1
|
Gonzalez Lopez M, Huteckova B, Lavicky J, Zezula N, Rakultsev V, Fridrichova V, Tuaima H, Nottmeier C, Petersen J, Kavkova M, Zikmund T, Kaiser J, Lav R, Star H, Bryja V, Henyš P, Vořechovský M, Tucker AS, Harnos J, Buchtova M, Krivanek J. Spatiotemporal monitoring of hard tissue development reveals unknown features of tooth and bone development. SCIENCE ADVANCES 2023; 9:eadi0482. [PMID: 37531427 PMCID: PMC10396306 DOI: 10.1126/sciadv.adi0482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023]
Abstract
Mineralized tissues, such as bones or teeth, are essential structures of all vertebrates. They enable rapid movement, protection, and food processing, in addition to providing physiological functions. Although the development, regeneration, and pathogenesis of teeth and bones have been intensely studied, there is currently no tool to accurately follow the dynamics of growth and healing of these vital tissues in space and time. Here, we present the BEE-ST (Bones and tEEth Spatio-Temporal growth monitoring) approach, which allows precise quantification of development, regeneration, remodeling, and healing in any type of calcified tissue across different species. Using mouse teeth as model the turnover rate of continuously growing incisors was quantified, and role of hard/soft diet on molar root growth was shown. Furthermore, the dynamics of bones and teeth growth in lizards, frogs, birds, and zebrafish was uncovered. This approach represents an effective, highly reproducible, and versatile tool that opens up diverse possibilities in developmental biology, bone and tooth healing, tissue engineering, and disease modeling.
Collapse
Affiliation(s)
- Marcos Gonzalez Lopez
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Barbora Huteckova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Josef Lavicky
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Nikodem Zezula
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Vladislav Rakultsev
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Vendula Fridrichova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Haneen Tuaima
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Cita Nottmeier
- Department of Orthodontics, University of Leipzig Medical Center, Leipzig, Germany
| | - Julian Petersen
- Department of Orthodontics, University of Leipzig Medical Center, Leipzig, Germany
| | - Michaela Kavkova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Tomas Zikmund
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Rupali Lav
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, UK
| | - Haza Star
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, UK
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Henyš
- Institute of New Technologies and Applied Informatics, Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Liberec, Czech Republic
| | - Miroslav Vořechovský
- Institute of Structural Mechanics, Faculty of Civil Engineering, Brno University of Technology, Czech Republic
| | - Abigail S. Tucker
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, UK
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jakub Harnos
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Marcela Buchtova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Jan Krivanek
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
2
|
Mori M, Guo T, Yamanaka K, Wang Z, Yoshida K, Onuki Y, Sato S, Chiba A, Misra RDK. The significance of thermomechanical processing on the cellular response of biomedical Co-Cr-Mo alloys. J Mech Behav Biomed Mater 2022; 133:105360. [PMID: 35839635 DOI: 10.1016/j.jmbbm.2022.105360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 11/17/2022]
Abstract
Strengthening of biomedical Co-Cr-Mo alloys has been explored via thermomechanical processing for enhancing the durability of their biomedical applications. However, the effects of cold and hot deformation on the cellular activity continue to be unclear. In this study, we prepared Co-Cr-Mo alloy rods via cold swaging and hot-caliber rolling and studied the relationship between the microstructure and cellular response of pre-osteoblasts. The cold-swaged rod experienced strain-induced martensitic transformation, which increased the volume fraction of the hexagonal close-packed (hcp) ε-martensite to ∼60 vol.% with an increase in area reduction (r) to 30%. The 111γ fiber texture of the face-centered cubic (fcc) γ-matrix followed the Shoji-Nishiyama orientation relationship with ε-martensite. Cell culture results revealed beneficial effects of cold swaging on the cell response, in terms of adhesion, proliferation and morphology of cells, although increasing r did not significantly affect cellular metabolism levels. The addition of small content of Zr (0.04 wt.%) led to enhanced focal adhesion of cells, which became more significant at higher r. The microstructural evolution during hot-caliber rolling, namely, grain refinement without any phase transformation and strong texture development, did not appreciably affect the cellular activity. These findings are envisaged to facilitate alloy design and microstructural optimization for favorable tuning the osseointegration of biomedical Co-Cr-Mo alloys.
Collapse
Affiliation(s)
- Manami Mori
- Department of General Engineering, National Institute of Technology, Sendai College, 48 Nodayama, Medeshima-Shiote, Natori, 981-1239, Japan; Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Ting Guo
- College of Materials Science and Engineering, College of Biology, Hunan University, Changsha, 410082, P.R. China
| | - Kenta Yamanaka
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan.
| | - Zuyong Wang
- College of Materials Science and Engineering, College of Biology, Hunan University, Changsha, 410082, P.R. China.
| | - Kazuo Yoshida
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan; Eiwa Co., Ltd., 405-45 Kasshi-cho, Kamaishi, 026-0001, Japan
| | - Yusuke Onuki
- Frontier Research Center for Applied Atomic Sciences, Ibaraki University, 162-1 Shirakata, Tokai, 319-1106, Japan
| | - Shigeo Sato
- Graduate School of Science and Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, 316-8511, Japan
| | - Akihiko Chiba
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - R D K Misra
- Department of Metallurgical, Materials and Biomedical Engineering, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA.
| |
Collapse
|
3
|
Crouch DL, Hall PT, Stubbs C, Billings C, Pedersen AP, Burton B, Greenacre CB, Stephenson SM, Anderson DE. Feasibility of Implanting a Foot–Ankle Endoprosthesis within Skin in a Rabbit Model of Transtibial Amputation. Bioengineering (Basel) 2022; 9:bioengineering9080348. [PMID: 36004873 PMCID: PMC9405244 DOI: 10.3390/bioengineering9080348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 06/30/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Prosthetic limbs that are completely implanted within skin (i.e., endoprostheses) could permit direct, physical muscle–prosthesis attachment to restore more natural sensorimotor function to people with amputation. The objective of our study was to test, in a rabbit model, the feasibility of replacing the lost foot after hindlimb transtibial amputation by implanting a novel rigid foot–ankle endoprosthesis that is fully covered with skin. We first conducted a pilot, non-survival surgery in two rabbits to determine the maximum size of the skin flap that could be made from the biological foot–ankle. The skin flap size was used to determine the dimensions of the endoprosthesis foot segment. Rigid foot–ankle endoprosthesis prototypes were successfully implanted in three rabbits. The skin incisions healed over a period of approximately 1 month after surgery, with extensive fur regrowth by the pre-defined study endpoint of approximately 2 months post surgery. Upon gross inspection, the skin surrounding the endoprosthesis appeared normal, but a substantial subdermal fibrous capsule had formed around the endoprosthesis. Histology indicated that the structure and thickness of the skin layers (epidermis and dermis) were similar between the operated and non-operated limbs. A layer of subdermal connective tissue representing the fibrous capsule surrounded the endoprosthesis. In the operated limb of one rabbit, the subdermal connective tissue layer was approximately twice as thick as the skin on the medial (skin = 0.43 mm, subdermal = 0.84 mm), ventral (skin = 0.80 mm, subdermal = 1.47 mm), and lateral (skin = 0.76 mm, subdermal = 1.42 mm) aspects of the endoprosthesis. Our results successfully demonstrated the feasibility of implanting a fully skin-covered rigid foot–ankle endoprosthesis to replace the lost tibia–foot segment of the lower limb. Concerns include the fibrotic capsule which could limit the range of motion of jointed endoprostheses. Future studies include testing of endoprosthetics, as well as materials and pharmacologic agents that may suppress fibrous encapsulation.
Collapse
Affiliation(s)
- Dustin L. Crouch
- Department of Mechanical, Aerospace & Biomedical Engineering, College of Engineering, University of Tennessee, Knoxville, TN 37996, USA; (P.T.H.); (C.S.)
- Correspondence:
| | - Patrick T. Hall
- Department of Mechanical, Aerospace & Biomedical Engineering, College of Engineering, University of Tennessee, Knoxville, TN 37996, USA; (P.T.H.); (C.S.)
- Exponent, Philadelphia, PA 19104, USA
| | - Caleb Stubbs
- Department of Mechanical, Aerospace & Biomedical Engineering, College of Engineering, University of Tennessee, Knoxville, TN 37996, USA; (P.T.H.); (C.S.)
| | - Caroline Billings
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (C.B.); (A.P.P.); (D.E.A.)
| | - Alisha P. Pedersen
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (C.B.); (A.P.P.); (D.E.A.)
| | - Bryce Burton
- Office of Laboratory Animal Care, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA;
| | - Cheryl B. Greenacre
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA;
| | - Stacy M. Stephenson
- Graduate School of Medicine, University of Tennessee, Knoxville, TN 37920, USA;
| | - David E. Anderson
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (C.B.); (A.P.P.); (D.E.A.)
| |
Collapse
|
4
|
Nemcakova I, Litvinec A, Mandys V, Potocky S, Plencner M, Doubkova M, Nanka O, Olejnickova V, Sankova B, Bartos M, Ukraintsev E, Babčenko O, Bacakova L, Kromka A, Rezek B, Sedmera D. Coating Ti6Al4V implants with nanocrystalline diamond functionalized with BMP-7 promotes extracellular matrix mineralization in vitro and faster osseointegration in vivo. Sci Rep 2022; 12:5264. [PMID: 35347219 PMCID: PMC8960880 DOI: 10.1038/s41598-022-09183-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/18/2022] [Indexed: 02/06/2023] Open
Abstract
The present study investigates the effect of an oxidized nanocrystalline diamond (O-NCD) coating functionalized with bone morphogenetic protein 7 (BMP-7) on human osteoblast maturation and extracellular matrix mineralization in vitro and on new bone formation in vivo. The chemical structure and the morphology of the NCD coating and the adhesion, thickness and morphology of the superimposed BMP-7 layer have also been assessed. The material analysis proved synthesis of a conformal diamond coating with a fine nanostructured morphology on the Ti6Al4V samples. The homogeneous nanostructured layer of BMP-7 on the NCD coating created by a physisorption method was confirmed by AFM. The osteogenic maturation of hFOB 1.19 cells in vitro was only slightly enhanced by the O-NCD coating alone without any increase in the mineralization of the matrix. Functionalization of the coating with BMP-7 resulted in more pronounced cell osteogenic maturation and increased extracellular matrix mineralization. Similar results were obtained in vivo from micro-CT and histological analyses of rabbit distal femurs with screws implanted for 4 or 12 weeks. While the O-NCD-coated implants alone promoted greater thickness of newly-formed bone in direct contact with the implant surface than the bare material, a further increase was induced by BMP-7. It can be therefore concluded that O-NCD coating functionalized with BMP-7 is a promising surface modification of metallic bone implants in order to improve their osseointegration.
Collapse
Affiliation(s)
- Ivana Nemcakova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Andrej Litvinec
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Vaclav Mandys
- Department of Pathology, Charles University, Third Faculty of Medicine, Ruska 2411, 100 00, Prague 10, Czech Republic
| | - Stepan Potocky
- Institute of Physics, Czech Academy of Sciences, Cukrovarnicka 10, 162 00, Prague 6, Czech Republic
| | - Martin Plencner
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Martina Doubkova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic.
| | - Ondrej Nanka
- Institute of Anatomy, Charles University, First Faculty of Medicine, U Nemocnice 3, 128 00, Prague 2, Czech Republic
| | - Veronika Olejnickova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic.,Institute of Anatomy, Charles University, First Faculty of Medicine, U Nemocnice 3, 128 00, Prague 2, Czech Republic
| | - Barbora Sankova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic.,Institute of Anatomy, Charles University, First Faculty of Medicine, U Nemocnice 3, 128 00, Prague 2, Czech Republic
| | - Martin Bartos
- Institute of Dental Medicine, Charles University, First Faculty of Medicine, U Nemocnice 2, 1280 00, Prague 2, Czech Republic
| | - Egor Ukraintsev
- Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, 166 27, Prague 6, Czech Republic
| | - Oleg Babčenko
- Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, 166 27, Prague 6, Czech Republic
| | - Lucie Bacakova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Alexander Kromka
- Institute of Physics, Czech Academy of Sciences, Cukrovarnicka 10, 162 00, Prague 6, Czech Republic
| | - Bohuslav Rezek
- Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, 166 27, Prague 6, Czech Republic
| | - David Sedmera
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic. .,Institute of Anatomy, Charles University, First Faculty of Medicine, U Nemocnice 3, 128 00, Prague 2, Czech Republic.
| |
Collapse
|
5
|
Suh D, Jo WL, Kim SC, Kim YS, Kwon SY, Lim YW. Comparative analysis of titanium coating on cobalt-chrome alloy in vitro and in vivo direct metal fabrication vs. plasma spraying. J Orthop Surg Res 2020; 15:564. [PMID: 33243258 PMCID: PMC7690187 DOI: 10.1186/s13018-020-02108-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 11/19/2020] [Indexed: 11/25/2022] Open
Abstract
Background Titanium surface coating on cobalt-chromium (CoCr) alloy has characteristics desirable for an orthopedic implant as follows: strength, osteointegrative capability, and biocompatibility. Creating such a coated surface takes a challenging process and two dissimilar metals are not easily welded. In our study, we utilized additive manufacturing with a 3D printing called direct metal fabrication (DMF) and compared it to the plasma spraying method (TPS), to coat titanium onto CoCr alloy. We hypothesized that this would yield a coated surface quality as acceptable or better than the already established method of plasma spraying. For this, we compared characteristics of titanium-coated surfaces created by direct metal fabrication method (DMF) and titanium plasma spraying (TPS), both in vitro and in vivo, for (1) cell morphology, (2) confocal microscopy images of immunofluorescent assay of RUNX2 and fibronectin, (3) quantification of cell proliferation rate, (4) push-out biomechanical test, and (5) bone histomorphometry. Method For in vitro study, human osteoblast cells were seeded onto the coated surfaces. Cellular morphology was observed with a scanning electron microscope. Cellular proliferation was validated with ELISA, immunofluorescent assay. For in vivo study, coated rods were inserted into the distal femur of the rabbit and then harvested. The rods were biomechanically tested with a push-out test and observed for histomorphometry to evaluate the microscopic bone to implant ratio. Result For cell morphology observation, lamellipodia and filopodia, a cytoplasmic projection extending into porous structure, formed on both surfaces created by DMF and TPS. The proliferation of the osteoblasts, the DMF group showed a better result at different optic density levels (p = 0.035, 0.005, 0.001). Expression and distribution of fibronectin and Runx-2 genes showed similar degrees of expressions. The biomechanical push-out test yielded a similar result (p = 0.714). Histomorphometry analysis also showed a similar result (p = 0.657). Conclusion In conclusion, DMF is a method which can reliably create a proper titanium surface on CoCr alloy. The resulting product of the surface shows a similar quality to that of the plasma spraying method, both in vivo and in vitro, in terms of biological and mechanical property.
Collapse
Affiliation(s)
- Dongwhan Suh
- Department of Orthopaedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Orthopaedic Surgery, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Woo Lam Jo
- Department of Orthopaedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Orthopaedic Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Chan Kim
- Department of Orthopaedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Orthopaedic Surgery, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yong Sik Kim
- Department of Orthopaedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Orthopaedic Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Soon Yong Kwon
- Department of Orthopaedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Orthopaedic Surgery, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Young Wook Lim
- Department of Orthopaedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. .,Department of Orthopaedic Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Jiang X, Yao Y, Tang W, Han D, Zhang L, Zhao K, Wang S, Meng Y. Design of dental implants at materials level: An overview. J Biomed Mater Res A 2020; 108:1634-1661. [PMID: 32196913 DOI: 10.1002/jbm.a.36931] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/17/2022]
Abstract
Due to the excellent restoration of masticatory function, satisfaction on aesthetics and other superiorities, dental implants represent an effective method to resolve tooth losing and damaging. Current dental implant systems still have problems waiting to be addressed, and problems are centralized on the materials of implant bodies. This review aims to summarize major developments in the field of dental implant materials, starting with an overview on structures, procedures of dental implants and challenges of implant materials. Next, implant materials are examined in three categories, that is, metals, ceramics, and polymers, their mechanical properties, biocompatibility, and bioactivity are summarized. And as an important aspect, strategies of surface modification are also reviewed, along with some finite element analysis to guiding the research direction of implant materials. Finally, the conclusive remarks are outlined to provide an outlook on the future research directions and prospects of dental implants.
Collapse
Affiliation(s)
- Xunyuan Jiang
- The Key Laboratory of Low-Carbon Chemistry and Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials Technologies, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yitong Yao
- Department of Prosthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Weiming Tang
- The Key Laboratory of Low-Carbon Chemistry and Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials Technologies, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Dongmei Han
- The Key Laboratory of Low-Carbon Chemistry and Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials Technologies, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Li Zhang
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ke Zhao
- Department of Prosthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Shuanjin Wang
- The Key Laboratory of Low-Carbon Chemistry and Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials Technologies, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yuezhong Meng
- The Key Laboratory of Low-Carbon Chemistry and Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials Technologies, Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
7
|
|
8
|
Kim SC, Jo WL, Kim YS, Kwon SY, Cho YS, Lim YW. Titanium Powder Coating Using Metal 3D Printing: A Novel Coating Technology for Cobalt-Chromium Alloy Implants. Tissue Eng Regen Med 2019; 16:11-18. [PMID: 30815346 DOI: 10.1007/s13770-018-0168-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/24/2018] [Accepted: 11/09/2018] [Indexed: 11/24/2022] Open
Abstract
Background Three-dimensional (3D) printing with a direct metal fabrication (DMF) technology has been innovatively introduced in the field of surface treatment of prostheses. The purpose of this study was to determine whether such modifications on the surface of cobalt-chromium (CoCr) alloy by titanium powder coating using DMF improves the osseointegration ability of CoCr alloy. Methods We compared the in vitro and in vivo ability of cells to adhere to DMF-coated CoCr alloy with machining. Biological and morphological responses to human osteoblast cell lines were examined by measuring cell proliferation rate and observing expression of actin filament. For in vivo study, we inserted different specimens in each medulla of the distal femurs of rabbit. After 3 months, the distal femurs were harvested, and a push-out test and histomorphometric analyses were performed. Results The cell proliferation rate and cell adhesion in the DMF group were higher compared with those in the machined group. Human osteoblast cells on the DMF-coated surface were more strongly adhered and well-proliferated compared with those on the other surface. In the in vivo test, there was a significant difference in the ultimate shear strength between the DMF and machined groups (2.49 MPa vs. 0.87 MPa, respectively, p = 0.001). In the histomorphometric analysis, there was a significant difference in the mean bone-to-implant contact percentages between the DMF and machined groups (72.3 ± 6.2% vs. 47.6 ± 6.9%, respectively, p < 0.001). Conclusion Titanium coating of CoCr alloy with 3D metal printing provides optimal surface characteristics and a good biological surface both in vitro and in vivo.
Collapse
Affiliation(s)
- Seung Chan Kim
- 1Department of Orthopaedic Surgery, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, 180 Wangsan-ro, Dongdaemun-gu, Seoul, South Korea
| | - Woo Lam Jo
- 2Department of Orthopaedic Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, South Korea
| | - Yong Sik Kim
- 2Department of Orthopaedic Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, South Korea
| | - Soon Yong Kwon
- 1Department of Orthopaedic Surgery, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, 180 Wangsan-ro, Dongdaemun-gu, Seoul, South Korea
| | - Yong Soo Cho
- 1Department of Orthopaedic Surgery, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, 180 Wangsan-ro, Dongdaemun-gu, Seoul, South Korea
| | - Young Wook Lim
- 2Department of Orthopaedic Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, South Korea
| |
Collapse
|
9
|
Shah FA, Jergéus E, Chiba A, Palmquist A. Osseointegration of 3D printed microalloyed CoCr implants-Addition of 0.04% Zr to CoCr does not alter bone material properties. J Biomed Mater Res A 2018; 106:1655-1663. [DOI: 10.1002/jbm.a.36366] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/31/2018] [Accepted: 02/06/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Furqan A. Shah
- Department of Biomaterials; Sahlgrenska Academy at University of Gothenburg; Göteborg Sweden
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy; Göteborg Sweden
| | - Edvin Jergéus
- Department of Biomaterials; Sahlgrenska Academy at University of Gothenburg; Göteborg Sweden
| | - Akihiko Chiba
- Institute for Materials Research, Tohoku University; Sendai Japan
| | - Anders Palmquist
- Department of Biomaterials; Sahlgrenska Academy at University of Gothenburg; Göteborg Sweden
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy; Göteborg Sweden
| |
Collapse
|
10
|
Effect of Collagen-Polycaprolactone Nanofibers Matrix Coating on the In Vitro Cytocompatibility and In Vivo Bone Responses of Titanium. J Med Biol Eng 2017; 38:197-210. [PMID: 29861706 DOI: 10.1007/s40846-017-0312-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The objective of this study was to improve the biomechanical performance of titanium (Ti) using a biocompatible electrospun nanofiber matrix. The study is based on the hypothesis that coating a Ti surface with a nanofiber matrix (NFM) made of collagen (CG) and polycaprolactone (PCL) electrospun nanofibers could increase the mechanical fixation of Ti/bone by improving the surface and cytocompatibility properties of Ti. This study prepared Ti samples with and without CG-PCL NFM coatings. This study determined the in vitro effects of each group of Ti samples on the surface topography and cytocompatibility (osteoblast cell adhesion, proliferation, mineralization and protein adsorption) properties. This study also determined in vivo interface shear strength and bone volume fraction of each group of Ti samples with bone using a rabbit model. This study found that the CG-PCL NFM coating on Ti improved the surface roughness, osteoblast cell adhesion, proliferation, mineralization and protein adsorption properties of Ti. In vivo studies found that interface shear strength of CG-PCL NFM-coated Ti/bone samples was significantly higher compared to those values of control Ti/bone samples (p value < 0.05) due to an increase in the amount of growth of the connective tissue joining the Ti implant. Therefore, the developed CG-PCL NFM coating technique should further be investigated for its potential in clinical applications.
Collapse
|
11
|
Eliaz N, Metoki N. Calcium Phosphate Bioceramics: A Review of Their History, Structure, Properties, Coating Technologies and Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E334. [PMID: 28772697 PMCID: PMC5506916 DOI: 10.3390/ma10040334] [Citation(s) in RCA: 393] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 03/15/2017] [Accepted: 03/22/2017] [Indexed: 02/06/2023]
Abstract
Calcium phosphate (CaP) bioceramics are widely used in the field of bone regeneration, both in orthopedics and in dentistry, due to their good biocompatibility, osseointegration and osteoconduction. The aim of this article is to review the history, structure, properties and clinical applications of these materials, whether they are in the form of bone cements, paste, scaffolds, or coatings. Major analytical techniques for characterization of CaPs, in vitro and in vivo tests, and the requirements of the US Food and Drug Administration (FDA) and international standards from CaP coatings on orthopedic and dental endosseous implants, are also summarized, along with the possible effect of sterilization on these materials. CaP coating technologies are summarized, with a focus on electrochemical processes. Theories on the formation of transient precursor phases in biomineralization, the dissolution and reprecipitation as bone of CaPs are discussed. A wide variety of CaPs are presented, from the individual phases to nano-CaP, biphasic and triphasic CaP formulations, composite CaP coatings and cements, functionally graded materials (FGMs), and antibacterial CaPs. We conclude by foreseeing the future of CaPs.
Collapse
Affiliation(s)
- Noam Eliaz
- Biomaterials and Corrosion Lab, Department of Materials Science and Engineering, Tel-Aviv University, Ramat Aviv 6997801, Israel.
| | - Noah Metoki
- Biomaterials and Corrosion Lab, Department of Materials Science and Engineering, Tel-Aviv University, Ramat Aviv 6997801, Israel.
| |
Collapse
|
12
|
Koyano G, Jinno T, Koga D, Yamauchi Y, Muneta T, Okawa A. Comparison of Bone Remodeling Between an Anatomic Short Stem and a Straight Stem in 1-Stage Bilateral Total Hip Arthroplasty. J Arthroplasty 2017; 32:594-600. [PMID: 27554784 DOI: 10.1016/j.arth.2016.07.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 07/03/2016] [Accepted: 07/08/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Femurs of dysplastic hips exhibit specific abnormalities, and use of modular or specially designed components is recommended. An anatomic short stem was previously designed specifically for dysplastic hips using 3-dimensional data acquired from dysplastic patients. To investigate effects of stem geometry on bone remodeling, we undertook a prospective, randomized study of patients who had undergone 1-stage bilateral total hip arthroplasty (THA) with the anatomic short stem on one side and a conventional straight stem on the other. METHODS The study included 36 patients who underwent the above THA procedure. We assessed bone mineral density as well as the presence of cancellous condensation or bony atrophy due to stress shielding based on the analysis of Gruen's zones and newly defined equal-interval zones, at an average follow-up period of 9.2 years. RESULTS All stems were bone ingrown stable. Cancellous condensation was observed more proximally, and areas of bone atrophy were narrower on the anatomic short stem side than on the straight stem side. Bone mineral density values reflected results of cancellous condensation and stress shielding and were higher in more proximal zones on the anatomic short stem side than on the straight stem side. CONCLUSION Although radiographic results indicated good midterm outcomes of THA with both stems, the loading pattern differed. The anatomic short stem achieved its design purpose in terms of proximal fixation and load transfer and led to better preservation of the proximal femur.
Collapse
Affiliation(s)
- Gaku Koyano
- Department of Orthopaedic Surgery, Medical Hospital of Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuya Jinno
- Department of Orthopaedic Surgery, Medical Hospital of Tokyo Medical and Dental University, Tokyo, Japan
| | - Daisuke Koga
- Department of Orthopaedic Surgery, Medical Hospital of Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuki Yamauchi
- Department of Orthopaedic Surgery, Medical Hospital of Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeshi Muneta
- Department of Orthopaedic Surgery, Medical Hospital of Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsushi Okawa
- Department of Orthopaedic Surgery, Medical Hospital of Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
13
|
Evaluation of calcium dihydroxide- and silver-coated implants in the rat tibia. J Appl Biomater Funct Mater 2016; 14:e441-e448. [PMID: 27647385 DOI: 10.5301/jabfm.5000323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2016] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Silver ions (Ag+) have strong antibacterial effects, and silver-coated materials are in widespread clinical use. However, the application of silver-coated medical devices is not without concerns: its use with direct bone contact is not established, and systemic toxic side effects of released Ag+ have been described. Therefore, alternative bactericidal coatings with a more localized way of acting - e.g., calcium dihydroxide, Ca(OH)2 (CH) - would be advantageous. METHODS A new rat model of the animal's tibial metaphysis was developed. In the left proximal tibiae of 36 male Wistar rats, titanium screws were implanted. The screws were coated with hydroxyapatite (HA; 12 animals: group I), low-dosed HA silver (HA-Ag; 12 animals: group II) and CH (12 animals: group III). After 6 weeks, all rats were sacrificed. The implants were evaluated for morphological changes on their surfaces, by light microscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy; for osteointegration, by measurement of resistance to removal; and for bacterial colonization, by quantitative culture analysis. Additionally, the tibial bone was investigated histologically for signs of osteomyelitis and sonicated to detect bacterial loads. RESULTS (i) No microbiological or histological signs of infection could be determined on any of the screws or the surrounding bone. (ii) The bone-implant interface analysis revealed extensive bone formation and direct bone-implant contact on all HA, HA-Ag and HA-CH coated screws. (iii) HA and HA-Ag were partially, and CH was fully, degraded on the screw coating, allowing host bone to osteointegrate.
Collapse
|
14
|
Combustion synthesis of CoCrMo orthopedic implant alloys: microstructure and properties. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s10019-003-0260-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Shayesteh Moghaddam N, Taheri Andani M, Amerinatanzi A, Haberland C, Huff S, Miller M, Elahinia M, Dean D. Metals for bone implants: safety, design, and efficacy. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s40898-016-0001-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
16
|
Migration pattern of a cobalt-chrome monoblock acetabular component after metal-on-metal hip resurfacing. Hip Int 2016; 26:220-5. [PMID: 27013490 DOI: 10.5301/hipint.5000331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/24/2015] [Indexed: 02/04/2023]
Abstract
OBJECTIVES The purpose of this study was to study the initial fixation and migration pattern of a monoblock acetabular component used for a metal on metal hip resurfacing using Einzel Bild Roentgen Analyse (EBRA). METHODS 99 patients with a mean age of 49.6 years (range 28.5-66.3 years) of whom 14 were bilateral underwent a hip resurfacing (Conserve Plus®, MicroPort, Memphis, TN) for a total of 113 resurfacings. Acetabular component orientation was noted with 35 of the 113 components (31.0%) having a lucency >2 mm on the immediate postoperative radiograph. RESULTS The mean follow-up for our cohort of 113 hips is 50 months (2-79 months). When examining the 2-year migration mark, 37 of the 113 hips exceeded the threshold of 0.5 mm/year with a median total migration of 1.40 mm (range 1.02-4.24). 6 resurfacings underwent revision surgery for aseptic loosening of the acetabular component at a mean time of 43.6 months. Presence of initial lucency (OR 2.29, p = 0.05) was the only significant predictor of migration over threshold at 2-years. Those that had migrated over the threshold (1.0 mm) at 2 years were at significantly greater risk of continued migration at 4 years. CONCLUSIONS The migration pattern of this component raises concerns about long term performance, with postoperative lucencies representing a significant factor for future migration.
Collapse
|
17
|
Shah FA, Omar O, Suska F, Snis A, Matic A, Emanuelsson L, Norlindh B, Lausmaa J, Thomsen P, Palmquist A. Long-term osseointegration of 3D printed CoCr constructs with an interconnected open-pore architecture prepared by electron beam melting. Acta Biomater 2016; 36:296-309. [PMID: 27000553 DOI: 10.1016/j.actbio.2016.03.033] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/11/2016] [Accepted: 03/17/2016] [Indexed: 12/30/2022]
Abstract
UNLABELLED In orthopaedic surgery, cobalt chromium (CoCr) based alloys are used extensively for their high strength and wear properties, but with concerns over stress shielding and bone resorption due to the high stiffness of CoCr. The structural stiffness, principally related to the bulk and the elastic modulus of the material, may be lowered by appropriate design modifications, to reduce the stiffness mismatch between metal/alloy implants and the adjacent bone. Here, 3D printed CoCr and Ti6Al4V implants of similar macro-geometry and interconnected open-pore architecture prepared by electron beam melting (EBM) were evaluated following 26week implantation in adult sheep femora. Despite higher total bone-implant contact for Ti6Al4V (39±4%) than CoCr (27±4%), bone formation patterns were similar, e.g., densification around the implant, and gradual ingrowth into the porous network, with more bone in the outer half (periphery) than the inner half (centre). Raman spectroscopy revealed no major differences in mineral crystallinity, the apatite-to-collagen ratio, or the carbonate-to-phosphate ratio. Energy dispersive X-ray spectroscopy showed similar Ca/P ratio of the interfacial tissue adjacent to both materials. Osteocytes made direct contact with CoCr and Ti6Al4V. While osteocyte density and distribution in the new-formed bone were largely similar for the two alloys, higher osteocyte density was observed at the periphery of the porous network for CoCr, attributable to slower remodelling and a different biomechanical environment. The results demonstrate the possibility to achieve bone ingrowth into open-pore CoCr constructs, and attest to the potential for fabricating customised osseointegrated CoCr implants for load-bearing applications. STATEMENT OF SIGNIFICANCE Although cobalt chromium (CoCr) based alloys are used extensively in orthopaedic surgery, stress shielding due to the high stiffness of CoCr is of concern. To reduce the stiffness mismatch between CoCr and bone, CoCr and Ti6Al4V implants having an interconnected open-pore architecture were prepared by electron beam melting (EBM). After six months of submerged healing in sheep, both alloys showed similar patterns of bone formation, with densification around the implant and gradual ingrowth into the porous network. The molecular and elemental composition of the interfacial tissue was similar for both alloys. Osteocytes made direct contact with both alloys, with similar overall osteocyte density and distribution. The work attests to the potential for achieving osseointegration of EBM manufactured porous CoCr implants.
Collapse
|
18
|
Apatite Formation and Biocompatibility of a Low Young's Modulus Ti-Nb-Sn Alloy Treated with Anodic Oxidation and Hot Water. PLoS One 2016; 11:e0150081. [PMID: 26914329 PMCID: PMC4767882 DOI: 10.1371/journal.pone.0150081] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 02/09/2016] [Indexed: 11/19/2022] Open
Abstract
Ti-6Al-4V alloy is widely prevalent as a material for orthopaedic implants because of its good corrosion resistance and biocompatibility. However, the discrepancy in Young’s modulus between metal prosthesis and human cortical bone sometimes induces clinical problems, thigh pain and bone atrophy due to stress shielding. We designed a Ti-Nb-Sn alloy with a low Young’s modulus to address problems of stress disproportion. In this study, we assessed effects of anodic oxidation with or without hot water treatment on the bone-bonding characteristics of a Ti-Nb-Sn alloy. We examined surface analyses and apatite formation by SEM micrographs, XPS and XRD analyses. We also evaluated biocompatibility in experimental animal models by measuring failure loads with a pull-out test and by quantitative histomorphometric analyses. By SEM, abundant apatite formation was observed on the surface of Ti-Nb-Sn alloy discs treated with anodic oxidation and hot water after incubation in Hank’s solution. A strong peak of apatite formation was detected on the surface using XRD analyses. XPS analysis revealed an increase of the H2O fraction in O 1s XPS. Results of the pull-out test showed that the failure loads of Ti-Nb-Sn alloy rods treated with anodic oxidation and hot water was greater than those of untreated rods. Quantitative histomorphometric analyses indicated that anodic oxidation and hot water treatment induced higher new bone formation around the rods. Our findings indicate that Ti-Nb-Sn alloy treated with anodic oxidation and hot water showed greater capacity for apatite formation, stronger bone bonding and higher biocompatibility for osteosynthesis. Ti-Nb-Sn alloy treated with anodic oxidation and hot water treatment is a promising material for orthopaedic implants enabling higher osteosynthesis and lower stress disproportion.
Collapse
|
19
|
Li G, Cao H, Zhang W, Ding X, Yang G, Qiao Y, Liu X, Jiang X. Enhanced Osseointegration of Hierarchical Micro/Nanotopographic Titanium Fabricated by Microarc Oxidation and Electrochemical Treatment. ACS APPLIED MATERIALS & INTERFACES 2016; 8:3840-52. [PMID: 26789077 DOI: 10.1021/acsami.5b10633] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Rapid osseointegration is recognized as a critical factor in determining the success rate of orthopedic and dental implants. Microarc oxidation (MAO) fabricated titanium oxide coatings with a porous topography have been proven to be a potent approach to enhance osteogenic capacity. Now we report two kinds of new hierarchical coatings with similar micromorphologies but different nanotopographies (i.e., MAO and MAO-AK coatings), and both coatings significantly promote cell attachment and osteogenic differentiation through mediating the integrin β1 signaling pathway. In this study, titanium with a unique hierarchical micro/nanomorphology surface was fabricated by a novel duplex coating process, that is, the first a titanium oxide layer was coated by MAO, and then the coating was electrochemically reduced in alkaline solution (MAO-AK). A series of in vitro stem cell differentiation and in vivo osseointegration experiments were carried out to evaluate the osteogenic capacity of the resulting coatings. In vitro, the initial adhesion of the canine bone marrow stem cells (BMSCs) seeded on the MAO and MAO-AK coatings was significantly enhanced, and cell proliferation was promoted. In addition, the expression levels of osteogenesis-related genes, osteorix, alkaline phosphates (ALP), osteopontin, and osteocalcin, in the canine BMSCs, were all up-regulated after incubation on these coatings, especially on the MAO-AK coating. Also, the in vitro ALP activity and mineralization capacity of canine BMSC cultured on the MAO-AK group was better than that on the MAO group. Furthermore, 6 weeks after insertion of the titanium implants into canine femurs, both the bone formation speed and the bone-implant contact ratio of the MAO-AK group were significantly higher than those of the MAO group. All these results suggest that this duplex coating process is promising for engineering titanium surfaces to promote osseointegration for dental and orthopedic applications.
Collapse
Affiliation(s)
- Guanglong Li
- Department of Prosthodontics, Oral Bioengineering, and Regenerative Medicine Lab, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine , 639 Zhizaoju Road, Shanghai 200011, China
| | - Huiliang Cao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , 1295 Ding-xi Road, Shanghai 200050, China
| | - Wenjie Zhang
- Department of Prosthodontics, Oral Bioengineering, and Regenerative Medicine Lab, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine , 639 Zhizaoju Road, Shanghai 200011, China
| | - Xun Ding
- Department of Prosthodontics, Oral Bioengineering, and Regenerative Medicine Lab, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine , 639 Zhizaoju Road, Shanghai 200011, China
| | - Guangzheng Yang
- Department of Prosthodontics, Oral Bioengineering, and Regenerative Medicine Lab, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine , 639 Zhizaoju Road, Shanghai 200011, China
| | - Yuqin Qiao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , 1295 Ding-xi Road, Shanghai 200050, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , 1295 Ding-xi Road, Shanghai 200050, China
| | - Xinquan Jiang
- Department of Prosthodontics, Oral Bioengineering, and Regenerative Medicine Lab, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine , 639 Zhizaoju Road, Shanghai 200011, China
| |
Collapse
|
20
|
Khandaker M, Riahinezhad S, Sultana F, Vaughan MB, Knight J, Morris TL. Peen treatment on a titanium implant: effect of roughness, osteoblast cell functions, and bonding with bone cement. Int J Nanomedicine 2016; 11:585-94. [PMID: 26893563 PMCID: PMC4745826 DOI: 10.2147/ijn.s89376] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Implant failure due to poor integration of the implant with the surrounding biomaterial is a common problem in various orthopedic and orthodontic surgeries. Implant fixation mostly depends upon the implant surface topography. Micron to nanosize circular-shaped groove architecture with adequate surface roughness can enhance the mechanical interlock and osseointegration of an implant with the host tissue and solve its poor fixation problem. Such groove architecture can be created on a titanium (Ti) alloy implant by laser peening treatment. Laser peening produces deep, residual compressive stresses in the surfaces of metal parts, delivering increased fatigue life and damage tolerance. The scientific novelty of this study is the controlled deposition of circular-shaped rough spot groove using laser peening technique and understanding the effect of the treatment techniques for improving the implant surface properties. The hypothesis of this study was that implant surface grooves created by controlled laser peen treatment can improve the mechanical and biological responses of the implant with the adjoining biomaterial. The objective of this study was to measure how the controlled laser-peened groove architecture on Ti influences its osteoblast cell functions and bonding strength with bone cement. This study determined the surface roughness and morphology of the peen-treated Ti. In addition, this study compared the osteoblast cell functions (adhesion, proliferation, and differentiation) between control and peen-treated Ti samples. Finally, this study measured the fracture strength between each kind of Ti samples and bone cement under static loading. This study found that laser peen treatment on Ti significantly changed the surface architecture of the Ti, which led to enhanced osteoblast cell adhesion and differentiation on Ti implants and fracture strength of Ti–bone cement interfaces compared with values of untreated Ti samples. Therefore, the laser peen treatment method has the potential to improve the biomechanical functions of Ti implants.
Collapse
Affiliation(s)
- Morshed Khandaker
- Department of Engineering & Physics, University of Central Oklahoma, Edmond, OK, USA; Center for Interdisciplinary Biomedical Education and Research, University of Central Oklahoma, Edmond, OK, USA
| | - Shahram Riahinezhad
- Department of Engineering & Physics, University of Central Oklahoma, Edmond, OK, USA
| | - Fariha Sultana
- Department of Engineering & Physics, University of Central Oklahoma, Edmond, OK, USA
| | - Melville B Vaughan
- Department of Biology, University of Central Oklahoma, Edmond, OK, USA; Center for Interdisciplinary Biomedical Education and Research, University of Central Oklahoma, Edmond, OK, USA
| | - Joshua Knight
- Department of Biology, University of Central Oklahoma, Edmond, OK, USA
| | - Tracy L Morris
- Department of Mathematics and Statistics, University of Central Oklahoma, Edmond, OK, USA; Center for Interdisciplinary Biomedical Education and Research, University of Central Oklahoma, Edmond, OK, USA
| |
Collapse
|
21
|
Miyatake K, Jinno T, Koga D, Yamauchi Y, Muneta T, Okawa A. Comparison of Different Materials and Proximal Coatings Used for Femoral Components in One-Stage Bilateral Total Hip Arthroplasty. J Arthroplasty 2015; 30:2237-41. [PMID: 26190568 DOI: 10.1016/j.arth.2015.06.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/15/2015] [Accepted: 06/10/2015] [Indexed: 02/01/2023] Open
Abstract
To evaluate the mid-term effects of different materials and coatings used for femoral components, we prospectively performed 21 one-stage bilateral total hip arthroplasties using 2 anatomical stems which have identical geometries, randomized to side. One stem was made of Ti6Al4V alloy and had a hydroxyapatite coating on grit-blasted surface proximally, and the other was made of TMZF™ alloy and had a proximal coating of hydroxyapatite in addition to an arc-deposited titanium surface coating. Although we found extensions of radiopaque lines to the surface of coatings of seven grit-blasted stems whereas we found none in the case of the arc-deposited titanium stems, all hips showed excellent clinical and radiological outcomes as shown by radiographs and bone mineral density at the final follow-up, average 5.5 years postoperatively.
Collapse
Affiliation(s)
- Kazumasa Miyatake
- Department of Orthopaedic Surgery, Medical Hospital, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuya Jinno
- Department of Orthopaedic Surgery, Medical Hospital, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daisuke Koga
- Department of Orthopaedic Surgery, Medical Hospital, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuki Yamauchi
- Department of Orthopaedic Surgery, Medical Hospital, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeshi Muneta
- Department of Orthopaedic Surgery, Medical Hospital, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsushi Okawa
- Department of Orthopaedic Surgery, Medical Hospital, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
22
|
Shah KM, Wilkinson JM, Gartland A. Cobalt and chromium exposure affects osteoblast function and impairs the mineralization of prosthesis surfaces in vitro. J Orthop Res 2015; 33:1663-70. [PMID: 25929464 DOI: 10.1002/jor.22932] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/24/2015] [Indexed: 02/04/2023]
Abstract
Cobalt (Co) and chromium (Cr) ions and nanoparticles equivalent to those released through tribo-corrosion of prosthetic metal-on-metal (MOM) bearings and taper junctions are detrimental to osteoblast activity and function in vitro when examined as individual species. Here we examined the effects of Co(2+):Cr(3+) and Co(2+):Cr(6+) combinations on osteoblast-like SaOS-2 cellular activity, alkaline phosphatase (ALP) activity and mineralization to better reflect clinical exposure conditions in vivo. We also assessed the effect of Co(2+):Cr(3+) combinations and Co:Cr nanoparticles on SaOS-2 cell osteogenic responses on grit-blasted, plasma-sprayed titanium-coated, and hydroxyapatite-coated prosthesis surfaces. Cellular activity and ALP activity were reduced to a greater extent with combination treatments compared to individual ions. Co(2+) and Cr(3+) interacted additively and synergistically to reduce cellular activity and ALP activity, respectively, while the Co(2+) with Cr(6+) combination was dominated by the effect of Cr(6+) alone. Mineralization by osteoblasts was greater on hydroxyapatite-coated surfaces compared to grit-blasted and plasma-sprayed titanium-coated surfaces. Treatments with Co(2+):Cr(3+) ions and Co:Cr nanoparticles reduced the percentage mineralization on all surfaces, with hydroxyapatite-coated surfaces having the least reduction. In conclusion, our data suggests that previous studies investigating individual metal ions underestimate their potential clinical effects on osteoblast activity. Furthermore, the data suggests that hydroxyapatite-coated surfaces may modulate osteoblast responses to metal debris.
Collapse
Affiliation(s)
- Karan M Shah
- Department of Human Metabolism, The Mellanby Centre for Bone Research, The University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, United Kingdom
| | - Jeremy Mark Wilkinson
- Department of Human Metabolism, The Mellanby Centre for Bone Research, The University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, United Kingdom
| | - Alison Gartland
- Department of Human Metabolism, The Mellanby Centre for Bone Research, The University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, United Kingdom
| |
Collapse
|
23
|
Sovak G, Gotman I, Weiss A. Osseointegration of Ti-6Al-4V alloy implants with a titanium nitride coating produced by a PIRAC nitriding technique: a long-term time course study in the rat. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2015; 21:179-189. [PMID: 25482093 DOI: 10.1017/s1431927614013634] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This study examined bone tissue responses to Ti-6Al-4V alloy implants with a hard TiN coating applied by an original powder immersion reaction-assisted coating (PIRAC) nitriding method. Progression of implant fixation in the distal epiphysis and within the medullary cavity of the rat femur was evaluated between 3 days and 6 months postimplantation by scanning electron microscopy, oxytetracycline incorporation, and histochemistry. After 6 months, successful osseointegration was achieved in both epiphyseal and diaphyseal sites. Throughout, implant portions located within the epiphysis remained in close contact with bone trabeculae that gradually engulfed the implant forming a bone collar continuous with the trabecular network of the epiphysis. In the diaphysis, woven bone was first formed within the marrow cavity around the implant and later was replaced by a shell of compact bone around the implant. In general, higher osseointegration rates were measured for TiN-coated versus the uncoated implants, both in the epiphysis and in the diaphysis. In conclusion, our findings indicate an excellent long-term biocompatibility of TiN coatings applied by the PIRAC nitriding technique and superior osteoinductive ability in comparison with uncoated Ti-6Al-4V alloy. Such coatings can, therefore, be considered for improving the corrosion and wear resistance of titanium-based orthopedic implants.
Collapse
Affiliation(s)
- Guy Sovak
- 1Department of Anatomy,Canadian Memorial Chiropractic College,Toronto,ON M2H 3J1,Canada
| | - Irena Gotman
- 2The Faculty of Materials Engineering,Technion-Israel Institute of Technology,Haifa 31096,Israel
| | - Anna Weiss
- 3Department of Anatomy and Cell Biology, The Bruce Rappaport Faculty of Medicine,Technion-Israel Institute of Technology,Haifa 3200003,Israel
| |
Collapse
|
24
|
Monument MJ, Lerman DM, Randall RL. Novel applications of osseointegration in orthopedic limb salvage surgery. Orthop Clin North Am 2015; 46:77-87. [PMID: 25435037 DOI: 10.1016/j.ocl.2014.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Osseointegration is a biologic process vital to modern endoprosthetic fixation in orthopedic surgery. Numerous engineering advancements have improved the utilization of this technology in orthopedics; however, issues such as stress shielding, aseptic loosening, and bone loss remain an ongoing challenge. These host responses are especially problematic in limb salvage surgery. Novel applications of osseointegration have been developed to address some of these fixation issues with massive tumor endoprostheses. This articles reviews osseointegration and emerging novel applications of this technology in limb salvage surgery and future prosthetics for amputees.
Collapse
Affiliation(s)
- Michael J Monument
- Sarcoma Services, Department of Orthopaedic Surgery, Huntsman Cancer Institute, Primary Children's Medical Center, University of Utah, 2000 Circle of Hope, Room 4260, Salt Lake City, UT 84112, USA
| | - Daniel M Lerman
- Sarcoma Services, Department of Orthopaedic Surgery, Huntsman Cancer Institute, Primary Children's Medical Center, University of Utah, 2000 Circle of Hope, Room 4260, Salt Lake City, UT 84112, USA
| | - R Lor Randall
- Sarcoma Services, Department of Orthopaedic Surgery, Huntsman Cancer Institute, Primary Children's Medical Center, University of Utah, 2000 Circle of Hope, Room 4260, Salt Lake City, UT 84112, USA.
| |
Collapse
|
25
|
Reigstad O, Røkkum M. Wrist arthroplasty: where do we stand today? A review of historic and contemporary designs. ACTA ACUST UNITED AC 2014; 19:311-22. [PMID: 24875525 DOI: 10.1142/s0218810414300034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Earlier generations of wrist arthroplasty were limited to low demand patients. Bone fixation problems, excessive wear, and adverse designs resulting in loosening, imbalance, and dislocation led to the withdrawal of a number of models. Contemporary wrist prostheses aim at replacing wrist arthrodesis in the majority of patients with radiocarpal destruction, including high demand cases. Contraindications are wrist imbalance, insufficient soft tissue, or bone stock and infection. Various designs, fixation principles, bearing materials, and articulations have been employed. Some of the devises (RE-MOTION™, Motec(®)) demonstrate promising short- to midterm results, and calls for cautious optimism.
Collapse
Affiliation(s)
- Ole Reigstad
- Hand- and Microsurgery Section, Orthopedic Department, OUS-Rikshospitalet, Box 4950 Nydalen, N-0424 Oslo, Norway
| | | |
Collapse
|
26
|
Goriainov V, Cook R, M. Latham J, G. Dunlop D, Oreffo RO. Bone and metal: an orthopaedic perspective on osseointegration of metals. Acta Biomater 2014; 10:4043-57. [PMID: 24932769 DOI: 10.1016/j.actbio.2014.06.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 06/02/2014] [Accepted: 06/04/2014] [Indexed: 12/12/2022]
Abstract
The area of implant osseointegration is of major importance, given the predicted significant rise in the number of orthopaedic procedures and an increasingly ageing population. Osseointegration is a complex process involving a number of distinct mechanisms affected by the implant bulk properties and surface characteristics. Our understanding and ability to modify these mechanisms through alterations in implant design is continuously expanding. The following review considers the main aspects of material and surface alterations in metal implants, and the extent of their subsequent influence on osseointegration. Clinically, osseointegration results in asymptomatic stable durable fixation of orthopaedic implants. The complexity of achieving this outcome through incorporation and balance of contributory factors is highlighted through a clinical case report.
Collapse
|
27
|
Affiliation(s)
- Ole Reigstad
- Hand- and Microsurgery section Orthopaedic department OUS-Rikshospitalet Postboks 4950 Nydalen 0424 Oslo Norway
| |
Collapse
|
28
|
Carreon H, Barriuso S, Lieblich M, González-Carrasco J, Jimenez J, Caballero F. Significance of the contacting and no contacting thermoelectric power measurements applied to grit blasted medical Ti6Al4V. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:1417-22. [DOI: 10.1016/j.msec.2012.12.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 11/08/2012] [Accepted: 12/13/2012] [Indexed: 10/27/2022]
|
29
|
Zhang W, Wang G, Liu Y, Zhao X, Zou D, Zhu C, Jin Y, Huang Q, Sun J, Liu X, Jiang X, Zreiqat H. The synergistic effect of hierarchical micro/nano-topography and bioactive ions for enhanced osseointegration. Biomaterials 2013; 34:3184-95. [DOI: 10.1016/j.biomaterials.2013.01.008] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 01/02/2013] [Indexed: 12/12/2022]
|
30
|
Hieda J, Niinomi M, Nakai M, Cho K, Gozawa T, Katsui H, Tu R, Goto T. Enhancement of adhesive strength of hydroxyapatite films on Ti–29Nb–13Ta–4.6Zr by surface morphology control. J Mech Behav Biomed Mater 2013; 18:232-9. [DOI: 10.1016/j.jmbbm.2012.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 11/04/2012] [Accepted: 11/17/2012] [Indexed: 10/27/2022]
|
31
|
Durual S, Rieder P, Garavaglia G, Filieri A, Cattani-Lorente M, Scherrer SS, Wiskott HWA. TiNOx coatings on roughened titanium and CoCr alloy accelerate early osseointegration of dental implants in minipigs. Bone 2013; 52:230-7. [PMID: 23000509 DOI: 10.1016/j.bone.2012.09.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 08/17/2012] [Accepted: 09/12/2012] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Titanium nitride oxide (TiNOx) coatings are known for their biocompatibility, hardness and high resistance to corrosion and wear. Further, they can be applied by plasma vapor deposition onto a wide variety of metallic, mineral, or organic substrates. In cell cultures, TiNOx coatings applied onto SLA (sandblasted, large grit, acid etched)-roughened titanium surfaces increased human primary osteoblast proliferation by 1.5 times in the first 2 weeks after seeding, while maintaining a high degree of cell differentiation. Therefore, the objectives of the present study were (i) to determine whether these findings would translate into the enhanced osseointegration of TiNOx-coated implants in vivo and (ii) to compare the osseointegration of Ti-SLA (titanium-SLA) and CoCr-SLA (cobalt-chromium-SLA) implants coated with TiNOx. METHODS Forty-eight cylinders made of Ti-SLA, Ti-SLA-TiNOx (TiNOx-coated Ti-SLA) and CoCr-SLA-TiNOx (TiNOx-coated CoCr-SLA) were implanted into the lower jawbone of 8 minipigs. The bone-to-implant contact was determined after 1 week, 2 weeks, 1 month and 3 months. RESULTS Osseointegration proceeded normally on all 3 surfaces, with equal activity after the first week of healing. After 2 weeks, bone-to-implant contact was 1.8 times higher on TiNOx coatings, either deposited on Ti or on CoCr. These differences fell off after 1 and 3 months of healing. CONCLUSIONS When compared to standard SLA titanium, TiNOx coatings enhance implant osseointegration during the first month of healing. Furthermore, this stimulating effect is independent of the substrate, leading to similar results whether the coating is applied onto SLA-Ti or onto SLA-CoCr.
Collapse
Affiliation(s)
- Stéphane Durual
- Laboratory of Biomaterials, University of Geneva, Geneva, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
32
|
Hacking S, Boyraz P, Powers B, Sen-Gupta E, Kucharski W, Brown C, Cook E. Surface roughness enhances the osseointegration of titanium headposts in non-human primates. J Neurosci Methods 2012; 211:237-44. [DOI: 10.1016/j.jneumeth.2012.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 08/08/2012] [Accepted: 09/04/2012] [Indexed: 10/27/2022]
|
33
|
Yamauchi Y, Jinno T, Koga D, Asou Y, Morita S, Okawa A. Comparison of different distal designs of femoral components and their effects on bone remodeling in 1-stage bilateral total hip arthroplasty. J Arthroplasty 2012; 27:1538-43. [PMID: 22425307 DOI: 10.1016/j.arth.2012.01.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 01/29/2012] [Indexed: 02/01/2023] Open
Abstract
To evaluate the effects of distal design of a proximally coated femoral component on periprosthetic bone remodeling, we prospectively performed 21 one-stage bilateral total hip arthroplasties using a distally tapered and a distally cylindrical stem with the same proximal design, randomized to side. All hips showed good outcomes clinically and radiographically at the final follow-up, average of 7 years postoperatively. Cancellous condensation was always found in Gruen's zones 2 and 6 around the cylindrical stem and in regions between zones 2 and 3 and between zones 6 and 5 around the tapered stem. Bone mineral density of Gruen's zones 2 and 6 was significantly lower around the tapered stem. These results suggested more distal loading in hips with the tapered stem than in those with the cylindrical stem.
Collapse
Affiliation(s)
- Yuki Yamauchi
- Department of Orthopaedic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Mathieu V, Vayron R, Barthel E, Dalmas D, Soffer E, Anagnostou F, Haiat G. Mode III cleavage of a coin-shaped titanium implant in bone: effect of friction and crack propagation. J Mech Behav Biomed Mater 2012; 8:194-203. [PMID: 22402166 DOI: 10.1016/j.jmbbm.2011.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 11/14/2011] [Accepted: 12/27/2011] [Indexed: 11/19/2022]
Abstract
Endosseous cementless implants are widely used in orthopaedic, maxillofacial and oral surgery. However, failures are still observed and remain difficult to anticipate as remodelling phenomena at the bone-implant interface are poorly understood. The assessment of the biomechanical strength of the bone-implant interface may improve the understanding of the osseointegration process. An experimental approach based on a mode III cleavage mechanical device aims at understanding the behaviour of a planar bone-implant interface submitted to torsional loading. To do so, coin-shaped titanium implants were inserted on the tibiae of a New Zealand white rabbit for seven weeks. After the sacrifice, mode III cleavage experiments were performed on bone samples. An analytical model was developed to understand the debonding process of the bone-implant interface. The model allowed to assess the values of different parameters related to bone tissue at the vicinity of the implant with the additional assumption that bone adhesion occurs over around 70% of the implant surface, which is confirmed by microscopy images. The approach allows to estimate different quantities related to the bone-implant interface such as: torsional stiffness (around 20.5 N m rad(-1)), shear modulus (around 240 MPa), maximal torsional loading (around 0.056 N.m), mode III fracture energy (around 77.5 N m(-1)) and stress intensity factor (0.27 MPa m(1/2)). This study paves the way for the use of mode III cleavage testing for the investigation of torsional loading strength of the bone-implant interface, which might help for the development and optimization of implant biomaterial, surface treatment and medical treatment investigations.
Collapse
Affiliation(s)
- Vincent Mathieu
- CNRS, Université Paris Diderot, Laboratoire de Biomécanique Biomatériau Ostéo Articulaire, UMR CNRS 7052, 10 avenue de Verdun, Paris, 75010, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Effects of alloying elements on the cytotoxic response of titanium alloys. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2011. [DOI: 10.1016/j.msec.2010.12.013] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Miura K, Yamada N, Hanada S, Jung TK, Itoi E. The bone tissue compatibility of a new Ti-Nb-Sn alloy with a low Young's modulus. Acta Biomater 2011; 7:2320-6. [PMID: 21316491 DOI: 10.1016/j.actbio.2011.02.008] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 01/29/2011] [Accepted: 02/07/2011] [Indexed: 11/26/2022]
Abstract
A Ti-Nb-Sn alloy was developed as a new β-type titanium alloy which had a low Young's modulus and high strength. The Young's modulus of the Ti-Nb-Sn alloy was reduced to about 45 GPa by cold rolling, much closer to human cortical bone (10-30 GPa) than that of Ti-6Al-4V alloy (110 GPa) and other β-type titanium alloys developed for biomedical applications. The tensile strength of the Ti-Nb-Sn alloy was increased to a level greater than that of Ti-6Al-4V alloy by heat treatment after severe cold rolling. In this study the cytotoxicity of Ti-25Nb-11Sn alloy was evaluated in direct contact cell culture tests using metal disks and the bone tissue compatibility - examined using metal rods inserted into the medullary canal of rabbit femurs. The remarkable findings were that: (1) there were no significant differences in the relative growth ratio and relative absorbance ratio between cells grown with the Ti-Nb-Sn alloy, Ti-6Al-4V alloy and CP-Ti in direct contact cell culture tests; (2) there were no significant differences in the load at failure between the Ti-Nb-Sn alloy and Ti-6Al-4V alloy in pull-out metal rods tests; (3) there were no significant differences in new bone formation around metal rods between the Ti-Nb-Sn alloy and Ti-6Al-4V alloy in histological evaluations. The new Ti-Nb-Sn alloy with an elasticity closer to that of human bone is thus considered to be bioinert while also having a high degree of bone compatibility similar to that of Ti-6Al-4V alloy.
Collapse
|
37
|
Swanson TE, Cheng X, Friedrich C. Development of chitosan-vancomycin antimicrobial coatings on titanium implants. J Biomed Mater Res A 2011; 97:167-76. [PMID: 21370447 DOI: 10.1002/jbm.a.33043] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 11/25/2010] [Accepted: 01/04/2010] [Indexed: 11/08/2022]
Abstract
Techniques for titanium surface modification have been studied for applications in orthopedic implants specifically for local drug delivery. The extensive research in surface modification is driving the development of devices that integrate infection prevention, osseointegration, and functionality in a structural role. In this study, vancomycin was applied to modified titanium surfaces to determine the effect of surface morphology on drug loading and release profiles. The antimicrobial effectiveness of the released vancomycin was evaluated and found to have a similar effect as the standard vancomycin. The engineered surfaces included sandblasted, sandblasted acid etched, electrochemically etched, and sandblasted electrochemically etched. The antibiotic release was observed to be independent of the measured surface parameters of the engineered surfaces. The development of an implantable device in which the surface morphology can be tailored for an application with no effect on the total drug released would be beneficial to more precisely control the biological response while maintaining local drug delivery for infection prevention.
Collapse
Affiliation(s)
- T E Swanson
- Department of Mechanical Engineering-Engineering Mechanics, Multi-Scale Technologies Institute, Michigan Technological University, Houghton, Michigan 49931, USA.
| | | | | |
Collapse
|
38
|
Overgaard S. Calcium phosphate coatings for fixation of bone implants. Evaluated mechanically and histologically by stereological methods. ACTA ACUST UNITED AC 2011. [DOI: 10.1080/000164702760300297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Willie BM, Yang X, Kelly NH, Merkow J, Gagne S, Ware R, Wright TM, Bostrom MPG. Osseointegration into a novel titanium foam implant in the distal femur of a rabbit. J Biomed Mater Res B Appl Biomater 2010; 92:479-88. [PMID: 20024964 DOI: 10.1002/jbm.b.31541] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A novel porous titanium foam implant has recently been developed to enhance biological fixation of orthopaedic implants to bone. The aim of this study was to examine the mechanical and histological characteristics of bone apposition into two different pore sizes of this titanium foam (565 and 464 micron mean void intercept length) and to compare these characteristics to those obtained with a fully porous conventionally sintered titanium bead implant. Cylindrical implants were studied in a rabbit distal femoral intramedullary osseointegration model at time zero and at 3, 6, and 12 weeks. The amount of bone ingrowth, amount of periprosthetic bone, and mineral apposition rate of periprosthetic bone measured did not differ among the three implant designs at 3, 6, or 12 weeks. By 12 weeks, the interface stiffness and maximum load of the beaded implant was significantly greater than either foam implant. No significant difference was found in the interface stiffness or maximum load between the two foam implant designs at 3, 6, or 12 weeks. The lower compressive modulus of the foam compared to the more dense sintered beaded implants likely contributed to the difference in failure mode. However, the foam implants have a similar compressive modulus to other clinically successful coatings, suggesting they are nonetheless clinically adequate. Additional studies are required to confirm this in weight-bearing models. Histological data suggest that these novel titanium foam implants are a promising alternative to current porous coatings and should be further investigated for clinical application in cementless joint replacement.
Collapse
Affiliation(s)
- Bettina M Willie
- Julius Wolff Institut, Charité-Universitätsmedizin, Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
van Gaalen SM, Kruyt MC, Geuze RE, de Bruijn JD, Alblas J, Dhert WJ. Use of Fluorochrome Labels in In Vivo Bone Tissue Engineering Research. TISSUE ENGINEERING PART B-REVIEWS 2010; 16:209-17. [DOI: 10.1089/ten.teb.2009.0503] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Steven M. van Gaalen
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Moyo C. Kruyt
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ruth E. Geuze
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Joost D. de Bruijn
- Progentix BV, Bilthoven, The Netherlands
- Department of Materials, Queen Mary University of London, London, United Kingdom
| | - Jacqueline Alblas
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wouter J.A. Dhert
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
41
|
Jakobsen SS, Baas J, Jakobsen T, Soballe K. Biomechanical implant fixation of CoCrMo coating inferior to titanium coating in a canine implant model. J Biomed Mater Res A 2010; 94:180-6. [DOI: 10.1002/jbm.a.32709] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Wennerberg A, Albrektsson T. Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res 2009; 20 Suppl 4:172-84. [PMID: 19663964 DOI: 10.1111/j.1600-0501.2009.01775.x] [Citation(s) in RCA: 835] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM To analyse possible effects of titanium surface topography on bone integration. MATERIALS AND METHODS Our analyses were centred on a PubMed search that identified 1184 publications of assumed relevance; of those, 1064 had to be disregarded because they did not accurately present in vivo data on bone response to surface topography. The remaining 120 papers were read and analysed, after removal of an additional 20 papers that mainly dealt with CaP-coated and Zr implants; 100 papers remained and formed the basis for this paper. The bone response to differently configurated surfaces was mainly evaluated by histomorphometry (bone-to-implant contact), removal torque and pushout/pullout tests. RESULTS AND DISCUSSION A huge number of the experimental investigations have demonstrated that the bone response was influenced by the implant surface topography; smooth (S(a)<0.5 microm) and minimally rough (S(a) 0.5-1 mum) surfaces showed less strong bone responses than rougher surfaces. Moderately rough (S(a)>1-2 microm) surfaces showed stronger bone responses than rough (S(a)>2 microm) in some studies. One limitation was that it was difficult to compare many studies because of the varying quality of surface evaluations; a surface termed 'rough' in one study was not uncommonly referred to as 'smooth' in another; many investigators falsely assumed that surface preparation per se identified the roughness of the implant; and many other studies used only qualitative techniques such as SEM. Furthermore, filtering techniques differed or only height parameters (S(a), R(a)) were reported. CONCLUSIONS * Surface topography influences bone response at the micrometre level. * Some indications exist that surface topography influences bone response at the nanometre level. * The majority of published papers present an inadequate surface characterization. * Measurement and evaluation techniques need to be standardized. * Not only height descriptive parameters but also spatial and hybrid ones should be used.
Collapse
Affiliation(s)
- Ann Wennerberg
- Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö, Sweden.
| | | |
Collapse
|
43
|
Palmquist A, Jarmar T, Hermansson L, Emanuelsson L, Taylor A, Taylor M, Engqvist H, Thomsen P. Calcium aluminate coated and uncoated free form fabricated CoCr implants: A comparative study in rabbit. J Biomed Mater Res B Appl Biomater 2009; 91:122-7. [DOI: 10.1002/jbm.b.31380] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
44
|
Overgaard S. Calcium phosphate coatings for fixation of bone implants: Evaluated mechanically and histologically by stereological methods. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/000164700753759574] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Enhanced osseointegration of grit-blasted, NaOH-treated and electrochemically hydroxyapatite-coated Ti-6Al-4V implants in rabbits. Acta Biomater 2009; 5:2258-69. [PMID: 19251497 DOI: 10.1016/j.actbio.2009.01.033] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 01/08/2009] [Accepted: 01/26/2009] [Indexed: 11/20/2022]
Abstract
Osseointegration, in terms of the bone apposition ratio (BAR) and the new bone area (NBA), was measured by backscattered electron imaging. The results were compared for four implant types: grit-blasted and NaOH-treated Ti-6Al-4V (Uncoated-NaOH), electrodeposited with hydroxyapatite without alkali treatment (ED-HAp), electrodeposited with hydroxyapatite after alkali treatment (NaOH-ED-HAp), and plasma sprayed with hydroxyapatite (PS-HAp). No heat treatment was done after soaking in NaOH. The implants were press fitted into the intramedullary canal of mature New Zealand white rabbits and analyzed, both at the diaphyseal and at the metaphyseal zones, either 1week or 12weeks after surgery. NaOH-ED-HAp already exhibited a higher BAR value than the ED-HAp at 1week, and was as good as the commercial PS-HAp at 12weeks. The NBA value for NaOH-ED-HAp at 12weeks was the highest. The higher content of octacalcium phosphate in NaOH-ED-HAp, as evident from the X-ray photoelectron spectroscopy analysis of the oxygen shake-up peaks, and the associated increase in the solubility of this coating in vivo are considered responsible for the enhanced osseointegration. Taking into account also the reduced occurrence of delamination and the inherent advantages of the electrodeposition process, electrodeposition of HAp following soaking in NaOH may become an attractive alternative for the traditional plasma-sprayed process for coating of orthopedic and dental implants.
Collapse
|
46
|
Stiehler M, Lind M, Mygind T, Baatrup A, Dolatshahi‐Pirouz A, Li H, Foss M, Besenbacher F, Kassem M, Bünger C. Morphology, proliferation, and osteogenic differentiation of mesenchymal stem cells cultured on titanium, tantalum, and chromium surfaces. J Biomed Mater Res A 2008; 86:448-58. [DOI: 10.1002/jbm.a.31602] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Williams DF. On the mechanisms of biocompatibility. Biomaterials 2008; 29:2941-53. [DOI: 10.1016/j.biomaterials.2008.04.023] [Citation(s) in RCA: 1750] [Impact Index Per Article: 109.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 04/11/2008] [Indexed: 01/02/2023]
|
48
|
Custers RJH, Dhert WJA, van Rijen MHP, Verbout AJ, Creemers LB, Saris DBF. Articular damage caused by metal plugs in a rabbit model for treatment of localized cartilage defects. Osteoarthritis Cartilage 2007; 15:937-45. [PMID: 17376710 DOI: 10.1016/j.joca.2007.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Accepted: 02/04/2007] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Currently, the surgical treatment of localized cartilage defects has limitations. Alternatively, localized cartilage defects may be treated with small biocompatible metal cartilage tacks. Our purpose was to investigate the applicability of defect-size femoral implants. Different bearing materials, cobalt-chromium (CoCr) and oxidized zirconium (OxZr), were tested to evaluate the effect on opposing cartilage quality and osseointegration at different insertion depths. METHODS In 18 adult female New Zealand White rabbits, a medial femoral condyle defect was filled with either an OxZr or a CoCr implant (Ø articulating surface 3.5 mm; fixating pin of 9.1 mm length), placed flush, 1mm deep or 1mm protruding with respect to the level of the surrounding cartilage. Animals were sacrificed after 4 weeks. Tibial cartilage quality was scored microscopically and osseointegration measured by automated histomorphometry. RESULTS Considerable articulating cartilage erosion was found in all conditions. Tibial cartilage quality was least compromised when both implants were placed flush compared to deep (P=0.01) or protruding position (P=0.004) and was better for OxZr compared to CoCr (P=0.011) when left protruding, while no differences were found when placed deep of flush. Most bone formation around the fixating pin was observed in a protruding position (P=0.01). In deep position, more bone-implant contact was observed with CoCr compared to OxZr (P=0.02). CONCLUSIONS OxZr and CoCr implants showed good osseointegration when used as a localized cartilage defect treatment in the rabbit knee; however, opposite cartilage damage was observed in all cases. Placement flush to the surrounding cartilage seems essential and when left protruding OxZr may be less erosive. In conclusion, caution is warranted using small metal implants for the treatment of localized cartilage in the human patient.
Collapse
Affiliation(s)
- R J H Custers
- Department of Orthopaedics, University Medical Center Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
49
|
Saldaña L, Barranco V, González-Carrasco JL, Rodríguez M, Munuera L, Vilaboa N. Thermal oxidation enhances early interactions between human osteoblasts and alumina blasted Ti6Al4V alloy. J Biomed Mater Res A 2007; 81:334-46. [PMID: 17120220 DOI: 10.1002/jbm.a.30994] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Oxidation of Ti6Al4V at 500 degrees C for 1 h in air results in the formation of an outer ceramic layer that improves osteoblast behavior and decreases Ti and Al ion release. In this work, alumina blasted Ti6Al4V alloy has been thermally treated and its in vitro biocompatibility has been assessed. Roughness of the blasted alloy was not found significantly altered after heat treatment while chemical surface analysis indicated an increase in stable TiO(2) and Al(2)O(3) oxides. Cell attachment, spreading, cytoskeleton organization as well as cell proliferation, viability, and procollagen I peptide secretion of human primary osteoblasts, impaired on alumina blasted Ti6Al4V, were found to be greatly enhanced on the thermally oxidized blasted alloy. Other informative markers of the osteoblastic phenotype such as alkaline phosphatase, osteocalcin, osteoprotegerin, and mineralized nodule formation were evaluated and indicated that osteoblasts responded at the same extent on untreated and thermally treated blasted alloys. Taken together, our in vitro results indicate that thermal oxidation of alumina blasted Ti6Al4V may favor successful osseointegration by promoting early interactions of osteoblastic cells and the modified surface alloy.
Collapse
Affiliation(s)
- L Saldaña
- Unidad de Investigación, Hospital Universitario La Paz, Paseo de la Castellana 261, 28046 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
50
|
Kolos EC, Ruys AJ, Rohanizadeh R, Muir MM, Roger G. Calcium phosphate fibres synthesized from a simulated body fluid. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2006; 17:1179-89. [PMID: 17122934 DOI: 10.1007/s10856-006-0546-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Accepted: 02/01/2006] [Indexed: 05/12/2023]
Abstract
The biomimetic coating method was used for fabricating calcium phosphate fibres for biomedical applications such as bone defect fillers. Natural cotton substrate was pre-treated with phosphorylation and a Ca(OH)2 saturated solution. The pre-treated samples were then soaked in simulated body fluid (SBF) of two different concentrations, 1.5 times and 5.0 times the ion concentration of blood plasma. The cotton was then burnt out via sintering of the ceramic coating at 950 degrees C, 1050 degrees C, 1150 degrees C, and 1250 degrees C. The results demonstrated that osteoblastic cells were able to cover the entire surface cotton fibres, and the cell coverage appeared to be independent of surface roughness and Ca/P ratio of fibres.
Collapse
Affiliation(s)
- E C Kolos
- Biomedical Engineering, School of AMME, University of Sydney, Sydney, Australia.
| | | | | | | | | |
Collapse
|