1
|
Péladeau C, Jasmin BJ. Targeting IRES-dependent translation as a novel approach for treating Duchenne muscular dystrophy. RNA Biol 2020; 18:1238-1251. [PMID: 33164678 DOI: 10.1080/15476286.2020.1847894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Internal-ribosomal entry sites (IRES) are translational elements that allow the initiation machinery to start protein synthesis via internal initiation. IRESs promote tissue-specific translation in stress conditions when conventional cap-dependent translation is inhibited. Since many IRES-containing mRNAs are relevant to diseases, this cellular mechanism is emerging as an attractive therapeutic target for pharmacological and genetic modulations. Indeed, there has been growing interest over the past years in determining the therapeutic potential of IRESs for several disease conditions such as cancer, neurodegeneration and neuromuscular diseases including Duchenne muscular dystrophy (DMD). IRESs relevant for DMD have been identified in several transcripts whose protein product results in functional improvements in dystrophic muscles. Together, these converging lines of evidence indicate that activation of IRES-mediated translation of relevant transcripts in DMD muscle represents a novel and appropriate therapeutic strategy for DMD that warrants further investigation, particularly to identify agents that can modulate their activity.
Collapse
Affiliation(s)
- Christine Péladeau
- Department of Cellular and Molecular Medicine, and the Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, and the Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Ornitz DM, Itoh N. The Fibroblast Growth Factor signaling pathway. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2015; 4:215-66. [PMID: 25772309 PMCID: PMC4393358 DOI: 10.1002/wdev.176] [Citation(s) in RCA: 1411] [Impact Index Per Article: 141.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/23/2014] [Accepted: 01/08/2015] [Indexed: 12/13/2022]
Abstract
The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs). Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins. Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways. Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels. Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning. FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways. Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of MedicineSt. Louis, MO, USA
- *
Correspondence to:
| | - Nobuyuki Itoh
- Graduate School of Pharmaceutical Sciences, Kyoto UniversitySakyo, Kyoto, Japan
| |
Collapse
|
3
|
Stem cell transplantation for muscular dystrophy: the challenge of immune response. BIOMED RESEARCH INTERNATIONAL 2014; 2014:964010. [PMID: 25054157 PMCID: PMC4098613 DOI: 10.1155/2014/964010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 06/05/2014] [Indexed: 01/03/2023]
Abstract
Treating muscle disorders poses several challenges to the rapidly evolving field of regenerative medicine. Considerable progress has been made in isolating, characterizing, and expanding myogenic stem cells and, although we are now envisaging strategies to generate very large numbers of transplantable cells (e.g., by differentiating induced pluripotent stem cells), limitations directly linked to the interaction between transplanted cells and the host will continue to hamper a successful outcome. Among these limitations, host inflammatory and immune responses challenge the critical phases after cell delivery, including engraftment, migration, and differentiation. Therefore, it is key to study the mechanisms and dynamics that impair the efficacy of cell transplants in order to develop strategies that can ultimately improve the outcome of allogeneic and autologous stem cell therapies, in particular for severe disease such as muscular dystrophies. In this review we provide an overview of the main players and issues involved in this process and discuss potential approaches that might be beneficial for future regenerative therapies of skeletal muscle.
Collapse
|
4
|
Garcia LA, Ferrini MG, Norris KC, Artaza JN. 1,25(OH)(2)vitamin D(3) enhances myogenic differentiation by modulating the expression of key angiogenic growth factors and angiogenic inhibitors in C(2)C(12) skeletal muscle cells. J Steroid Biochem Mol Biol 2013; 133:1-11. [PMID: 22982629 PMCID: PMC3513642 DOI: 10.1016/j.jsbmb.2012.09.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/03/2012] [Accepted: 09/04/2012] [Indexed: 01/22/2023]
Abstract
Vitamin D is mostly recognized for its regulation of calcium homeostasis in relation to the intestine, kidney, and bone. Although clinical studies have linked vitamin D with increased muscle function and strength, little is known of its underlying molecular mechanism. We recently demonstrated that 1,25-D3 exerts a direct pro-myogenic effect on skeletal muscle cells; this has provoked our investigation of 1,25-D's effect on angiogenesis, a vital process for new capillary development and tissue repair. In this study, we examined the mechanism by which 1,25-D3 modulates key angiogenic growth factors and angiogenic inhibitors. C(2)C(12) myoblasts were incubated with 100 nM 1,25-D3 or placebo for 1, 4 and 10 days. At the end of the respective incubation time, total RNA was isolated for PCR arrays and for qRT-PCR. Total proteins were isolated for Western blots and proteome profiler arrays. The addition of 1,25-D3 to C(2)C(12) myoblasts increased VEGFa and FGF-1: two pro-angiogenic growth factors that promote neo-vascularization and tissue regeneration, and decreased FGF-2 and TIMP-3: two myogenic and/or angiogenic inhibitors. Our previous study demonstrated that 1,25-D3 altered IGF-I/II expression, consistent with the observed changes in VEGFa and FGF-2 expression. These results extend our previous findings and demonstrate the modulation of angiogenesis which may be an additional mechanism by which 1,25-D3 promotes myogenesis. This study supports the mechanistic rationale for assessing the administration of vitamin D and/or vitamin D analogs to treat select muscle disorders and may also provide an alternative solution for therapies that directly manipulate VEGF and FGF's to promote angiogenesis.
Collapse
Affiliation(s)
- Leah A. Garcia
- Department of Internal Medicine, Charles R. Drew University of Medicine & Science, Los Angeles, CA 90059
| | - Monica G. Ferrini
- Department of Internal Medicine, Charles R. Drew University of Medicine & Science, Los Angeles, CA 90059
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Keith C. Norris
- Department of Internal Medicine, Charles R. Drew University of Medicine & Science, Los Angeles, CA 90059
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jorge N. Artaza
- Department of Internal Medicine, Charles R. Drew University of Medicine & Science, Los Angeles, CA 90059
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Corresponding author and reprint requests to: Jorge N. Artaza, MS., Ph.D., Department of Internal Medicine, Charles R. Drew University of Medicine & Science; 1731 East 120th Street, Los Angeles, California, 90059, USA. Phone: 323-563-4915; FAX: 323-563-9352;
| |
Collapse
|
5
|
Abstract
DUX4, a homeobox-containing gene present in a tandem array, is implicated in facioscapulohumeral muscular dystrophy (FSHD), a dominant autosomal disease. New findings about DUX4 have raised as many fundamental questions about the molecular pathology of this unique disease as they have answered. This review discusses recent studies addressing the question of whether there is extensive FSHD-related transcription dysregulation in adult-derived myoblasts and myotubes, the precursors for muscle repair. Two models for the role of DUX4 in FSHD are presented. One involves transient pathogenic expression of DUX4 in many cells in the muscle lineage before the myoblast stage resulting in a persistent, disease-related transcription profile ('Majority Rules'), which might be enhanced by subsequent oscillatory expression of DUX4. The other model emphasizes the toxic effects of inappropriate expression of DUX4 in only an extremely small percentage of FSHD myoblasts or myotube nuclei ('Minority Rules'). The currently favored Minority Rules model is not supported by recent studies of transcription dysregulation in FSHD myoblasts and myotubes. It also presents other difficulties, for example, explaining the expression of full-length DUX4 transcripts in FSHD fibroblasts. The Majority Rules model is the simpler explanation of findings about FSHD-associated gene expression and the DUX4-encoded homeodomain-type protein.
Collapse
|
6
|
An intronic LINE-1 element insertion in the dystrophin gene aborts dystrophin expression and results in Duchenne-like muscular dystrophy in the corgi breed. J Transl Med 2011; 91:216-31. [PMID: 20714321 PMCID: PMC2999660 DOI: 10.1038/labinvest.2010.146] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a dystrophin-deficient lethal muscle disease. To date, the catastrophic muscle wasting phenotype has only been seen in dystrophin-deficient humans and dogs. Although Duchenne-like symptoms have been observed in more than a dozen dog breeds, the mutation is often not known and research colonies are rarely established. Here, we report an independent canine DMD model originally derived from the Pembroke Welsh corgi breed. The affected dogs presented clinical signs of muscular dystrophy. Immunostaining revealed the absence of dystrophin and upregulation of utrophin. Histopathologic examination showed variable fiber size, central nucleation, calcification, fibrosis, neutrophil and macrophage infiltration and cardiac focal vacuolar degeneration. Carrier dogs also displayed mild myopathy. The mutation was identified as a long interspersed repetitive element-1 (LINE-1) insertion in intron 13, which introduced a new exon containing an in-frame stop codon. Similar mutations have been seen in human patients. A colony was generated by crossing carrier females with normal males. Affected puppies had a normal birth weight but they experienced a striking growth delay in the first 5 days. In summary, the new corgi DMD model offers an excellent opportunity to study DMD pathogenesis and to develop novel therapies.
Collapse
|
7
|
Conte C, Ainaoui N, Delluc-Clavières A, Khoury MP, Azar R, Pujol F, Martineau Y, Pyronnet S, Prats AC. Fibroblast growth factor 1 induced during myogenesis by a transcription-translation coupling mechanism. Nucleic Acids Res 2009; 37:5267-78. [PMID: 19561198 PMCID: PMC2760804 DOI: 10.1093/nar/gkp550] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Fibroblast growth factor 1 (FGF1) is involved in muscle development and regeneration. The FGF1 gene contains four tissue-specific promoters allowing synthesis of four transcripts with distinct leader regions. Two of these transcripts contain internal ribosome entry sites (IRESs), which are RNA elements allowing mRNA translation to occur in conditions of blockade of the classical cap-dependent mechanism. Here, we investigated the function and the regulation of FGF1 during muscle differentiation and regeneration. Our data show that FGF1 protein expression is induced in differentiating myoblasts and regenerating mouse muscle, whereas siRNA knock-down demonstrated FGF1 requirement for myoblast differentiation. FGF1 induction occurred at both transcriptional and translational levels, involving specific activation of both promoter A and IRES A, whereas global cap-dependent translation was inhibited. Furthermore, we identified, in the FGF1 promoter A distal region, a cis-acting element able to activate the IRES A-driven translation. These data revealed a mechanism of molecular coupling of mRNA transcription and translation, involving a unique process of IRES activation by a promoter element. The crucial role of FGF1 in myoblast differentiation provides physiological relevance to this novel mechanism. This finding also provides a new insight into the molecular mechanisms linking different levels of gene expression regulation.
Collapse
Affiliation(s)
- Caroline Conte
- Inserm, U858 and Institut de Médecine Moléculaire de Rangueil, Université de Toulouse, UPS, IFR150, F-31432 Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Analysis of growth factor expression in affected and unaffected muscles of oculo-pharyngeal muscular dystrophy (OPMD) patients: A pilot study. Neuromuscul Disord 2009; 19:199-206. [DOI: 10.1016/j.nmd.2008.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 11/27/2008] [Accepted: 12/07/2008] [Indexed: 11/20/2022]
|
9
|
FGFR1 inhibits skeletal muscle atrophy associated with hindlimb suspension. BMC Musculoskelet Disord 2007; 8:32. [PMID: 17425786 PMCID: PMC1853093 DOI: 10.1186/1471-2474-8-32] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Accepted: 04/10/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Skeletal muscle atrophy can occur under many different conditions, including prolonged disuse or immobilization, cachexia, cushingoid conditions, secondary to surgery, or with advanced age. The mechanisms by which unloading of muscle is sensed and translated into signals controlling tissue reduction remains a major question in the field of musculoskeletal research. While the fibroblast growth factors (FGFs) and their receptors are synthesized by, and intimately involved in, embryonic skeletal muscle growth and repair, their role maintaining adult muscle status has not been examined. METHODS We examined the effects of ectopic expression of FGFR1 during disuse-mediated skeletal muscle atrophy, utilizing hindlimb suspension and DNA electroporation in mice. RESULTS We found skeletal muscle FGF4 and FGFR1 mRNA expression to be modified by hind limb suspension,. In addition, we found FGFR1 protein localized in muscle fibers within atrophying mouse muscle which appeared to be resistant to atrophy. Electroporation and ectopic expression of FGFR1 significantly inhibited the decrease in muscle fiber area within skeletal muscles of mice undergoing suspension induced muscle atrophy. Ectopic FGFR1 expression in muscle also significantly stimulated protein synthesis in muscle fibers, and increased protein degradation in weight bearing muscle fibers. CONCLUSION These results support the theory that FGF signaling can play a role in regulation of postnatal skeletal muscle maintenance, and could offer potentially novel and efficient therapeutic options for attenuating muscle atrophy during aging, illness and spaceflight.
Collapse
|
10
|
Szewczyk NJ, Jacobson LA. Signal-transduction networks and the regulation of muscle protein degradation. Int J Biochem Cell Biol 2005; 37:1997-2011. [PMID: 16125109 DOI: 10.1016/j.biocel.2005.02.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 01/18/2005] [Accepted: 02/22/2005] [Indexed: 02/05/2023]
Abstract
Protein degradation in muscle functions in maintaining normal physiological homeostasis and adapting to new homeostatic states, and is required for muscle wasting or atrophy in various pathological states. The interplay between protein synthesis and degradation to maintain homeostasis is complex and responds to a variety of autocrine and intercellular signals from neuronal inputs, hormones, cytokines, growth factors and other regulatory molecules. The intracellular events that connect extracellular signals to the molecular control of protein degradation are incompletely understood, but likely involve interacting signal-transduction networks rather than isolated pathways. We review some examples of signal-transduction systems that regulate protein degradation, including effectors of proteolysis inducing factor (PIF), insulin and insulin-like growth factor (IGF) and their receptors, and fibroblast growth factor (FGF) and its receptors.
Collapse
Affiliation(s)
- Nathaniel J Szewczyk
- Department of Biological Sciences, University of Pittsburgh, 304 Langley Hall, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
11
|
Szewczyk NJ, Jacobson LA. Activated EGL-15 FGF receptor promotes protein degradation in muscles of Caenorhabditis elegans. EMBO J 2003; 22:5058-67. [PMID: 14517244 PMCID: PMC204456 DOI: 10.1093/emboj/cdg472] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Signaling by fibroblast growth factors (FGFs) and their receptors has been previously implicated in control of cell proliferation, differentiation and migration. Here we report a novel role for signaling by the EGL-15 FGFR of Caenorhabditis elegans in controlling protein degradation in differentiated muscle. Activation of EGL-15, by means of a reduction of function mutation (clr-1) affecting an inhibitory phosphatase, triggers protein degradation in adult muscle cells using a pre-existing proteolytic system. This activation is not suppressed by mutation in either of the known genes encoding FGF ligands (egl-17 or let-756) but is well suppressed when both are mutated, indicating that either ligand is sufficient and at least one is necessary for FGFR activation. Activity of the Ras pathway through mitogen-activated protein kinase (MAPK) is required to trigger protein degradation. This is the first report that degradation of intracellular protein can be triggered by a growth factor receptor using an identified signal transduction pathway. The data raise the possibility that FGF-triggered proteolysis may be relevant to muscle remodeling or dedifferentiation.
Collapse
Affiliation(s)
- Nathaniel J Szewczyk
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
12
|
Zhao Y, Haginoya K, Sun G, Dai H, Onuma A, Iinuma K. Platelet-derived growth factor and its receptors are related to the progression of human muscular dystrophy: an immunohistochemical study. J Pathol 2003; 201:149-59. [PMID: 12950028 DOI: 10.1002/path.1414] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study has examined the immunological localization of platelet-derived growth factor (PDGF)-A, PDGF-B, and PDGF receptor (PDGFR) alpha and beta to clarify their role in the progression of muscular dystrophy. Biopsied frozen muscles from patients with Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD), and congenital muscular dystrophy (CMD) were analysed immunohistochemically using antibodies raised against PDGF-A, PDGF-B, and PDGFR alpha and beta. Muscles from two dystrophic mouse models (dy and mdx mice) were also immunostained with antibodies raised against PDGFR alpha and beta. In normal human control muscle, neuromuscular junctions and vessels were positively stained with antibodies against PDGF-A, PDGF-B, PDGFR alpha and PDGFR beta. In human dystrophic muscles, PDGF-A, PDGF-B, PDGFR alpha and PDGFR beta were strongly immunolocalized in regenerating muscle fibres and infiltrating macrophages. PDGFR alpha was also immunolocalized to the muscle fibre sarcolemma and necrotic fibres. The most significant finding in this study was a remarkable overexpression of PDGFR beta and, to a lesser extent, PDGFR alpha in the endomysium of DMD and CMD muscles. PDGFR was also overexpressed in the interstitium of muscles from dystrophic mice, particularly dy mice. Double immunolabelling revealed that activated interstitial fibroblasts were clearly positive for PDGFR alpha and beta. However, DMD and CMD muscles with advanced fibrosis showed very poor reactivity against PDGF and PDGFR. Those findings were confirmed by immunoblotting with PDGFR beta. These findings indicate that PDGF and its receptors are significantly involved in the active stage of tissue destruction and are associated with the initiation or promotion of muscle fibrosis. They also have roles in muscle fibre regeneration and signalling at neuromuscular junctions in both normal and diseased muscle.
Collapse
Affiliation(s)
- Yajuan Zhao
- Department of Pediatrics, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Muntoni F, Brown S, Sewry C, Patel K. Muscle development genes: their relevance in neuromuscular disorders. Neuromuscul Disord 2002; 12:438-46. [PMID: 12031617 DOI: 10.1016/s0960-8966(01)00326-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Myogenesis is a complex cascade of events that involves the specification and differentiation of muscle precursor cells or myoblasts, their fusion to form primary and secondary myotubes and subsequent maturation into muscle fibres. In addition, the development of axial muscle requires the migration of muscle precursor cells. These events are under strict genetic control. The contribution of individual genes to this process has been highlighted both by the phenotype of mice with targeted inactivation of individual myogenic regulatory factors and by rare human disorders in which the involvement of these genes has been demonstrated. The inactivation of known myogenic regulatory genes is associated with abnormal regulation of skeletal muscle differentiation and has an effect on regeneration but does not cause progressive muscle weakness or wasting. This review summarises recent developments in this field and will be of particular relevance to those interested in neuromuscular disorders. We also examine the possibility that some rare human conditions associated with abnormal muscle formation may be due to genetic defects in one of the myogenic regulatory genes.
Collapse
Affiliation(s)
- Francesco Muntoni
- Neuromuscular Unit, Department of Paediatrics & Neonatal Medicine, Imperial College Faculty of Medicine, Hammersmith Hospital, Du Cane Road, London, UK.
| | | | | | | |
Collapse
|