteins, which are related to tumorigenesis, showed that connexin 43 was upregulated with ESPs from C. sinensis and NDMA. Together, our results suggest that exposure to C. sinensis, in addition to low levels of carcinogen could promote carcinogenesis in the bile duct epithelium via uncontrolled cell-to-cell communication. Moreover, silencing of Cx43 reduced cancer related protein. Therefore, Cx 43 can serve as a potential target for developing a therapeutic strategy for the treatment of cholangiocarcinoma in humans.
Collapse
Affiliation(s)
- Eun-Min Kim
- Department of Environmental Medical Biology and Arthropods of Medical Importance Resource Research Bank, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Mee Bae
- Department of Parasitology and Tropical Medicine and Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Min-Ho Choi
- Department of Parasitology and Tropical Medicine and Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung-Tae Hong
- Department of Parasitology and Tropical Medicine and Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
2
|
Genetic susceptibility to bone and soft tissue sarcomas: a field synopsis and meta-analysis. Oncotarget 2018; 9:18607-18626. [PMID: 29719630 PMCID: PMC5915097 DOI: 10.18632/oncotarget.24719] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/07/2018] [Indexed: 12/18/2022] Open
Abstract
Background The genetic architecture of bone and soft tissue sarcomas susceptibility is yet to be elucidated. We aimed to comprehensively collect and meta-analyze the current knowledge on genetic susceptibility in these rare tumors. Methods We conducted a systematic review and meta-analysis of the evidence on the association between DNA variation and risk of developing sarcomas through searching PubMed, The Cochrane Library, Scopus and Web of Science databases. To evaluate result credibility, summary evidence was graded according to the Venice criteria and false positive report probability (FPRP) was calculated to further validate result noteworthiness. Integrative analysis of genetic and eQTL (expression quantitative trait locus) data was coupled with network and pathway analysis to explore the hypothesis that specific cell functions are involved in sarcoma predisposition. Results We retrieved 90 eligible studies comprising 47,796 subjects (cases: 14,358, 30%) and investigating 1,126 polymorphisms involving 320 distinct genes. Meta-analysis identified 55 single nucleotide polymorphisms (SNPs) significantly associated with disease risk with a high (N=9), moderate (N=38) and low (N=8) level of evidence, findings being classified as noteworthy basically only when the level of evidence was high. The estimated joint population attributable risk for three independent SNPs (rs11599754 of ZNF365/EGR2, rs231775 of CTLA4, and rs454006 of PRKCG) was 37.2%. We also identified 53 SNPs significantly associated with sarcoma risk based on single studies.Pathway analysis enabled us to propose that sarcoma predisposition might be linked especially to germline variation of genes whose products are involved in the function of the DNA repair machinery. Conclusions We built the first knowledgebase on the evidence linking DNA variation to sarcomas susceptibility, which can be used to generate mechanistic hypotheses and inform future studies in this field of oncology.
Collapse
|
3
|
Schalper KA, Carvajal-Hausdorf D, Oyarzo MP. Possible role of hemichannels in cancer. Front Physiol 2014; 5:237. [PMID: 25018732 PMCID: PMC4073485 DOI: 10.3389/fphys.2014.00237] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 06/09/2014] [Indexed: 12/12/2022] Open
Abstract
In humans, connexins (Cxs) and pannexins (Panxs) are the building blocks of hemichannels. These proteins are frequently altered in neoplastic cells and have traditionally been considered as tumor suppressors. Alteration of Cxs and Panxs in cancer cells can be due to genetic, epigenetic and post-transcriptional/post-translational events. Activated hemichannels mediate the diffusional membrane transport of ions and small signaling molecules. In the last decade hemichannels have been shown to participate in diverse cell processes including the modulation of cell proliferation and survival. However, their possible role in tumor growth and expansion remains largely unexplored. Herein, we hypothesize about the possible role of hemichannels in carcinogenesis and tumor progression. To support this theory, we summarize the evidence regarding the involvement of hemichannels in cell proliferation and migration, as well as their possible role in the anti-tumor immune responses. In addition, we discuss the evidence linking hemichannels with cancer in diverse models and comment on the current technical limitations for their study.
Collapse
Affiliation(s)
- Kurt A Schalper
- Servicio Anatomía Patológica, Clínica Alemana de Santiago, Facultad de Medicina Clinica Alemana Universidad del Desarrollo Santiago, Chile ; Department of Pathology, Yale School of Medicine New Haven, CT, USA
| | | | - Mauricio P Oyarzo
- Servicio Anatomía Patológica, Clínica Alemana de Santiago, Facultad de Medicina Clinica Alemana Universidad del Desarrollo Santiago, Chile
| |
Collapse
|
4
|
D'hondt C, Iyyathurai J, Vinken M, Rogiers V, Leybaert L, Himpens B, Bultynck G. Regulation of connexin- and pannexin-based channels by post-translational modifications. Biol Cell 2013; 105:373-98. [PMID: 23718186 DOI: 10.1111/boc.201200096] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 05/24/2013] [Indexed: 12/28/2022]
Abstract
Connexin (Cx) and pannexin (Panx) proteins form large conductance channels, which function as regulators of communication between neighbouring cells via gap junctions and/or hemichannels. Intercellular communication is essential to coordinate cellular responses in tissues and organs, thereby fulfilling an essential role in the spreading of signalling, survival and death processes. The functional properties of gap junctions and hemichannels are modulated by different physiological and pathophysiological stimuli. At the molecular level, Cxs and Panxs function as multi-protein channel complexes, regulating their channel localisation and activity. In addition to this, gap junctional channels and hemichannels are modulated by different post-translational modifications (PTMs), including phosphorylation, glycosylation, proteolysis, N-acetylation, S-nitrosylation, ubiquitination, lipidation, hydroxylation, methylation and deamidation. These PTMs influence almost all aspects of communicating junctional channels in normal cell biology and pathophysiology. In this review, we will provide a systematic overview of PTMs of communicating junction proteins and discuss their effects on Cx and Panx-channel activity and localisation.
Collapse
Affiliation(s)
- Catheleyne D'hondt
- Laboratory of Molecular and Cellular Signalling, Department Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O/N 1, BE-3000, Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
5
|
Vinken M, de Kock J, Oliveira AG, Menezes GB, Cogliati B, Dagli MLZ, Vanhaecke T, Rogiers V. Modifications in Connexin Expression in Liver Development and Cancer. ACTA ACUST UNITED AC 2012; 19:55-62. [DOI: 10.3109/15419061.2012.712576] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
6
|
Witte MH, Dellinger MT, Papendieck CM, Boccardo F. Overlapping biomarkers, pathways, processes and syndromes in lymphatic development, growth and neoplasia. Clin Exp Metastasis 2012; 29:707-27. [PMID: 22798218 DOI: 10.1007/s10585-012-9493-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 05/20/2012] [Indexed: 12/19/2022]
Abstract
Recent discoveries in molecular lymphology, developmental biology, and tumor biology in the context of long-standing concepts and observations on development, growth, and neoplasia implicate overlapping pathways, processes, and clinical manifestations in developmental disorders and cancer metastasis. Highlighted in this review are some of what is known (and speculated) about the genes, proteins, and signaling pathways and processes involved in lymphatic/blood vascular development in comparison to those involved in cancer progression and spread. Clues and conundra from clinical disorders that mix these processes and mute them, including embryonic rests, multicentric nests of displaced cells, uncontrolled/invasive "benign" proliferation and lymphogenous/hematogenous "spread", represent a fine line between normal development and growth, dysplasia, benign and malignant neoplasia, and "metastasis". Improved understanding of these normal and pathologic processes and their underlying pathomechanisms, e.g., stem cell origin and bidirectional epithelial-mesenchymal transition, could lead to more successful approaches in classification, treatment, and even prevention of cancer and a whole host of other diseases.
Collapse
Affiliation(s)
- Marlys H Witte
- Department of Surgery, University of Arizona College of Medicine, 1501 N. Campbell Avenue, Tucson, AZ 85724-5200, USA.
| | | | | | | |
Collapse
|
7
|
Connexins in atherosclerosis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:157-66. [PMID: 22609170 DOI: 10.1016/j.bbamem.2012.05.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 04/26/2012] [Accepted: 05/04/2012] [Indexed: 11/20/2022]
Abstract
Atherosclerosis, a chronic inflammatory disease of the vessel wall, involves multiple cell types of different origins, and complex interactions and signaling pathways between them. Autocrine and paracrine communication pathways provided by cytokines, chemokines, growth factors and lipid mediators are central to atherogenesis. However, it is becoming increasingly recognized that a more direct communication through both hemichannels and gap junction channels formed by connexins also plays an important role in atherosclerosis development. Three main connexins are expressed in cells involved in atherosclerosis: Cx37, Cx40 and Cx43. Cx37 is found in endothelial cells, monocytes/macrophages and platelets, Cx40 is predominantly an endothelial connexin, and Cx43 is found in a large variety of cells such as smooth muscle cells, resident and circulating leukocytes (neutrophils, dendritic cells, lymphocytes, activated macrophages, mast cells) and some endothelial cells. Here, we will systematically review the expression and function of connexins in cells and processes underlying atherosclerosis. This article is part of a Special Issue entitled: The Communicating junctions, roles and dysfunctions.
Collapse
|
8
|
Fang JS, Angelov SN, Simon AM, Burt JM. Cx37 deletion enhances vascular growth and facilitates ischemic limb recovery. Am J Physiol Heart Circ Physiol 2011; 301:H1872-81. [PMID: 21856908 PMCID: PMC3213969 DOI: 10.1152/ajpheart.00683.2011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 08/15/2011] [Indexed: 12/27/2022]
Abstract
The unique contributions of connexin (Cx)37 and Cx40, gap junction-forming proteins that are coexpressed in vascular endothelium, to the recovery of tissues from ischemic injury are unknown. We recently reported that Cx37-deficient (Cx37(-/-)) animals recovered ischemic hindlimb function more quickly and to a greater extent than wild-type (WT) or Cx40(-/-) animals, suggesting that Cx37 limits recovery in the WT animal. Here, we tested the hypothesis that enhanced angiogenesis, arteriogenesis, and vasculogenesis contribute to improved postischemic hindlimb recovery in Cx37(-/-) animals. Ischemia was induced unilaterally in the hindlimbs of WT or Cx37(-/-) mice (isoflurane anesthesia). Postsurgical limb appearance, use, and perfusion were documented during recovery, and the number (and size) of large and small vessels was determined. Native collateral number, predominantly established during embryonic development (vasculogenesis), was also determined in the pial circulation. Both microvascular density in the gastrocnemius of the ischemic limb (an angiogenic field) and the number and tortuosity of larger vessels in the gracilis vasculature (an arteriogenic field) were increased in Cx37(-/-) animals compared with WT animals. Cx37(-/-) mice also had an increased (vs. WT) number of collateral vessels in the pial circulation. These findings suggest that in Cx37(-/-) animals, improved recovery of the ischemic hindlimb involves enhanced vasculogenesis, resulting in increased numbers of collaterals in the hindlimb (and pial circulations) and more extensive collateral remodeling and angiogenesis. These results are consistent with Cx37 exerting a growth-suppressive effect in the vasculature that limits embryonic vasculogenesis as well as arteriogenic and angiogenic responses to ischemic injury in the adult animal.
Collapse
Affiliation(s)
- Jennifer S Fang
- Department of Physiology, University of Arizona, Tucson, Arizona, USA
| | | | | | | |
Collapse
|
9
|
Morel S, Burnier L, Roatti A, Chassot A, Roth I, Sutter E, Galan K, Pfenniger A, Chanson M, Kwak BR. Unexpected role for the human Cx37 C1019T polymorphism in tumour cell proliferation. Carcinogenesis 2010; 31:1922-31. [PMID: 20705954 DOI: 10.1093/carcin/bgq170] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Connexins are a large family of proteins that form gap junction channels allowing exchange of ions and small metabolites between neighboring cells. They have been implicated in pathological processes such as tumourigenesis in which they may act as tumour suppressors. A polymorphism in the human connexin37 (Cx37) gene (C1019T), resulting in a non-conservative amino acid change in the regulatory C-terminus (CT) of the Cx37 protein (P319S) has been suggested to be implicated in predisposition to angiosarcomas. In this study, we have used communication-deficient HeLa and SK-HEP-1 cells transfected with Cx37-319S, Cx37-319P or empty vector. We showed that the expression of Cx37-319P limited proliferation of HeLa and SK-HEP-1 cells, whereas Cx37-319S expression was without effect. Using an in vitro kinase assay, we demonstrated phosphorylation of Cx37 CT by glycogen synthase kinase-3 (GSK-3), a kinase known to be implicated in cell proliferation and cancer. GSK-3-induced phosphorylation was associated with reduced gap junctional intercellular communication (GJIC) as measured by microinjection of the tracer neurobiotin. Inhibition of GSK-3 by LiCl or SB415286 reduced phosphorylation of Cx37-319P and increased GJIC. This latter effect on GJIC involved the beta and not the alpha isoform of GSK-3. In contrast, GSK-3 inhibitors were without effect on HeLa cells expressing Cx37-319S. In conclusion, our data indicate functional effects of the Cx37 C1019T polymorphism on GJIC that might contribute to tumour cell growth.
Collapse
Affiliation(s)
- Sandrine Morel
- Department of Pathology and Immunology, University of Geneva, 64 avenue de la Roseraie, Geneva, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Vinken M, Henkens T, De Rop E, Fraczek J, Vanhaecke T, Rogiers V. Biology and pathobiology of gap junctional channels in hepatocytes. Hepatology 2008; 47:1077-88. [PMID: 18058951 DOI: 10.1002/hep.22049] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The present review provides the state of the art of the current knowledge concerning gap junctional channels and their roles in liver functioning. In the first part, we summarize some relevant biochemical properties of hepatic gap junctional channels, including their structure and regulation. In the second part, we discuss the involvement of gap junctional channels in the occurrence of liver cell growth, liver cell differentiation, and liver cell death. We further exemplify their relevance in hepatic pathophysiology. Finally, a number of directions for future liver gap junctional channel research are proposed, and the up-regulation of gap junctional channel activity as a novel strategy in (liver) cancer therapy is illustrated.
Collapse
Affiliation(s)
- Mathieu Vinken
- Department of Toxicology, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
11
|
Vinken M, Papeleu P, Snykers S, De Rop E, Henkens T, Chipman JK, Rogiers V, Vanhaecke T. Involvement of cell junctions in hepatocyte culture functionality. Crit Rev Toxicol 2006; 36:299-318. [PMID: 16809101 DOI: 10.1080/10408440600599273] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In liver, like in other multicellular systems, the establishment of cellular contacts is a prerequisite for normal functioning. In particular, well-defined cell junctions between hepatocytes, including adherens junctions, desmosomes, tight junctions, and gap junctions, are known to play key roles in the performance of liver-specific functionality. In a first part of this review article, we summarize the current knowledge concerning cell junctions and their roles in hepatic (patho)physiology. In a second part, we discuss their relevance in liver-based in vitro modeling, thereby highlighting the use of primary hepatocyte cultures as suitable in vitro models for preclinical pharmaco-toxicological testing. We further describe the actual strategies to regain and maintain cell junctions in these in vitro systems over the long-term.
Collapse
Affiliation(s)
- Mathieu Vinken
- Department of Toxicology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Yi ZC, Liu YZ, Li HX, Yin Y, Zhuang FY, Fan YB, Wang Z. Tellimagrandin I enhances gap junctional communication and attenuates the tumor phenotype of human cervical carcinoma HeLa cells in vitro. Cancer Lett 2005; 242:77-87. [PMID: 16338066 DOI: 10.1016/j.canlet.2005.10.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2005] [Revised: 10/26/2005] [Accepted: 10/26/2005] [Indexed: 10/25/2022]
Abstract
Tellimagrandin I and chebulinic acid, two hydrolysable tannins, have been shown to exert anti-tumor properties. Dysfunctional gap junctional communication (GJIC) has been recognized as being involved in carcinogenesis. The human cervical carcinoma HeLa cells have been reported to be deficient in functional GJIC. In present study, we investigated whether tellimagrandin I and chebulinic acid might restore functional GJIC in HeLa cells. Both compounds could inhibit the growth of HeLa cells. Either Lucifer yellow transfer assay or calcein transfer assay demonstrated that tellimagrandin I improved GJIC in HeLa cells while chebulinic acid showed no effect on GJIC. The GJIC enhancement by tellimagrandin I occurred along with an increase of Cx43 gene expression at mRNA and protein levels. Exposure to tellimagrandin I also led to inhibition of proliferation and anchorage-independent growth of HeLa cells. In addition, tellimagrandin I decreased the percentage of cells in the G0/G1 and G2/M phases coinciding with an increase in the percentage of cells in the S phase. The accumulation of cells in S phase was coupled with a decreased expression of cyclin A that was critical to the progression of S phase. These results suggested that restoring GJIC might be one explanation for tellimagrandin I antitumor effects, whereas chebulinic acid exerted antitumor action through other pathways.
Collapse
Affiliation(s)
- Zong-Chun Yi
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Mesnil M, Crespin S, Avanzo JL, Zaidan-Dagli ML. Defective gap junctional intercellular communication in the carcinogenic process. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1719:125-45. [PMID: 16359943 DOI: 10.1016/j.bbamem.2005.11.004] [Citation(s) in RCA: 253] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 11/07/2005] [Accepted: 11/10/2005] [Indexed: 01/07/2023]
Abstract
Gap junctions are membrane structures made of intercellular channels which permit the diffusion from cytoplasm to cytoplasm of small hydrophilic molecules. Nearly 40 years ago, the loss of functional gap junctions has been described in cancer cells and led to the hypothesis that such type of intercellular communication is involved in the carcinogenesis process. From this time, a lot of data has been accumulated confirming that gap junctions are frequently decreased or absent in cancer cells whatever their tissue and species origins. Here, we review such data by insisting on the possible links existing between altered gap-junctional intercellular communication capacity (or the altered expression of their constitutive proteins, the connexins) and the stages of cancer progression in various cancer models. Then, we analyse particular aspects of the disturbance of connexin-mediated communication in cancer such as the cytoplasmic localization of connexins, the lack of heterologous communication between cancer cells and normal cells, the role of connexin gene mutations in cancer. In a separate part of the review, we also analyse the disturbance of gap-junctional intercellular communication during the late stages of cancer (invasion and metastasis processes).
Collapse
Affiliation(s)
- Marc Mesnil
- Equipe Interactions et Communications Cellulaires, Institut de Physiologie et Biologie Cellulaires, CNRS-UMR 6187, Université de Poitiers, 40 avenue du Recteur Pineau, 86022 Poitiers cedex, France.
| | | | | | | |
Collapse
|
14
|
Abstract
Our previous studies have shown that intercellular communication mediated by gap junctions is impaired in most tumors as well as in cancer cell lines. However, connexin genes that encode gap junction proteins are only rarely mutated in cancer cells. On the other hand, it was reported that mutated Connexin 37 (Cx37) is the origin of shared tumor-associated antigenic octa-peptides (MUT 1 and MUT 2) of two independently derived lung carcinomas 3LL and CMT 64 of mouse origin. Two Cx37 mutations have been implicated: a Cys-54-Gln substitution in FEQNTAQP (MUT 1) and FEQNTAQA (MUT 2); an additional Pro-59-Ala substitution has been proposed in MUT 2. A Cys-54-Gln mutation in both tumors requires three base changes (TGT-to-CAG) to have occurred twice in independently derived tumors. Another complication stems from the fact that Cys 54, which is located in the extra-cellular domain is conserved in all connexins. Due to the important implications that these findings may have regarding the role of gap junctional communication in lung carcinomas as well as in the origin of tumor-associated antigens, we decided to re-examine these mutations. Thus, we PCR-amplified genomic DNA from 3LL and CMT and sequenced the coding region of Cx37 encompassing codon 54. We then analyzed the PCR products by digestion with the restriction enzyme MaeIII, to discern the presence of the putative mutation. Here we have unambiguously demonstrated that clones K(b)39.5 (39.5) and D122 of 3LL, and C6 and E9 of CMT 64, previously employed, have only normal Cx37 sequences, including those of codon 54. Therefore, we concluded that Cx37 is not mutated in 3LL and CMT 64 carcinomas.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Carcinoma/genetics
- Carcinoma/pathology
- Carcinoma, Lewis Lung/genetics
- Carcinoma, Lewis Lung/pathology
- Clone Cells/transplantation
- Codon/genetics
- Connexins/genetics
- DNA Mutational Analysis
- DNA, Neoplasm/genetics
- Gap Junctions/physiology
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Lymphoma/genetics
- Lymphoma/pathology
- Lymphoma, T-Cell/genetics
- Lymphoma, T-Cell/pathology
- Mice
- Mice, Inbred C57BL
- Mutation, Missense
- Neoplasm Proteins/genetics
- Neoplasm Transplantation
- Polymerase Chain Reaction
- Polymorphism, Restriction Fragment Length
- Protein Structure, Tertiary
- Sequence Analysis, DNA
- Tumor Cells, Cultured/transplantation
- Gap Junction alpha-4 Protein
Collapse
Affiliation(s)
- Gideon Berke
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
15
|
Krutovskikh V. Implication of direct host-tumor intercellular interactions in non-immune host resistance to neoplastic growth. Semin Cancer Biol 2002; 12:267-76. [PMID: 12322675 DOI: 10.1016/s1044-579x(02)00013-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The hallmark of cancer as a disease is impaired homeostasis, which in normal tissue is maintained by the network of direct intercellular contacts. The cell-cell interaction machinery consists of intercellular junctions of various types, each of which has a role in the control of cell growth, differentiation, and motility. In cancer, the function of intercellular junctions is altered, often at quite advanced stages of tumor progression, while proper intercellular interactions between normal and tumor cells may control and even suppress, otherwise, aberrant growth and behavior of neoplastic cells. This type of host resistance to neoplastic growth implies a homotypic functional partnership between tumor cells and their normal host counterparts and, thus, is to a certain extent complementary to immune defense against tumorigenesis, which is effective only when tumor cells became 'foreign' for the host. Functional interactions between host and tumor cells could be lost at different stages of tumorigenesis through a range of mechanisms. In some cases, host-tumor interactions may be impaired reversibly, which in turn gives rise to the possibility of restoring this component of host defense against cancer by correctional interventions. This review highlights the role that direct intercellular host-tumor interactions may play in natural host resistance against neoplastic growth, with an emphasis on the underlying mechanisms of both their function and impairment.
Collapse
Affiliation(s)
- Vladimir Krutovskikh
- International Agency for Research on Cancer, Unit of Gene-Environment Interactions, WHO, Lyon 69008, France.
| |
Collapse
|
16
|
Dubina MV, Iatckii NA, Popov DE, Vasil'ev SV, Krutovskikh VA. Connexin 43, but not connexin 32, is mutated at advanced stages of human sporadic colon cancer. Oncogene 2002; 21:4992-6. [PMID: 12118378 DOI: 10.1038/sj.onc.1205630] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2002] [Revised: 03/28/2002] [Accepted: 04/26/2002] [Indexed: 12/16/2022]
Abstract
The membrane-spanning connexin proteins form microscopic intercellular channels that directly connect the cytoplasms of adjacent cells and as such have been implicated in maintenance of tissue homeostasis. They are considered to act as tumor suppressors since their function or expression is frequently aberrant in tumor cells. Several mechanisms appear to be involved in this, but irreversible mutational alterations have not yet been proved to be among them. In this study we have demonstrated for the first time that connexin 43 but not connexin 32 is specifically and quite frequently mutated in human colon sporadic adenocarcinomas. All tumor-associated mutations led to a shift of reading frame and were located in the multifunctional carboxyl-terminal domain of the protein. Expression of mutated connexin 43 protein was restricted to invasive structures of tumors. These findings suggest that mutational alterations of connexin 43 are involved in advanced stages of progression of human colon cancer towards malignancy.
Collapse
Affiliation(s)
- Michael V Dubina
- Department of Pathophysiology, St. Petersburg State Pavlov Medical University of St. Petersburg, St. Petersburg, Russia
| | | | | | | | | |
Collapse
|