1
|
Yang C, Kang B, Cao Z, Zhang J, Zhao F, Wang D, Su P, Chen J. Early-Life Pb Exposure Might Exert Synapse-Toxic Effects Via Inhibiting Synapse-Associated Membrane Protein 2 (VAMP2) Mediated by Upregulation of miR-34b. J Alzheimers Dis 2022; 87:619-633. [DOI: 10.3233/jad-215638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Early-life Pb exposure can cause behavioral and cognitive problems and induce symptoms of hyperactivity, impulsivity, and inattention in children. Studies showed that blood lead levels were highly correlated with neuropsychiatric disorders, and effects of neurotoxicity might persist and affect the incidence of neurodegenerative diseases, for example Alzheimer’s disease (AD). Objective: To explore possible mechanisms of developmental Pb-induced neuropsychiatric dysfunctions. Methods: Children were divided into low blood lead level (BLL) group (0–50.00μg/L) and high BLL group (> 50.00μg/L) and blood samples were collected. miRNA array was used to testify miRNA expression landscape between two groups. Correlation analysis and real-time PCR were applied to find miRNAs that altered in Pb and neuropsychiatric diseases. Animal models and cell experiments were used to confirm the effect of miRNAs in response to Pb, and siRNA and luciferase experiments were conducted to examine their effect on neural functions. Results: miRNA array data and correlation analysis showed that miR-34b was the most relevant miRNA among Pb neurotoxicity and neuropsychiatric disorders, and synapse-associated membrane protein 2 (VAMP2) was the target gene regulating synapse function. In vivo and in vitro studies showed Pb exposure injured rats’ cognitive abilities and induced upregulation of miR-34b and downregulation of VAMP2, resulting in decreases of hippocampal synaptic vesicles. Blockage of miR-34b mitigated Pb’s effects on VAMP2 in vitro. Conclusion: Early-life Pb exposure might exert synapse-toxic effects via inhibiting VAMP2 mediated by upregulation of miR-34b and shed a light on the underlying relationship between Pb neurotoxicity and developmental neuropsychiatric disorders.
Collapse
Affiliation(s)
- Changhao Yang
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Beipei Kang
- Department of Clinical Laboratory, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Zipeng Cao
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Jianbin Zhang
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Fang Zhao
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Diya Wang
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Peng Su
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Jingyuan Chen
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Akinyemi AJ, Miah MR, Ijomone OM, Tsatsakis A, Soares FAA, Tinkov AA, Skalny AV, Venkataramani V, Aschner M. Lead (Pb) exposure induces dopaminergic neurotoxicity in Caenorhabditis elegans: Involvement of the dopamine transporter. Toxicol Rep 2019; 6:833-840. [PMID: 31463204 PMCID: PMC6709386 DOI: 10.1016/j.toxrep.2019.08.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/29/2019] [Accepted: 08/02/2019] [Indexed: 12/12/2022] Open
Abstract
Lead (Pb) is an environmental neurotoxicant, and has been implicated in several neurological disorders of dopaminergic dysfunction; however, the molecular mechanism of its toxicity has yet to be fully understood. This study investigated the effect of Pb exposure on dopaminergic neurodegeneration and function, as well as expression level of several dopaminergic signaling genes in wild type (N2) and protein kinase C (pkc) mutant Caenorhabditis elegans. Both N2 and pkc mutant worms were exposed to Pb2+ for 1 h. Thereafter, dopaminergic (DAergic) neurodegeneration, behavior and gene expression levels were assessed. The results revealed that Pb2+ treatment affects dopaminergic cell morphology and structure in worms expressing green fluorescent protein (GFP) under a DAergic cell specific promoter. Also, there was a significant impairment in dopaminergic neuronal function as tested by basal slowing response (BSR) in wild-type, N2 worms, but no effect was observed in pkc mutant worms. Furthermore, Pb2+ exposure increased dat-1 gene expression level when compared with N2 worms, but no alteration was observed in the pkc mutant strains. LC–MS analysis revealed a significant decrease in dopamine content in worms treated with Pb2+ when compared with controls. In summary, our results revealed that Pb2+ exposure induced dopaminergic dysfunction in C. elegans by altering dat-1 gene levels, but pkc mutants showed significant resistance to Pb2+ toxicity. We conclude that PKC activation is directly involved in the neurotoxicity of Pb.
Collapse
Affiliation(s)
- Ayodele Jacob Akinyemi
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Mahfuzur R Miah
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Omamuyovwi M Ijomone
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States.,Department of Anatomy, School of Health and Health Technology, Federal University of Technology Akure (FUTA), Nigeria
| | - Aristidis Tsatsakis
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, Heraklion, Greece
| | - Félix Alexandre Antunes Soares
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States.,Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Santa Maria, RS, Brazil
| | | | - Anatoly V Skalny
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russian Federation.,I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vivek Venkataramani
- Department of Hematology and Medical Oncology, University Medical Center Göttingen (UMG), Göttingen, Germany.,Institute of Pathology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States
| |
Collapse
|
3
|
Su P, Zhang J, Wang S, Aschner M, Cao Z, Zhao F, Wang D, Chen J, Luo W. Genistein alleviates lead-induced neurotoxicity in vitro and in vivo: Involvement of multiple signaling pathways. Neurotoxicology 2016; 53:153-164. [PMID: 26797587 DOI: 10.1016/j.neuro.2015.12.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/18/2015] [Accepted: 12/29/2015] [Indexed: 12/14/2022]
Abstract
Lead (Pb) is a ubiquitous environmental and industrial pollutant. It induces neurotoxicity and cell death by disrupting the pro- and anti-oxidative balance; however, the mechanisms of its toxicity have yet to be fully understood. The soy-derived isoflavonoid, genistein (GEN), was reported to possess neuroprotective and antioxidative properties. The present study investigated the molecular mechanisms of Pb-induced neurotoxicity in vivo and in vitro, addressing the efficacy of GEN in protecting against Pb-induced toxicity. Pb exposure was associated with reduction of cell viability and cell apoptosis, concomitant with reactive oxygen species (ROS) generation in vitro, and pre-treatment with GEN markedly ameliorated the Pb-induced oxidative injury by increasing the expression of key antioxidant enzymes and the antioxidant transcription factor, nuclear factor erythroid 2 p45-related factor 2 (Nrf2). Next, PKC-α activation was found after Pb exposure in vitro and pretreatment with GEN attenuated Pb-induced ROS generation by PKC-α inhibition. MAPK-NF-κB activation triggered by Pb was also inhibited by GEN. In summary, our study establishes that GEN alleviates Pb-induced impairment in spatial memory, and reduces cell apoptosis caused by Pb exposure and GEN protects neurons from Pb-induced neurotoxicity by downstream activation of antioxidant and anti-apoptotic pathways via regulation of Nrf2 and MAPK-NF-κB signaling.
Collapse
Affiliation(s)
- Peng Su
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Jianbin Zhang
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Siwang Wang
- Institute of Materia Medica, Fourth Military Medical University, Xi'an 710032, China
| | | | - Zipeng Cao
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Fang Zhao
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Diya Wang
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Jiangyuan Chen
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China.
| | - Wenjing Luo
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
4
|
Monitoring of Cellular Dynamics with Electrochemical Detection Techniques. MODERN ASPECTS OF ELECTROCHEMISTRY 2011. [DOI: 10.1007/978-1-4614-0347-0_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
5
|
Bal-Price AK, Suñol C, Weiss DG, van Vliet E, Westerink RH, Costa LG. Application of in vitro neurotoxicity testing for regulatory purposes: Symposium III summary and research needs. Neurotoxicology 2008; 29:520-31. [DOI: 10.1016/j.neuro.2008.02.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 02/14/2008] [Accepted: 02/14/2008] [Indexed: 01/14/2023]
|
6
|
Abstract
This review attempts to touch on the history and application of amperometry at PC12 cells for fundamental investigation into the exocytosis process. PC12 cells have been widely used as a model for neural differentiation and as such they have been used to examine the effects of differentiation on exocytotic release and specifically release at varicosities. In addition, dexamethasone-differentiated cells have been shown to have an increased number of releasable vesicles with increased quantal size, thereby allowing for an even broader range of applications including neuropharmacological and neurotoxicological studies. PC12 cells exhibiting large numbers of events have two distinct pools of vesicles, one about twice the quantal size of the other and each about half the total releasable vesicles. As will be outlined in this review, these cells have served as an extremely useful model of exocytosis in the study of the latency of stimulation-release coupling, the role of exocytotic proteins in regulation of release, effect of drugs on quantal size, autoreceptors, fusion pore biophysics, environmental factors, health and disease. As PC12 cells have some advantages over other models for neurosecretion, including chromaffin cells, it is more than likely that in the following decade PC12 cells will continue to serve as a model to study exocytosis.
Collapse
Affiliation(s)
- R H S Westerink
- Cellular and Molecular Toxicology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands.
| | | |
Collapse
|
7
|
Aykin-Burns N, Franklin EA, Ercal N. Effects of N-acetylcysteine on lead-exposed PC-12 cells. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2005; 49:119-23. [PMID: 15981033 DOI: 10.1007/s00244-004-0025-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Accepted: 09/13/2004] [Indexed: 05/03/2023]
Abstract
The neurotoxicity of lead has been well established through numerous studies. However, the cellular processes of lead neurotoxicity, as well as techniques to prevent or reverse cellular damage after lead exposure, remain unknown. If oxidative stress plays a primary role in lead-induced neurotoxicity, antioxidants should assist in reviving lead-exposed cells. The present study explores N-acetylcysteine (NAC) as an antioxidant agent in PC-12 cells after lead exposure. Selective oxidative stress parameters, including glutathione (GSH), glutathione disulfide (GSSG), and malondialdehyde (MDA), were measured in PC-12 cells exposed to various concentrations of lead acetate. Administering NAC after lead exposure improved cell survival as measured by Trypan Blue exclusion. NAC treatment also increased the GSH/GSSG ratio compared to the lead-only group, and reduced MDA to near control levels. These results imply that NAC protects cells from lead-induced oxidative damage by boosting the PC-12 cells' antioxidant defense mechanisms.
Collapse
Affiliation(s)
- Nukhet Aykin-Burns
- Department of Chemistry, University of Missouri-Rolla, 142 Schrenk Hall, Rolla, Missouri 65409, USA
| | | | | |
Collapse
|
8
|
Gill KD, Gupta V, Sandhir R. Ca2+/calmodulin-mediated neurotransmitter release and neurobehavioural deficits following lead exposure. Cell Biochem Funct 2004; 21:345-53. [PMID: 14624473 DOI: 10.1002/cbf.1030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The present study was designed to investigate the effect of in vitro and in vivo lead exposure on calmodulin-mediated neurotransmitter release from synaptic vesicles with a view to explain the mechanism involved in its behavioural effects. It was observed that lead stimulated calmodulin, in terms of its ability to activate cAMP phosphodiesterase, following in vitro and in vivo exposure. Lead was also seen to enhance calmodulin-mediated synaptic vesicle protein phosphorylation. The increase in lead-induced synaptic vesicle protein phosphorylation was accompanied by enhanced release of acetylcholine from synaptic vesicles following in vitro lead exposure by a calmodulin-dependent mechanism. The ability of Ca(2+)/calmodulin to evoke acetylcholine release was reduced in the synaptic vesicles isolated from lead-exposed animals. Concomitantly, the levels of acetylcholine were found to decrease by 37.8% in the lead-treated animals as compared to the controls. The neurochemical alterations following lead exposure were accompanied by neurobehavioural deficits in terms of impaired motor and cognitive functions. The results from the present study clearly suggest that lead exerts its neurotoxic effects by interfering with Ca(2+)/calmodulin-mediated neurotransmitter release that is eventually responsible for behavioural impairment.
Collapse
Affiliation(s)
- K D Gill
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Panjab University, Chandigarh 160012, India
| | | | | |
Collapse
|
9
|
Westerink RHS, Klompmakers AA, Westenberg HGM, Vijverberg HPM. Signaling pathways involved in Ca2+- and Pb2+-induced vesicular catecholamine release from rat PC12 cells. Brain Res 2002; 957:25-36. [PMID: 12443976 DOI: 10.1016/s0006-8993(02)03580-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Since Pb(2+) substitutes for Ca(2+) in essential steps leading to exocytosis, we have investigated whether Ca(2+) and Pb(2+) induce exocytosis through similar pathways. Vesicular catecholamine release was measured from dexamethasone-differentiated PC12 cells using carbon fiber microelectrode amperometry. Effects of drugs known to modulate PKC (PMA, staurosporine), calcineurin (cyclosporin A), calmodulin (W7), and CaM kinase II (KN-62) activity were investigated in intact and in ionomycin-permeabilized PC12 cells. Activation of PKC and inhibition of calmodulin decrease the frequency of exocytotic events evoked by high K(+) stimulation in intact cells. In addition, inhibition of calmodulin enhances the frequency of basal exocytosis from intact cells. Activation of PKC and inhibition of calcineurin enhance the frequency of basal exocytosis in intact as well as in ionomycin-permeabilized cells. Inhibition of PKC and of CaM kinase II cause no significant effects. None of the treatments has a significant effect on vesicle contents. The combined results indicate that PKC and calcineurin enhance and inhibit exocytosis through direct effects on the exocytotic machinery, whereas calmodulin and CaM kinase II exert indirect effects only. Conversely, Pb(2+)-evoked exocytosis in permeabilized cells is strongly reduced by inhibition of CaM kinase II, but is not sensitive to modulation of PKC and calcineurin activity. Inhibition of calmodulin only reduces the delay to onset of Pb(2+)-evoked exocytosis. Synaptotagmin I- and II-deficient PC12-F7 cells exhibit vesicular catecholamine release following depolarization or superfusion with Pb(2+). However, the frequency of exocytosis and the contents of vesicles released are strongly reduced as compared to PC12 cells. It is concluded that Ca(2+)-evoked exocytosis is modulated mainly by PKC and calcineurin, whereas Pb(2+)-evoked exocytosis is mainly modulated by CaM kinase II.
Collapse
Affiliation(s)
- Remco H S Westerink
- Institute for Risk Assessment Sciences, Utrecht University, PO Box 80176, 3508 TD, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
10
|
Leal RB, Cordova FM, Herd L, Bobrovskaya L, Dunkley PR. Lead-stimulated p38MAPK-dependent Hsp27 phosphorylation. Toxicol Appl Pharmacol 2002; 178:44-51. [PMID: 11781079 DOI: 10.1006/taap.2001.9320] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lead (Pb2+) is a cytotoxic metal ion whose mechanism of action is not established. However, Pb2+ is known to interact with a wide variety of molecules involved in signal transduction. In this study the effect of Pb2+ on protein phosphorylation in bovine adrenal chromaffin cells and human SH SY5Y cells was examined. Cells were incubated with 32P(i) for 1 h in the presence of Pb2+ (1-10 microM) and the proteins were separated by two-dimensional PAGE. An increase in the phosphorylation of a number of proteins was observed in response to Pb2+, including three spots, MW 25 kDa, and pI's in the range 4.0-4.5. These proteins were immunoidentified as three isoforms of the heat-shock protein 27 kDa (Hsp27), and the identity of the most basic spot was confirmed by amino acid sequencing. Phosphorylation of p38MAPK was increased by Pb2+ and the effect of Pb2+ on Hsp27 phosphorylation was blocked by the p38MAPK inhibitor SB203580 (1 microM). The results were similar for bovine chromaffin cells and human SH SY5Y cells. This is the first report showing that Pb2+ can modulate the phosphorylation state of Hsp27 via activation of the p38MAPK pathway.
Collapse
Affiliation(s)
- Rodrigo B Leal
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil.
| | | | | | | | | |
Collapse
|
11
|
Lu H, Guizzetti M, Costa LG. Inorganic lead stimulates DNA synthesis in human astrocytoma cells: role of protein kinase Calpha. J Neurochem 2001; 78:590-9. [PMID: 11483662 DOI: 10.1046/j.1471-4159.2001.00434.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
As lead has been shown to activate protein kinase C (PKC), and gliomas are reported to be highly dependent on PKC for their proliferation, this study was undertaken to investigate whether lead may act as a mitogen in human astrocytoma cells, and to determine the role of PKC in this effect. Lead acetate (from 100 nM to 100 microM) induced a concentration- and time-dependent increase in DNA synthesis, as measured by incorporation of [methyl-3H]thymidine into cell DNA, without causing any cytotoxicity. Flow cytometric analysis showed that lead was able to stimulate the cell cycle transition from the G0/G1 phase to the S/G2 phase, resulting in increased percentage of cells in the latter phase. Western blot analyses showed that lead induced translocation of PKCalpha, but not of PKCepsilon or PKCzeta, from the cytosolic to the particulate fraction, with a concomitant increase in PKC enzyme activity. Prolonged exposure to lead caused down-regulation of PKCalpha, but not of PKCepsilon. The effect of lead on DNA synthesis was mediated through PKC as evidenced by the finding that two PKC inhibitors, GF 109203X and staurosporine, as well as down-regulation of PKC through prolonged treatment with 12-O-tetradecanoylphorbol 13-acetate, blocked lead-induced DNA synthesis. Further experiments using a pseudosubstrate peptide targeting classical PKCs and selective down-regulation of specific PKC isoforms indicated that the effect of lead on DNA synthesis was mediated by PKCalpha. Altogether, these results suggest that lead stimulates DNA synthesis in human astrocytoma cells by a mechanism that involves activation of PKCalpha.
Collapse
Affiliation(s)
- H Lu
- Department of Environmental Health, University of Washington, Seattle, Washington 98105, USA
| | | | | |
Collapse
|
12
|
Costa LG, Guizzetti M, Lu H, Bordi F, Vitalone A, Tita B, Palmery M, Valeri P, Silvestrini B. Intracellular signal transduction pathways as targets for neurotoxicants. Toxicology 2001; 160:19-26. [PMID: 11246120 DOI: 10.1016/s0300-483x(00)00435-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The multiple cascades of signal transduction pathways that lead from receptors on the cell membrane to the nucleus, thus translating extracellular signals into changes in gene expression, may represent important targets for neurotoxic compounds. Among the biochemical steps and pathways that have been investigated are the metabolism of cyclic nucleotides, the formation of nitric oxide, the metabolism of membrane phospholipids, the activation of a multitude of protein kinases and the induction of transcription factors. This brief review will focus on the interactions of three known neurotoxicants, lead, ethanol and polychlorinated biphenyls, with signal transduction pathways, particularly the family of protein kinase C isozymes, and discusses how such effects may be involved in their neurotoxicity.
Collapse
Affiliation(s)
- L G Costa
- Department of Environmental Health, University of Washington, 4225 Roosevelt #100, Seattle, WA 98105, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Lead poisoning can cause a wide range of symptoms with particularly severe clinical effects on the CNS. Lead can increase spontaneous neurotransmitter release but decrease evoked neurotransmitter release. These effects may be caused by an interaction of lead with specific molecular targets involved in neurotransmitter release. We demonstrate here that the normally calcium-dependent binding characteristics of the synaptic vesicle protein synaptotagmin I are altered by lead. Nanomolar concentrations of lead induce the interaction of synaptotagmin I with phospholipid liposomes. The C2A domain of synaptotagmin I is required for lead-mediated phospholipid binding. Lead protects both recombinant and endogenous rat brain synaptotagmin I from proteolytic cleavage in a manner similar to calcium. However, lead is unable to promote the interaction of either recombinant or endogenous synaptotagmin I and syntaxin. Finally, nanomolar concentrations of lead are able to directly compete with and inhibit the ability of micromolar concentrations of calcium to induce the interaction of synaptotagmin I and syntaxin. Based on these findings, we conclude that synaptotagmin I may be an important, physiologically relevant target of lead.
Collapse
Affiliation(s)
- C M Bouton
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | |
Collapse
|
14
|
Chakraborti T, Kim KA, Goldstein GG, Bressler JP. Increased AP-1 DNA binding activity in PC12 cells treated with lead. J Neurochem 1999; 73:187-94. [PMID: 10386970 DOI: 10.1046/j.1471-4159.1999.0730187.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The possibility that the mechanism of lead neurotoxicity may be at the level of transcription was investigated in PC12 cells. In electrophoretic mobility gel shift assays Pb2+ was found to increase activator protein-1 complex (AP-1) DNA binding activity in PC12 cells; the increase was time- and concentration-dependent. Exposure to Pb2+ also resulted in an increase in AP-1-driven transcription in cerebellar granule cells transfected with a luciferase gene reporter construct. The increase in AP-1 DNA binding activity by Pb2+ required protein synthesis. The increase was mediated by protein kinase C because depletion of protein kinase C and an inhibitor of protein kinase C prevented the increase in AP-1 DNA binding activity by Pb2+. Fra-2 and JunD were found in supershift assays to be the major components of the AP-1 that was increased by Pb2+. In summary, our studies indicate that Pb2+ increases AP-1 DNA binding activity in PC12 cells by a pathway that requires protein kinase C and new protein synthesis.
Collapse
Affiliation(s)
- T Chakraborti
- Department of Neurology, Johns Hopkins University School of Public Health and Hygiene and Kennedy Krieger Research Institute, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
15
|
Zheng W, Blaner WS, Zhao Q. Inhibition by lead of production and secretion of transthyretin in the choroid plexus: its relation to thyroxine transport at blood-CSF barrier. Toxicol Appl Pharmacol 1999; 155:24-31. [PMID: 10036215 PMCID: PMC4126158 DOI: 10.1006/taap.1998.8611] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Long-term, low-dose Pb exposure in rats is associated with a significant decrease in transthyretin (TTR) concentrations in the CSF. Since CSF TTR, a primary carrier of thyroxine in brain, is produced and secreted by the choroid plexus, in vitro studies were conducted to test whether Pb exposure interferes with TTR production and/or secretion by the choroid plexus, leading to an impaired thyroxine transport at the blood-CSF barrier. Newly synthesized TTR molecules in the cultured choroidal epithelial cells were pulse-labeled with [35S]methionine. [35S]TTR in the cell lysates and culture media was immunoprecipitated and separated by SDS-PAGE, and quantitated by autoradiography and liquid scintillation counting. Pb treatment did not significantly alter the protein concentrations in the culture, but inhibited the synthesis of total [35S]TTR (cells + media), particularly during the later chase phase. Two-way ANOVA of the chase phase revealed that Pb exposure (30 microM) significantly suppressed the rate of secretion of [35S]TTR compared to the controls (p < 0.05). Accordingly, Pb treatment caused a retention of [35S]TTR by the cells. In a two-chamber transport system with a monolayer of epithelial barrier, Pb exposure (30 microM) reduced the initial release rate constant (kr) of [125I]T4 from the cell monolayer to the culture media and impeded the transepithelial transport of [125I]T4 from the basal to apical side of epithelial cells by 27%. Taken together, these in vitro data suggest that sequestration of Pb in the choroid plexus hinders the production and secretion of TTR by this tissue. Consequently, this may alter the transport of thyroxine across this blood-CSF barrier.
Collapse
Affiliation(s)
- W Zheng
- School of Public Health, Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | | | | |
Collapse
|
16
|
Abstract
Signal transduction is the process by which specific information is transferred from the cell surface to the cytosol and ultimately to the nucleus, leading to changes in gene expression. Since these chains of biochemical and molecular steps control the normal function of each cell, disruption of these processes would have a significant impact on cell physiology. Some of the major signal transduction pathways are briefly reviewed. The interactions of four chemicals (lead, ethanol, polychlorinated biphenyls, and trimethyltin) with different cell signaling systems, particularly the phospholipid hydrolysis/protein kinase C pathway, are discussed. The possible causal relationship of such cellular and molecular interactions with known signs and symptoms of neurotoxicity are highlighted.
Collapse
Affiliation(s)
- L G Costa
- Department of Environmental Health, University of Washington, Seattle 98105, USA.
| |
Collapse
|
17
|
Kim K, Annadata M, Goldstein GW, Bressler JP. Induction of c-fos mRNA by lead in PC 12 cells. Int J Dev Neurosci 1997; 15:175-82. [PMID: 9178036 DOI: 10.1016/s0736-5748(96)00085-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Addition of lead acetate to PC 12 pheochromocytoma cells elicits induction of c-fos, an immediate early response gene. Induction of c-fos was concentration- and time-dependent: the lowest concentration of lead acetate tested that induced c-fos was 10 microM; induction was observed after a 30 min incubation and remained high after 90 min. Treatment with lead acetate and cycloheximide superinduced c-fos mRNA. Actinomycin D, an inhibitor of mRNA transcription, decreased the level of c-fos mRNA induced by lead acetate by almost 80%. Cadmium chloride and zinc chloride did not induce c-fos mRNA. Since the c-fos gene encodes a transcription factor, Pb2+ has the potential to deregulate the expression of other genes.
Collapse
Affiliation(s)
- K Kim
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|