1
|
Skupin P, Metzger M. Oscillatory behaviour control in a continuous culture under double-substrate limitation. JOURNAL OF BIOLOGICAL DYNAMICS 2018; 12:663-682. [PMID: 30058476 DOI: 10.1080/17513758.2018.1502368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 07/14/2018] [Indexed: 06/08/2023]
Abstract
The paper discusses the possibility of using a mixture of two growth limiting substrates to induce or eliminate self-sustained oscillations in a continuous culture process. The proportion of both substrates in the mixture is treated as a new control variable. The presented approach is based on the assumption that the oscillatory behaviour occurs for selected substrates in some range of dilution rates. Because a double-substrate limitation may occur, the analysis is performed for two fundamental substrate utilization patterns: simultaneous consumption and diauxic growth. By using model simulations and bifurcation analysis, we show that an appropriate proportion of two substrates in the mixture allows for the control of the oscillatory behaviour.
Collapse
Affiliation(s)
- Piotr Skupin
- a Faculty of Automatic Control, Electronics and Computer Science, Institute of Automatic Control Department , Silesian University of Technology , Gliwice , Poland
| | - Mieczyslaw Metzger
- a Faculty of Automatic Control, Electronics and Computer Science, Institute of Automatic Control Department , Silesian University of Technology , Gliwice , Poland
| |
Collapse
|
2
|
Asiedu NY, Abunde NF, Addo A. Modeling and Simulation of Substrate and Product Inhibitions of Fermentation of Cassava (Manihot Esculenta) Extract. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1089/ind.2016.0001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Nana Y. Asiedu
- Department of Chemical Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Neba F. Abunde
- Department of Agricultural Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Ahmad Addo
- Department of Agricultural Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
3
|
Gong X, Moses G, Neiman AB, Young T. Noise-induced dispersion and breakup of clusters in cell cycle dynamics. J Theor Biol 2014; 355:160-9. [PMID: 24694583 PMCID: PMC4058369 DOI: 10.1016/j.jtbi.2014.03.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 02/19/2014] [Accepted: 03/19/2014] [Indexed: 10/25/2022]
Abstract
We study the effects of random perturbations on collective dynamics of a large ensemble of interacting cells in a model of the cell division cycle. We consider a parameter region for which the unperturbed model possesses asymptotically stable two-cluster periodic solutions. Two biologically motivated forms of random perturbations are considered: bounded variations in growth rate and asymmetric division. We compare the effects of these two dispersive mechanisms with additive Gaussian white noise perturbations. We observe three distinct phases of the response to noise in the model. First, for weak noise there is a linear relationship between the applied noise strength and the dispersion of the clusters. Second, for moderate noise strengths the clusters begin to mix, i.e. individual cells move between clusters, yet the population distribution clearly continues to maintain a two-cluster structure. Third, for strong noise the clusters are destroyed and the population is characterized by a uniform distribution. The second and third phases are separated by an order-disorder phase transition that has the characteristics of a Hopf bifurcation. Furthermore, we show that for the cell cycle model studied, the effects of bounded random perturbations are virtually indistinguishable from those induced by additive Gaussian noise, after appropriate scaling of the variance of noise strength. We then use the model to predict the strength of coupling among the cells from experimental data. In particular, we show that coupling must be rather strong to account for the observed clustering of cells given experimentally estimated noise variance.
Collapse
Affiliation(s)
- Xue Gong
- Mathematics, Ohio University, Athens, OH, USA
| | | | | | - Todd Young
- Mathematics, Ohio University, Athens, OH, USA.
| |
Collapse
|
4
|
Cell cycle dynamics: clustering is universal in negative feedback systems. J Math Biol 2014; 70:1151-75. [PMID: 24816612 DOI: 10.1007/s00285-014-0786-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 04/01/2014] [Indexed: 10/25/2022]
Abstract
We study a model of cell cycle ensemble dynamics with cell-cell feedback in which cells in one fixed phase of the cycle S (Signaling) produce chemical agents that affect the growth and development rate of cells that are in another phase R (Responsive). For this type of system there are special periodic solutions that we call k-cyclic or clustered. Biologically, a k-cyclic solution represents k cohorts of synchronized cells spaced nearly evenly around the cell cycle. We show, under very general nonlinear feedback, that for a fixed k the stability of the k-cyclic solutions can be characterized completely in parameter space, a 2 dimensional triangle T. We show that T is naturally partitioned into k(2) sub-triangles on each of which the k-cyclic solutions all have the same stability type. For negative feedback we observe that while the synchronous solution (k = 1) is unstable, regions of stability of k ≥ 2 clustered solutions seem to occupy all of T. We also observe bi-stability or multi-stability for many parameter values in negative feedback systems. Thus in systems with negative feedback we should expect to observe cyclic solutions for some k. This is in contrast to the case of positive feedback, where we observe that the only asymptotically stable periodic orbit is the synchronous solution.
Collapse
|
5
|
Gong X, Buckalew R, Young T, Boczko E. Cell cycle dynamics in a response/signalling feedback system with a gap. JOURNAL OF BIOLOGICAL DYNAMICS 2014; 8:79-98. [PMID: 24963979 PMCID: PMC4241679 DOI: 10.1080/17513758.2014.904526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 03/09/2014] [Indexed: 06/03/2023]
Abstract
We consider a dynamical model of cell cycles of n cells in a culture in which cells in one specific phase (S for signalling) of the cell cycle produce chemical agents that influence the growth/cell cycle progression of cells in another phase (R for responsive). In the case that the feedback is negative, it is known that subpopulations of cells tend to become clustered in the cell cycle; while for a positive feedback, all the cells tend to become synchronized. In this paper, we suppose that there is a gap between the two phases. The gap can be thought of as modelling the physical reality of a time delay in the production and action of the signalling agents. We completely analyse the dynamics of this system when the cells are arranged into two cell cycle clusters. We also consider the stability of certain important periodic solutions in which clusters of cells have a cyclic arrangement and there are just enough clusters to allow interactions between them. We find that the inclusion of a small gap does not greatly alter the global dynamics of the system; there are still large open sets of parameters for which clustered solutions are stable. Thus, we add to the evidence that clustering can be a robust phenomenon in biological systems. However, the gap does effect the system by enhancing the stability of the stable clustered solutions. We explain this phenomenon in terms of contraction rates (Floquet exponents) in various invariant subspaces of the system. We conclude that in systems for which these models are reasonable, a delay in signalling is advantageous to the emergence of clustering.
Collapse
Affiliation(s)
- Xue Gong
- Department of Mathematics, Ohio University, Athens, OH45701, USA
| | - Richard Buckalew
- Department of Mathematics, Ohio University, Athens, OH45701, USA
| | - Todd Young
- Department of Mathematics, Ohio University, Athens, OH45701, USA
| | - Erik Boczko
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
6
|
Li X, Zhang J, Tan YL, Li ZH, Yu XF, Xia JY, Chu J, Ge YQ. Effects of flow field on the metabolic characteristics of Streptomyces lincolnensis in the industrial fermentation of lincomycin. J Biosci Bioeng 2013; 115:27-31. [DOI: 10.1016/j.jbiosc.2012.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 07/18/2012] [Accepted: 07/25/2012] [Indexed: 10/28/2022]
|
7
|
Ge X, Rao G. Real-time monitoring of shake flask fermentation and off gas using triple disposable noninvasive optical sensors. Biotechnol Prog 2012; 28:872-7. [DOI: 10.1002/btpr.1528] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 01/31/2012] [Indexed: 11/07/2022]
|
8
|
Young TR, Fernandez B, Buckalew R, Moses G, Boczko EM. Clustering in cell cycle dynamics with general response/signaling feedback. J Theor Biol 2011; 292:103-15. [PMID: 22001733 DOI: 10.1016/j.jtbi.2011.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 09/14/2011] [Accepted: 10/03/2011] [Indexed: 10/16/2022]
Abstract
Motivated by experimental and theoretical work on autonomous oscillations in yeast, we analyze ordinary differential equations models of large populations of cells with cell-cycle dependent feedback. We assume a particular type of feedback that we call responsive/signaling (RS), but do not specify a functional form of the feedback. We study the dynamics and emergent behavior of solutions, particularly temporal clustering and stability of clustered solutions. We establish the existence of certain periodic clustered solutions as well as "uniform" solutions and add to the evidence that cell-cycle dependent feedback robustly leads to cell-cycle clustering. We highlight the fundamental differences in dynamics between systems with negative and positive feedback. For positive feedback systems the most important mechanism seems to be the stability of individual isolated clusters. On the other hand we find that in negative feedback systems, clusters must interact with each other to reinforce coherence. We conclude from various details of the mathematical analysis that negative feedback is most consistent with observations in yeast experiments.
Collapse
Affiliation(s)
- Todd R Young
- Department of Mathematics, Ohio University, Athens, OH, USA.
| | | | | | | | | |
Collapse
|
9
|
Iso-migrastatin Titer Improvement in the Engineered Streptomyces lividans SB11002 Strain by Optimization of Fermentation Conditions. BIOTECHNOL BIOPROC E 2010; 15:664-669. [PMID: 21625393 DOI: 10.1007/s12257-009-3129-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The heterologous production of iso-migrastatin (iso-MGS) was successfully demonstrated in an engineered S. lividans SB11002 strain, which was derived from S. lividans K4-114, following introduction of pBS11001, which harbored the entire mgs biosynthetic gene cluster. However, under similar fermentation conditions, the iso-MGS titer in the engineered strain was significantly lower than that in the native producer - Streptomyces platensis NRRL 18993. To circumvent the problem of low iso-MGS titers and to expand the utility of this heterologous system for iso-MGS biosynthesis and engineering, systematic optimization of the fermentation medium was carried out. The effects of major components in the cultivation medium, including carbon, organic and inorganic nitrogen sources, were investigated using a single factor optimization method. As a result, sucrose and yeast extract were determined to be the best carbon and organic nitrogen sources, resulting in optimized iso-MGS production. Conversely, all other inorganic nitrogen sources evaluated produced various levels of inhibition of iso-MGS production. The final optimized R2YE production medium produced iso-MGS with a titer of 86.5 mg/L, about 3.6-fold higher than that in the original R2YE medium, and 1.5 fold higher than that found within the native S. platensis NRRL 18993 producer.
Collapse
|
10
|
Metabolic flux and cell cycle analysis indicating new mechanism underlying process oscillation in continuous ethanol fermentation with Saccharomyces cerevisiae under VHG conditions. Biotechnol Adv 2009; 27:1118-1123. [DOI: 10.1016/j.biotechadv.2009.05.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
|
12
|
|
13
|
Patnaik PR. Hybrid filtering of feed stream noise from oscillating yeast cultures by combined Kalman and neural network configurations. Bioprocess Biosyst Eng 2007; 30:181-8. [PMID: 17256120 DOI: 10.1007/s00449-007-0113-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Accepted: 12/22/2006] [Indexed: 10/23/2022]
Abstract
Large continuous flow bioreactors are often under the influence of noise in the feed stream(s). Prior removal of noise is done by filters based either on specific algorithms or on artificial intelligence. Neither method is perfect. Hybrid filters combine both methods and thereby capitalize on their strengths while minimizing their weaknesses. In this study, a number of hybrid models have been compared for their ability to recover nearly noise-free stable oscillations of continuous flow Saccharomyces cerevisiae cultures from aberrant behavior caused by noise in the feed stream. Each hybrid filter had a different neural network in conjunction with an extended Kalman filter (EKF). The choice of the best configuration depended on the performance index. All hybrid filters were superior to both the EKF and purely neural filters. Along with previous studies of monotonic fermentations, the present results establish the suitability of hybrid neural filters for noise-affected bioreactors.
Collapse
Affiliation(s)
- Pratap R Patnaik
- Institute of Microbial Technology, Sector 39-A, Chandigarh, India.
| |
Collapse
|
14
|
Jules M, François J, Parrou JL. Autonomous oscillations in Saccharomyces cerevisiae during batch cultures on trehalose. FEBS J 2005; 272:1490-500. [PMID: 15752364 DOI: 10.1111/j.1742-4658.2005.04588.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report that autonomous oscillations, which usually happen in aerobic glucose-limited continuous cultures of yeast at low dilution rate, were also observed in trehalose discontinuous cultures of Saccharomyces cerevisiae. This unexpected oscillatory behaviour was therefore examined using fast Fourier transformation of online gas measurements. This robust mathematical analysis underlined the existence of two types of oscillation. The first was found to be linked to the cell cycle because (a) the periodicity corresponded to a fraction of the generation time and (b) the oscillations were accompanied by a transient increase in the budding index, mobilization of storage carbohydrates, and fermentative activity. Moreover, these oscillations occurred in a range of specific growth rates between 0.04 and 0.15 h(-1). All these criteria were consistent with the cell-cycle-related metabolic oscillations observed in the same range of growth rates in glucose-limited continuous cultures. The second type were short-period respiratory oscillations, independent of the specific growth rate. Both types of oscillation were found to take place consecutively and/or simultaneously during batch culture on trehalose. In addition, mobilization of intracellular trehalose emerged as a key parameter for the sustainability of these autonomous oscillations as they were no longer observed in a mutant defective in neutral trehalase activity. We propose that batch culture on trehalose may be an excellent device for further investigation of the molecular mechanisms that underlie autonomous oscillations in yeast.
Collapse
Affiliation(s)
- Matthieu Jules
- Centre de Bioingenierie Gilbert Durand, UMR-CNRS 5504, UMR-INRA 792, Institut National des Sciences Appliquées, Toulouse, France
| | | | | |
Collapse
|
15
|
Bai FW, Chen LJ, Anderson WA, Moo-Young M. Parameter oscillations in a very high gravity medium continuous ethanol fermentation and their attenuation on a multistage packed column bioreactor system. Biotechnol Bioeng 2004; 88:558-66. [PMID: 15470717 DOI: 10.1002/bit.20221] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The quasi-steady-states, marked by small fluctuations of residual glucose, ethanol, and biomass concentrations, and sustainable oscillations marked by big fluctuations of these monitored fermentation parameters were observed during the continuous ethanol fermentation of Saccharomyces cerevisiae when very high gravity media were fed and correspondingly high ethanol concentrations reached. A high ethanol concentration was shown to be one of the main factors that incited these oscillations, although the residual glucose level affected the patterns of these oscillations to some extent. The lag response of S. cerevisiae to high ethanol stress that causes the shifts of morphology, viability loss, and death of yeast cells is assumed to be one of the probable mechanisms behind these oscillations. It was predicted that the longer the delay of this response was, the longer the oscillation periods would be, which was validated by the experimental data and the comparison with the oscillatory behaviors reported for the ethanologen bacterium, Zymomonas mobilis. Furthermore, three tubular bioreactors in series were arranged to follow a stirred tank bioreactor to attenuate these oscillations. However, exaggerated oscillations were observed for the residual glucose, ethanol, and biomass concentrations measured in the broth from these tubular bioreactors. After the tubular reactors were packed with Intalox ceramic saddle packing, these oscillations were effectively attenuated and quasi-steady-states were observed during which there were very small fluctuations of residual glucose, ethanol, and biomass within the entire experimental run.
Collapse
Affiliation(s)
- F W Bai
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | | | | | | |
Collapse
|
16
|
Patnaik PR. Oscillatory metabolism of Saccharomyces cerevisiae: an overview of mechanisms and models. Biotechnol Adv 2003; 21:183-92. [PMID: 14499128 DOI: 10.1016/s0734-9750(03)00022-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The budding yeast Saccharomyces cerevisiae displays steady oscillations in continuous cultures under certain conditions. Oscillatory responses are important both metabolically and in process applications. Although much information has become available, a definitive theory to explain and model these oscillations is yet to be formulated. Models of oscillatory cultivation have focussed primarily either on intracellular reactions or on transport processes coupled to substantially lumped intracellular kinetics. This review discusses the development of the models and the directions they provide for a comprehensive model of oscillatory metabolism.
Collapse
|
17
|
Murray DB, Roller S, Kuriyama H, Lloyd D. Clock control of ultradian respiratory oscillation found during yeast continuous culture. J Bacteriol 2001; 183:7253-9. [PMID: 11717285 PMCID: PMC95575 DOI: 10.1128/jb.183.24.7253-7259.2001] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A short-period autonomous respiratory ultradian oscillation (period approximately 40 min) occurs during aerobic Saccharomyces cerevisiae continuous culture and is most conveniently studied by monitoring dissolved O(2) concentrations. The resulting data are high quality and reveal fundamental information regarding cellular dynamics. The phase diagram and discrete fast Fourier transformation of the dissolved O(2) values revealed a square waveform with at least eight harmonic peaks. Stepwise changes in temperature revealed that the oscillation was temperature compensated at temperatures ranging from 27 to 34 degrees C when either glucose (temperature quotient [Q(10)] = 1.02) or ethanol (Q(10) = 0.82) was used as a carbon source. After alteration of the temperature beyond the temperature compensation region, phase coherence events for individual cells were quickly lost. As the cell doubling rate decreased from 15.5 to 9.2 h (a factor of 1.68), the periodicity decreased by a factor of 1.26. This indicated that there was a degree of nutrient compensation. Outside the range of dilution rates at which stable oscillation occurred, the mode of oscillation changed. The oscillation in respiratory output is therefore under clock control.
Collapse
Affiliation(s)
- D B Murray
- School of Applied Science, South Bank University, London SE1 0AA, United Kingdom.
| | | | | | | |
Collapse
|