1
|
Herzer S, Hagan C, von Gerichten J, Dieterle V, Munteanu B, Sandhoff R, Hopf C, Nordström V. Deletion of Specific Sphingolipids in Distinct Neurons Improves Spatial Memory in a Mouse Model of Alzheimer's Disease. Front Mol Neurosci 2018; 11:206. [PMID: 29973867 PMCID: PMC6019486 DOI: 10.3389/fnmol.2018.00206] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/25/2018] [Indexed: 01/25/2023] Open
Abstract
Alzheimer’s disease (AD) is characterized by progressive neurodegeneration and a concomitant loss of synapses and cognitive abilities. Recently, we have proposed that an alteration of neuronal membrane lipid microdomains increases neuronal resistance toward amyloid-β stress in cultured neurons and protects from neurodegeneration in a mouse model of AD. Lipid microdomains are highly enriched in a specific subclass of glycosphingolipids, termed gangliosides. The enzyme glucosylceramide synthase (GCS) catalyzes the rate-limiting step in the biosynthesis of these gangliosides. The present work now demonstrates that genetic GCS deletion in subsets of adult forebrain neurons significantly improves the spatial memory and counteracts the loss of dendritic spines in the hippocampal dentate gyrus of 5x familial AD mice (5xFAD//Ugcgf/f//Thy1-CreERT2//EYFP mice), when compared to 5xFAD//Ugcgf/f littermates (5xFAD mice). Aberrantly activated glial cells and their expression of pro-inflammatory cytokines have emerged as the major culprits for synaptic loss in AD. Typically, astrocytic activation is accompanied by a thickening of astrocytic processes, which impairs astrocytic support for neuronal synapses. In contrast to 5xFAD mice, 5xFAD//Ugcgf/f//Thy1-CreERT2//EYFP display a less pronounced thickening of astrocytic processes and a lower expression of tumor necrosis factor-α and interleukin 1-α in the hippocampus. Thus, this work further emphasizes that GCS inhibition may constitute a potential therapeutic target against AD.
Collapse
Affiliation(s)
- Silke Herzer
- Division of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Cassidy Hagan
- Division of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany.,Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Johanna von Gerichten
- Division of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany.,Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Vanessa Dieterle
- Division of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Bogdan Munteanu
- Center for Mass Spectrometry (CeMOS), University of Heidelberg and Mannheim University of Applied Sciences, Mannheim, Germany
| | - Roger Sandhoff
- Division of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany.,Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Carsten Hopf
- Center for Mass Spectrometry (CeMOS), University of Heidelberg and Mannheim University of Applied Sciences, Mannheim, Germany
| | - Viola Nordström
- Division of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
2
|
Glycolipid and Glycoprotein Expression During Neural Development. ADVANCES IN NEUROBIOLOGY 2014; 9:185-222. [DOI: 10.1007/978-1-4939-1154-7_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
3
|
He J, Liu J, Zhang Z, Sun M, Zhu T, Xia C. Expression of fasciculation and elongation protein zeta-1 (FEZ1) in cultured rat neonatal astrocytes. Mol Cell Biochem 2009; 325:159-67. [PMID: 19199094 DOI: 10.1007/s11010-009-0030-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 01/15/2009] [Indexed: 01/18/2023]
Abstract
Astrocytes play a more important role than simply providing physical support for neurons, however, the function(s) of type 1 and type 2 astrocytes (T1As, T2As), remains unclear. A DNA microarray was used to identify gene expression in cultured T1As and T2As isolated from postnatal day 1 rat cortex. Ninety-nine of the 138 differentially expressed genes were involved in a diverse number of processes. The fasciculation and elongation protein zeta-1 (FEZ1) gene was studied further because it has been suggested that it is not expressed by astrocytes. RT-PCR and Western blots confirmed the microarray data and showed that FEZ1 was present in T1 and T2As and is more highly expressed in T2As. Immunocytochemistry revealed that FEZ1 was located in the astrocytic cytoplasm and cell processes but not the nucleus. The results contribute to a clearer understanding of the two types of astrocytes.
Collapse
Affiliation(s)
- Jianghong He
- Cytoneurobiology Unit & Laboratory of Aging and Nervous Diseases, Medical College of Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, JS, 215123, People's Republic of China
| | | | | | | | | | | |
Collapse
|
4
|
Finsterer J, Walker WF, Hernandez-Rosa E. Genetic, pathogenetic, and phenotypic implications of the mitochondrial A3243G tRNALeu(UUR) mutation. Acta Neurol Scand 2007; 9:463-70. [PMID: 17587249 DOI: 10.1016/j.mito.2009.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 08/05/2009] [Accepted: 08/06/2009] [Indexed: 11/30/2022]
Abstract
Mitochondrial disorders are frequently caused by mutations in mitochondrial genes and usually present as multisystem disease. One of the most frequent mitochondrial mutations is the A3,243G transition in the tRNALeu(UUR) gene. The phenotypic expression of the mutation is variable and comprises syndromic or non-syndromic mitochondrial disorders. Among the syndromic manifestations the mitochondrial encephalopathy, lactacidosis, and stroke-like episode (MELAS) syndrome is the most frequent. In single cases the A3,243G mutation may be associated with maternally inherited diabetes and deafness syndrome, myoclonic epilepsy and ragged-red fibers (MERRF) syndrome, MELAS/MERRF overlap syndrome, maternally inherited Leigh syndrome, chronic external ophthalmoplegia, or Kearns-Sayre syndrome. The wide phenotypic variability of the mutation is explained by the peculiarities of the mitochondrial DNA, such as heteroplasmy and mitotic segregation, resulting in different mutation loads in different tissues and family members. Moreover, there is some evidence that additional mtDNA sequence variations (polymorphisms, haplotypes) influence the phenotype of the A3,243G mutation. This review aims to give an overview on the actual knowledge about the genetic, pathogenetic, and phenotypic implications of the A3,243G mtDNA mutation.
Collapse
Affiliation(s)
- J Finsterer
- Krankenanstalt Rudolfstiftung, Vienna, Austria.
| | | | | |
Collapse
|
5
|
Abstract
The mammalian central nervous system is organized by a variety of cells such as neurons and glial cells. These cells are generated from a common progenitor, the neural stem cell (NSC). NSCs are defined as undifferentiated neural cells that are characterized by their high proliferative potential while retaining the capacity for self-renewal and multipotency. Glycoconjugates carrying carbohydrate antigens, including glycoproteins, glycolipids, and proteoglycans, are primarily localized on the plasma-membrane surface of cells and serve as excellent biomarkers at various stages of cellular differentiation. Moreover, they also play important functional roles in determining cell fate such as self-renewal, proliferation, and differentiation. In the present review, we discuss the expression pattern and possible functions of glycoconjugates and carbohydrate antigens in NSCs, with an emphasis on stage-specific embryonic antigen-1, human natural killer antigen-1, polysialic acid-neural cell-adhesion molecule, prominin-1, gp130, chondroitin sulfate proteoglycans, heparan sulfate proteoglycans, cystatin C, galectin-1, glycolipids, and Notch.
Collapse
Affiliation(s)
- Makoto Yanagisawa
- Institute of Molecular Medicine and Genetics and Institute of Neuroscience, Medical College of Georgia, Augusta, GA 30912, USA
| | | |
Collapse
|
6
|
Marconi S, De Toni L, Lovato L, Tedeschi E, Gaetti L, Acler M, Bonetti B. Expression of gangliosides on glial and neuronal cells in normal and pathological adult human brain. J Neuroimmunol 2005; 170:115-21. [PMID: 16313974 DOI: 10.1016/j.jneuroim.2005.03.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Accepted: 03/09/2005] [Indexed: 11/15/2022]
Abstract
Few studies have assessed the glycolipid phenotype of glial cells in the human central nervous system (CNS) in situ. We investigated by immunohistochemistry the expression and cellular distribution of a panel of gangliosides (GM1, GM2, acetyl-GM3, GD1a, GD1b, GD2, GD3, GT1b, GQ1b and the A2B5 antibody) in adult, human normal and pathological brain, namely multiple sclerosis (MS) and other neurological diseases (OND). In normal conditions, we found diffuse expression in the white matter of most gangliosides tested, with the exception of acetyl-GM3, GT1b and GQ1b. By double immunofluorescence with phenotypic markers, GM1 and GD1b were preferentially expressed on GFAP+ astrocytes, GD1a on NG2+ oligodendrocyte precursors, A2B5 immunostained both populations, while GD2 was selectively present on mature oligodendrocytes. In the gray matter, only GM1, GD2 and A2B5 were present on neuronal cells. Interestingly, those gangliosides present on astrocytes in normal conditions were preferentially expressed on NG2+ cells in chronic MS lesions and in OND. Selective expression of GT1b upon astrocytes and NG2+ cells was instead observed in MS lesions, but not in OND. The definition of the glycolipid phenotype of CNS glial cells may be useful to identify distinct biological glial subsets and provide insights on the potential autoantigenic role of gangliosides in CNS autoimmune diseases.
Collapse
Affiliation(s)
- Silvia Marconi
- Section of Neurology, Department of Neurological Sciences and Vision, University of Verona, Ospedale Policlinico G.B. Rossi, P.le Scuro, 37134 Verona, Italy
| | | | | | | | | | | | | |
Collapse
|
7
|
Barrier L, Ingrand S, Piriou A, Touzalin A, Fauconneau B. Lactic acidosis stimulates ganglioside and ceramide generation without sphingomyelin hydrolysis in rat cortical astrocytes. Neurosci Lett 2005; 385:224-9. [PMID: 15964679 DOI: 10.1016/j.neulet.2005.05.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Revised: 05/17/2005] [Accepted: 05/18/2005] [Indexed: 11/18/2022]
Abstract
Acidosis is a ubiquitous feature of cerebral ischemia, and triggers a cascade of biochemical events that results in neuronal injury. The purpose of this study was to evaluate the effects of lactic acidosis on the ganglioside composition, the ceramide and sphingomyelin (SM) levels in rat cortical astrocytes. Primary astrocyte cultures were exposed to lactic acid (pH 5.5) for 2, 5 and 17 h, and cell death was evaluated at each time point. Gangliosides, ceramides and SM were analyzed by high-performance thin layer chromatography. Lactic acidosis caused a progressive increase of both GM3 and GD3 gangliosides up to 5 h of treatment. However, at 17 h of acidosis, GM3 tented to return to the normal level whereas GD3 accumulated. Additionally, ceramides were gradually generated, whereas no significant decrease of SM occured for 17 h of acidosis. These results suggest that ceramides were not produced by the breakdown of SM and may be served as metabolic precursor for the biosynthesis of GM3 and GD3. Since these lipids are important messengers of the adaptative responses to stress, accumulation of sphingolipids triggered by lactic acid exposure of astrocytes might play an important role in determining the outcomes of injurious processes.
Collapse
Affiliation(s)
- Laurence Barrier
- Groupe de Recherche sur le Vieillissement Cérébral, GReViC EA 3808, Faculté de Médecine et de Pharmacie, 34, rue du Jardin des Plantes, BP 199, 86005 Poitiers Cedex, France.
| | | | | | | | | |
Collapse
|
8
|
Adachi T, Takanaga H, Kunimoto M, Asou H. Influence of LIF and BMP-2 on differentiation and development of glial cells in primary cultures of embryonic rat cerebral hemisphere. J Neurosci Res 2005; 79:608-15. [PMID: 15678513 DOI: 10.1002/jnr.20373] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cells prepared from the cerebral hemisphere of embryonic Day 18 rats were maintained for 2 days in serum-free modified Bottenstein-Sato (mBS) medium containing thyroid hormone (TH), with or without leukemia inhibitory factor (LIF) or bone morphogenetic protein (BMP)-2, and these influences on the differentiation and development of glial cells were investigated using the cells maintained in mBS medium containing TH as controls. The levels of glial fibrillary acidic protein (GFAP) expression and the number of GFAP-positive astrocytes increased markedly with the addition of LIF or BMP-2, and were enhanced further with the addition of both LIF and BMP-2. The number of O1-positive oligodendrocytes increased with the addition of LIF, whereas it decreased with the addition of BMP-2. The number did not change with the addition of both cytokines. Using antibody against platelet-derived growth factor (PDGF), we then excluded indirect effects of these cytokines through PDGF, which would increase by accelerated astrocyte development. When PDGF was neutralized, the number of oligodendrocytes increased under all conditions examined. As a result of the neutralization, the effect of BMP-2 on oligodendrocyte differentiation was eliminated, although LIF remained effective. These results suggest that the differentiation of oligodendrocytes was delayed partially by PDGF even in control cultures. It is also suggested that LIF and BMP-2, each of which accelerates the differentiation and development of astrocytes, would seem to have different effects on oligodendrocyte differentiation, i.e., LIF would directly affect oligodendrocyte differentiation, whereas BMP-2 would affect it mainly through PDGF.
Collapse
Affiliation(s)
- Tatsumi Adachi
- Department of Basic Medical Sciences, National Institute for Minamata Disease, Minamata, Kumamoto, Japan.
| | | | | | | |
Collapse
|
9
|
Negishi T, Ishii Y, Kyuwa S, Kuroda Y, Yoshikawa Y. Primary culture of cortical neurons, type-1 astrocytes, and microglial cells from cynomolgus monkey (Macaca fascicularis) fetuses. J Neurosci Methods 2004; 131:133-40. [PMID: 14659833 DOI: 10.1016/j.jneumeth.2003.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We established selective primary cultures of neurons, astrocytes, and microglial cells from cryopreserved fetal cerebral cortex of cynomolgus monkeys (Macaca fascicularis). At 14 days in serum-containing medium, the cell cultures of the fetal cerebral cortex consisted primarily of neurons, astrocytes, and floating microglial cells. At 21 days, we observed a small number of myelin basic protein (MBP)-positive oligodendrocytes. The addition of cytosine arabinoside (a selective DNA synthesis inhibitor) at 2 days in culture eliminated proliferative glial cells, allowing adequate numbers of neurons to survive selectively. A chemically defined serum-free medium successfully supported neuronal survival at a level equivalent to that supported by the serum-containing medium. Brain-derived neurotrophic factor (BDNF) significantly affected the survival of primate neurons. Glutamate induced a significant degree of neuronal cell death against primate neurons and MK-801, a selective N-methyl-D-aspartate receptor (NMDAR) antagonist, blocked cell death, which suggests that primate cortical neurons have NMDAR and the glutamate-induced cell toxicity is mediated by NMDAR. In the serum-free medium, type-1 astrocytes responded to dibutyryl cyclic AMP and showed a process-bearing morphology. The growth of type-1 astrocytes in the serum-free medium was stimulated by epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and hydrocortisone, which are known growth factors in rat type-1 astrocytes. Cultured microglial cells expressed CD68, a monocyte marker. Macrophage-colony stimulating factor (M-CSF) stimulated microglial cell growth in the serum-free medium. These selective primary culture systems of primate cerebral cortical cells will be useful in issues involving species specificity in neuroscience.
Collapse
Affiliation(s)
- Takayuki Negishi
- Department of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | | | | | |
Collapse
|
10
|
Kamitori K, Machide M, Tomita K, Nakafuku M, Kohsaka S. Cell-type-specific expression of protein tyrosine kinase-related receptor RYK in the central nervous system of the rat. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 104:255-66. [PMID: 12225882 DOI: 10.1016/s0169-328x(02)00358-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mammalian RYK is an orphan receptor that contains a catalytically inactive tyrosine-kinase-related domain. Its Drosophila homolog, Lio/Drl, is required for axon pathfinding in developing brain. Our previous study suggested that RYK mRNA is expressed in nestin-positive progenitor cells and neurons. In the present study, immunohistochemistry has been used to further localize RYK in the central nervous system of rats to identify the lineage of the RYK-expressing cells. In the embryonic forebrain, RYK colocalized with nestin in the ventricular zone and with MAP2 in the cortical plate, suggesting that RYK is expressed in neural progenitor cells and neurons. Localization of RYK in embryonic spinal cord also suggested its expression in both cell types. In primary cultures of rat cerebrum, RYK expression was observed in all neurons, as well as in a significant population of oligodendrocytes, O-2A progenitor cells, and type-2 astrocytes. However, no RYK expression was detected in type-1 astrocytes or microglia. Multipotent neural stem cell line MNS-70 was also analyzed for expression of RYK, and most of the cells were positive for both RYK and nestin in the undifferentiated stage. In the differentiated stage, expression of RYK was detected in the neurons, but not in type-1 astrocytes. In conclusion, RYK is expressed in nestin-positive progenitor cells and neurons, and in a certain population of oligodendrocytes, O-2A progenitor cells, and type-2 astrocytes in developing CNS. These findings show that expression of RYK in rat CNS is tightly regulated in a cell-type-specific manner.
Collapse
Affiliation(s)
- Kazuyo Kamitori
- Department of Neurochemistry, National Institute of Neuroscience, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, Japan
| | | | | | | | | |
Collapse
|
11
|
Adachi T, Takanaga H, Sakurai Y, Ishido M, Kunimoto M, Asou H. Influence of cell density and thyroid hormone on glial cell development in primary cultures of embryonic rat cerebral hemisphere. J Neurosci Res 2002; 69:61-71. [PMID: 12111816 DOI: 10.1002/jnr.10279] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The influence of cell density and thyroid hormone (TH) on the development of astrocytes and oligodendrocytes was investigated in primary cultures prepared from rat cerebral hemisphere on embryonic day (E)18. At the beginning of the culture, most of the cells were microtubule-associated protein 2 (MAP2)-positive neurons, whereas O1-positive oligodendrocytes and glial fibrillary acidic protein (GFAP)-positive astrocytes were rarely observed. After the cells were maintained in serum-free defined medium, astrocytes developed at high cell density but rarely at a low one. When leukemia inhibitory factor (LIF) was supplemented in low-density cultures, the levels of GFAP expression markedly increased to almost the same extent as in high-density culture without TH. This suggests that, in low-density cultures, astrocyte progenitors could not differentiate because of insufficient astrocyte-inducing factors. Interestingly, the addition of TH increased GFAP expression levels only at high density. The number of oligodendrocytes increased with TH addition at both cell densities, although the effects were more remarkable at high density. These results suggest that cell density and TH are pivotal factors in the development of both astrocytes and oligodendrocytes. It is also suggested that the effects of TH on glial cell development could be accelerated via cell-cell communications.
Collapse
Affiliation(s)
- Tatsumi Adachi
- Regional Environment Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | |
Collapse
|
12
|
Akiyama K, Ichinose S, Omori A, Sakurai Y, Asou H. Study of expression of myelin basic proteins (MBPs) in developing rat brain using a novel antibody reacting with four major isoforms of MBP. J Neurosci Res 2002; 68:19-28. [PMID: 11933045 DOI: 10.1002/jnr.10188] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Myelin basic proteins (MBPs) are the major protein components of myelin. MBP isoforms are known to have different expression patterns. In order to distinguish the different expression patterns on myelination, we have developed a novel antibody reacting with the four major isoforms of MBPs with molecular masses of 21.5 kDa, 18.5 kDa, 17.0 kDa, and 14.0 kDa. These MBPs were initially separated by acid urea gel and sodium dodecyl sulfate polyacrylamide gel electrophoreses and detected with the luminol reaction. Then the antibody developed was used to determine the relative amounts of MBP isoforms. The MBPs of oligodendrocytes were detected by the enhanced luminol reaction using Renaissance (Dupont NEN, Boston, MA). From the immunological aspect, the MBP monoclonal antibody (Sires et al. [1981] Science 214:87-89) was revealed to recognize MBPs with molecular masses of 21.5 kDa and 18.5 kDa. Furthermore, we found that Ile-166 in the rat 18.5-kDa MBP isomers was replaced by methionine. The 14.0-kDa and 18.5-kDa isoforms of MBP are the most abundant MBP species and comprise more than 70% of the total MBPs in 3.5-and 24-month-old rats. MBPs are expressed during development and the compositions of MBPs in mature (3.5 months old) and aged (24 months old) rats were almost the same. The expression of the 14.0-kDa and 18.5-kDa MBPs occurred earlier in the cerebellum and the spinal cord than in the cerebrum by approximately 1 week. MBPs are also expressed upon oligodendrocyte maturation by interacting with astrocytes. The above results suggest that the regulation of MBP isoforms during development and oligodendrocyte differentiation may indicate the point of occurrence of both the unique patterns of isoform expression and the shift in intracellular localization of MBPs with the maturation of oligodendrocytes.
Collapse
Affiliation(s)
- Kyoichi Akiyama
- Department of Bioactivity Regulation, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
13
|
Akiyama K, Sakurai Y, Asou H, Senshu T. Localization of peptidylarginine deiminase type II in a stage-specific immature oligodendrocyte from rat cerebral hemisphere. Neurosci Lett 1999; 274:53-5. [PMID: 10530518 DOI: 10.1016/s0304-3940(99)00678-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Myelin basic protein (MBP) is composed of multiple charged isomers as the products of various posttranslational modifications. The least cationic component contains six citrulline residues converted from arginine residues by peptidylarginine deiminase (PAD). The modified MBP differs markedly from unmodified MBP in the ability to aggregate acidic lipid vesicles. However, the localization of PAD in brain has remained rather elusive. We performed Western blotting and immunocytochemical analyses of PAD type II and found that it was present in stage-specific immature oligodendrocytes but not in either type-1 astrocytes or neurons. We also confirmed that only the oligodendrocyte homogenate contained the PAD activity utilizing a sensitive method to detect citrulline-containing proteins. These data suggest that PAD type II localized in oligodendrocytes is responsible for deiminating MBP.
Collapse
Affiliation(s)
- K Akiyama
- Department of Bioactivity Regulation, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Japan
| | | | | | | |
Collapse
|