1
|
Ghasemizadeh A, Wan L, Hirose A, Diep J, Ewert KK, Safinya CR. A Library of Custom PEG-Lipids reveals a Double-PEG-Lipid with Drastically Enhanced Paclitaxel Solubility and Human Cancer Cell Cytotoxicity when used in Fluid Micellar Nanoparticles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606138. [PMID: 39131387 PMCID: PMC11312575 DOI: 10.1101/2024.08.01.606138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Paclitaxel (PTX) is one of the most widely utilized chemotherapeutics globally. However, the extremely poor water solubility of paclitaxel necessitates a mechanism of delivery within blood. Fluid lipid PTX nanocarriers (lipids in the chain-melted state) show promise as PTX delivery vectors, but remain limited by their solubility of PTX within the membrane. To improve pharmacokinetics, membrane surfaces are typically coated with polyethylene glycol (PEG). Recent work has demonstrated the generation of a population of micelles within fluid lipid formulations containing a 2kDa PEG-lipid at a 10 mol% ratio. Driven by the positive curvature of the PEG-lipid (i.e. area of head group > area of tails), micelle-containing formulations were found to exhibit significantly higher uptake in cancer cells, cytotoxicity, and in vivo antitumor efficacy compared to formulations containing solely liposomes. Here, we describe the custom synthesis of a library of high-curvature micelle-inducing PEG-lipids and examine the effects of PEG chain length, chain branching (single- or double-PEG-lipid), and cationic charge on PTX solubility and cytotoxicity. We examined PEG-lipids at standard (10 mol%) and high (100-x mol%, where x=PTX mol%) formulation ratios. Remarkably, all formulations containing the synthesized high-curvature PEG-lipids had improved PTX solubility over unPEGylated formulations and commercially available DOPE-5k. The highest PTX solubility was found within the 100-xPTX mol% PEG-lipid micellar formulations, with particles made from 2k2 (two PEG2k chains) encapsulating 13 mol% PTX for up to 24 h. The pancreatic cancer cell line PC3 exhibited higher sensitivity to formulations containing PEG-lipid at 100-xPTX mol%, the most potent of which being formulations made from 2k2 (IC50 = 14 nM). The work presented here suggests formulations employing high-curvature PEG-lipids, particularly the double-PEG-lipid 2k2, hold great potential as next-generation PTX delivery systems owing to their high PTX solubility, enhanced cell cytotoxicity, and ability for precision targeting by affixation of ligands to the PEG molecules.
Collapse
Affiliation(s)
- Aria Ghasemizadeh
- Materials Department, University of California, Santa Barbara, California 93106, USA
- Biomolecular Science and Engineering, University of California, Santa Barbara, California 93106, USA
| | - Lili Wan
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| | - Aiko Hirose
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| | - Jacqueline Diep
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| | - Kai K Ewert
- Materials Department, University of California, Santa Barbara, California 93106, USA
| | - Cyrus R Safinya
- Materials Department, University of California, Santa Barbara, California 93106, USA
- Biomolecular Science and Engineering, University of California, Santa Barbara, California 93106, USA
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
- Physics Department, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
2
|
Zambrano P, Manrique-Moreno M, Petit K, Colina JR, Jemiola-Rzeminska M, Suwalsky M, Strzalka K. Differential scanning calorimetry in drug-membrane interactions. Biochem Biophys Res Commun 2024; 709:149806. [PMID: 38579619 DOI: 10.1016/j.bbrc.2024.149806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/04/2024] [Accepted: 03/18/2024] [Indexed: 04/07/2024]
Abstract
Differential Scanning Calorimetry (DSC) is a central technique in investigating drug - membrane interactions, a critical component of pharmaceutical research. DSC measures the heat difference between a sample of interest and a reference as a function of temperature or time, contributing essential knowledge on the thermally induced phase changes in lipid membranes and how these changes are affected by incorporating pharmacological substances. The manuscript discusses the use of phospholipid bilayers, which can form structures like unilamellar and multilamellar vesicles, providing a simplified yet representative membrane model to investigate the complex dynamics of how drugs interact with and penetrate cellular barriers. The manuscript consolidates data from various studies, providing a comprehensive understanding of the mechanisms underlying drug - membrane interactions, the determinants that influence these interactions, and the crucial role of DSC in elucidating these components. It further explores the interactions of specific classes of drugs with phospholipid membranes, including non-steroidal anti-inflammatory drugs, anticancer agents, natural products with antioxidant properties, and Alzheimer's disease therapeutics. The manuscript underscores the critical importance of DSC in this field and the need for continued research to improve our understanding of these interactions, acting as a valuable resource for researchers.
Collapse
Affiliation(s)
- Pablo Zambrano
- Department of Bioscience, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany.
| | - Marcela Manrique-Moreno
- Faculty of Natural of Exact Sciences, Chemistry Institute, University of Antioquia, A.A. 1226, Medellin, 050010, Antioquia, Colombia
| | - Karla Petit
- LabMAT, Department of Civil and Environmental Engineering, University of Bío-Bío, Concepción, Chile
| | - José R Colina
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile
| | - Malgorzata Jemiola-Rzeminska
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Mario Suwalsky
- Facultad de Medicina, Universidad Católica de La Santísima Concepción, Concepción, Chile
| | - Kazimierz Strzalka
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
3
|
Nsairat H, Ibrahim AA, Jaber AM, Abdelghany S, Atwan R, Shalan N, Abdelnabi H, Odeh F, El-Tanani M, Alshaer W. Liposome bilayer stability: emphasis on cholesterol and its alternatives. J Liposome Res 2024; 34:178-202. [PMID: 37378553 DOI: 10.1080/08982104.2023.2226216] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/15/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Liposomes are spherical lipidic nanocarriers composed of natural or synthetic phospholipids with a hydrophobic bilayer and aqueous core, which are arranged into a polar head and a long hydrophobic tail, forming an amphipathic nano/micro-particle. Despite numerous liposomal applications, their use encounters many challenges related to the physicochemical properties strongly affected by their constituents, colloidal stability, and interactions with the biological environment. This review aims to provide a perspective and a clear idea about the main factors that regulate the liposomes' colloidal and bilayer stability, emphasising the roles of cholesterol and its possible alternatives. Moreover, this review will analyse strategies that offer possible approaches to provide more stable in vitro and in vivo liposomes with enhanced drug release and encapsulation efficiencies.
Collapse
Affiliation(s)
- Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Abed Alqader Ibrahim
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Areej M Jaber
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | | | - Randa Atwan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Naeem Shalan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Hiba Abdelnabi
- Faculty of Pharmacy, The University of Jordan, Amman, Jordan
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Fadwa Odeh
- Department of Chemistry, The University of Jordan, Amman, Jordan
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
- Institute of Cancer Therapeutics, University of Bradford, Bradford, UK
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| |
Collapse
|
4
|
Kadlecová Z, Sevriugina V, Lysáková K, Rychetský M, Chamradová I, Vojtová L. Liposomes Affect Protein Release and Stability of ITA-Modified PLGA-PEG-PLGA Hydrogel Carriers for Controlled Drug Delivery. Biomacromolecules 2024; 25:67-76. [PMID: 38135465 PMCID: PMC10777393 DOI: 10.1021/acs.biomac.3c00736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
Fat grafting, a key regenerative medicine technique, often requires repeat procedures due to high-fat reabsorption and volume loss. Addressing this, a novel drug delivery system uniquely combines a thermosensitive, FDA-approved hydrogel (itaconic acid-modified PLGA-PEG-PLGA copolymer) with FGF2-STAB, a stable fibroblast growth factor 2 with a 21-day stability, far exceeding a few hours of wild-type FGF2's stability. Additionally, the growth factor was encapsulated in "green" liposomes prepared via the Mozafari method, ensuring pH protection. The system, characterized by first-order FGF2-STAB release, employs green chemistry for biocompatibility, bioactivity, and eco-friendliness. The liposomes, with diameters of 85.73 ± 3.85 nm and 68.6 ± 2.2% encapsulation efficiency, allowed controlled FGF2-STAB release from the hydrogel compared to the unencapsulated FGF2-STAB. Yet, the protein compromised the carrier's hydrolytic stability. Prior tests were conducted on model proteins human albumin (efficiency 80.8 ± 3.2%) and lysozyme (efficiency 81.0 ± 2.7%). This injectable thermosensitive system could advance reconstructive medicine and cosmetic procedures.
Collapse
Affiliation(s)
- Zuzana Kadlecová
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
656/123, 612 00 Brno, Czech Republic
| | - Veronika Sevriugina
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
656/123, 612 00 Brno, Czech Republic
| | - Klára Lysáková
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
656/123, 612 00 Brno, Czech Republic
| | - Matěj Rychetský
- Faculty
of Chemistry, Brno University of Technology, Purkyňova 464, 612 00 Brno, Czech Republic
| | - Ivana Chamradová
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
656/123, 612 00 Brno, Czech Republic
| | - Lucy Vojtová
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
656/123, 612 00 Brno, Czech Republic
| |
Collapse
|
5
|
Steffes VM, Zhang Z, Ewert KK, Safinya CR. Cryo-TEM Reveals the Influence of Multivalent Charge and PEGylation on Shape Transitions in Fluid Lipid Assemblies: From Vesicles to Discs, Rods, and Spheres. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18424-18436. [PMID: 38051205 PMCID: PMC10799670 DOI: 10.1021/acs.langmuir.3c02664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Lipids, and cationic lipids in particular are of interest as delivery vectors for hydrophobic drugs such as the cancer therapeutic paclitaxel, and the structures of lipid assemblies affect their efficacy. We investigated the effect of incorporating the multivalent cationic lipid MVL5 (+5e) and poly(ethylene glycol)-lipids (PEG-lipids), alone and in combination, on the structure of fluid-phase lipid assemblies of the charge-neutral lipid 1,2-dioleoyl-sn-glycero-phosphocholine (DOPC). This allowed us to elucidate lipid-assembly structure correlations in sonicated formulations with high charge density, which are not accessible with univalent lipids such as the well-studied DOTAP (+1e). Cryogenic transmission electron microscopy (cryo-TEM) allowed us to determine the structure of the lipid assemblies, revealing diverse combinations of vesicles and disc-shaped, worm-like, and spherical micelles. Remarkably, MVL5 forms an essentially pure phase of disc micelles at 50 mol % MVL5. At a higher (75 mol %) content of MVL5, short- and intermediate-length worm-like micellar rods were observed, and in ternary mixtures with PEG-lipid, longer and highly flexible worm-like micelles formed. Independent of their length, the worm-like micelles coexisted with spherical micelles. In stark contrast, DOTAP forms mixtures of vesicles, disc micelles, and spherical micelles at all studied compositions, even when combined with PEG-lipids. The observed similarities and differences in the effects of charge (multivalent versus univalent) and high curvature (multivalent charge versus PEG-lipid) on the assembly structure provide insights into parameters that control the size of fluid lipid nanodiscs, relevant for future applications.
Collapse
Affiliation(s)
- Victoria M. Steffes
- Materials Department, University of California, Santa Barbara, California 93106, USA
- Chemistry and Biochemistry Department, University of California, Santa Barbara, California 93106, USA
| | - Zhening Zhang
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
- Present Address: Biochemistry and Molecular Biophysics Department, Columbia University Medical Center, New York, NY 10032, USA
| | - Kai K. Ewert
- Materials Department, University of California, Santa Barbara, California 93106, USA
| | - Cyrus R. Safinya
- Materials Department, University of California, Santa Barbara, California 93106, USA
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
- Physics Department, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
6
|
Steffes V, MacDonald S, Crowe J, Murali M, Ewert KK, Li Y, Safinya CR. Lipids with negative spontaneous curvature decrease the solubility of the cancer drug paclitaxel in liposomes. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:128. [PMID: 38099960 PMCID: PMC10802834 DOI: 10.1140/epje/s10189-023-00388-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023]
Abstract
Paclitaxel (PTX) is a hydrophobic small-molecule cancer drug that loads into the membrane (tail) region of lipid carriers such as liposomes and micelles. The development of improved lipid-based carriers of PTX is an important objective to generate chemotherapeutics with fewer side effects. The lipids 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and glyceryl monooleate (GMO) show propensity for fusion with other lipid membranes, which has led to their use in lipid vectors of nucleic acids. We hypothesized that DOPE and GMO could enhance PTX delivery to cells through a similar membrane fusion mechanism. As an important measure of drug carrier performance, we evaluated PTX solubility in cationic liposomes containing GMO or DOPE. Solubility was determined by time-dependent kinetic phase diagrams generated from direct observations of PTX crystal formation using differential-interference-contrast optical microscopy. Remarkably, PTX was much less soluble in these liposomes than in control cationic liposomes containing univalent cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC), which are not fusogenic. In particular, PTX was not substantially soluble in GMO-based cationic liposomes. The fusogenicity of DOPE and GMO is related to the negative spontaneous curvature of membranes containing these lipids, which drives formation of nonlamellar self-assembled phases (inverted hexagonal or gyroid cubic). To determine whether PTX solubility is governed by lipid membrane structure or by local intermolecular interactions, we used synchrotron small-angle X-ray scattering. To increase the signal/noise ratio, we used DNA to condense the lipid formulations into lipoplex pellets. The results suggest that local intermolecular interactions are of greater importance and that the negative spontaneous curvature-inducing lipids DOPE and GMO are not suitable components of liposomal carriers for PTX delivery.
Collapse
Affiliation(s)
- Victoria Steffes
- Materials Department, University of California, Santa Barbara, CA, 93106, USA
- Chemistry and Biochemistry Department, University of California, Santa Barbara, CA, 93106, USA
| | - Scott MacDonald
- Physics Department, University of California, Santa Barbara, CA, 93106, USA
| | - John Crowe
- Physics Department, University of California, Santa Barbara, CA, 93106, USA
| | - Meena Murali
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA, 93106, USA
| | - Kai K Ewert
- Materials Department, University of California, Santa Barbara, CA, 93106, USA
| | - Youli Li
- Materials Research Laboratory, University of California, Santa Barbara, CA, 93106, USA
| | - Cyrus R Safinya
- Materials Department, University of California, Santa Barbara, CA, 93106, USA.
- Physics Department, University of California, Santa Barbara, CA, 93106, USA.
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
7
|
Steffes V, MacDonald S, Crowe J, Murali M, Ewert KK, Li Y, Safinya CR. Lipids with negative spontaneous curvature decrease the solubility of the cancer drug paclitaxel in liposomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.563006. [PMID: 37905081 PMCID: PMC10614943 DOI: 10.1101/2023.10.18.563006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Paclitaxel (PTX) is a hydrophobic small-molecule cancer drug that loads into the membrane (tail) region of lipid carriers such as liposomes and micelles. The development of improved lipid-based carriers of PTX is an important objective to generate chemotherapeutics with fewer side effects. The lipids 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and glyceryl monooleate (GMO) show propensity for fusion with other lipid membranes, which has led to their use in lipid vectors of nucleic acids. We hypothesized that DOPE and GMO could enhance PTX delivery to cells through a similar membrane fusion mechanism. As an important measure of drug carrier performance, we evaluated PTX solubility in cationic liposomes containing GMO or DOPE. Solubility was determined by time-dependent kinetic phase diagrams generated from direct observations of PTX crystal formation using differential-interference-contrast optical microscopy. Remarkably, PTX was much less soluble in these liposomes than in control cationic liposomes containing univalent cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC), which are not fusogenic. In particular, PTX was not substantially soluble in GMO-based cationic liposomes. The fusogenicity of DOPE and GMO is related to the negative spontaneous curvature of membranes containing these lipids, which drives formation of nonlamellar self-assembled phases (inverted hexagonal or gyroid cubic). We used synchrotron small-angle x-ray scattering to determine whether PTX solubility is governed by lipid membrane structure (condensed with DNA in pellet form) or by local intermolecular interactions. The results suggest that local intermolecular interactions are of greater importance and that the negative spontaneous curvature-inducing lipids DOPE and GMO are not suitable components of lipid carriers for PTX delivery regardless of carrier structure.
Collapse
Affiliation(s)
- Victoria Steffes
- Materials Department, University of California, Santa Barbara, California 93106, USA
- Chemistry and Biochemistry Department, University of California, Santa Barbara, California 93106, USA
| | - Scott MacDonald
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - John Crowe
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Meena Murali
- Materials Department, University of California, Santa Barbara, California 93106, USA
| | - Kai K Ewert
- Materials Department, University of California, Santa Barbara, California 93106, USA
| | - Youli Li
- Physics Department, University of California, Santa Barbara, California 93106, USA
| | - Cyrus R Safinya
- Materials Department, University of California, Santa Barbara, California 93106, USA
- Physics Department, University of California, Santa Barbara, California 93106, USA
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
8
|
Shimolina L, Gulin A, Khlynova A, Ignatova N, Druzhkova I, Gubina M, Zagaynova E, Kuimova MK, Shirmanova M. Effects of Paclitaxel on Plasma Membrane Microviscosity and Lipid Composition in Cancer Cells. Int J Mol Sci 2023; 24:12186. [PMID: 37569560 PMCID: PMC10419023 DOI: 10.3390/ijms241512186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The cell membrane is an important regulator for the cytotoxicity of chemotherapeutic agents. However, the biochemical and biophysical effects that occur in the membrane under the action of chemotherapy drugs are not fully described. In the present study, changes in the microviscosity of membranes of living HeLa-Kyoto tumor cells were studied during chemotherapy with paclitaxel, a widely used antimicrotubule agent. To visualize the microviscosity of the membranes, fluorescence lifetime imaging microscopy (FLIM) with a BODIPY 2 fluorescent molecular rotor was used. The lipid profile of the membranes was assessed using time-of-flight secondary ion mass spectrometry ToF-SIMS. A significant, steady-state decrease in the microviscosity of membranes, both in cell monolayers and in tumor spheroids, was revealed after the treatment. Mass spectrometry showed an increase in the unsaturated fatty acid content in treated cell membranes, which may explain, at least partially, their low microviscosity. These results indicate the involvement of membrane microviscosity in the response of tumor cells to paclitaxel treatment.
Collapse
Affiliation(s)
- Liubov Shimolina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russia; (L.S.); (A.K.); (N.I.); (I.D.)
| | - Alexander Gulin
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygin st. 4, 119991 Moscow, Russia; (A.G.); (M.G.)
| | - Alexandra Khlynova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russia; (L.S.); (A.K.); (N.I.); (I.D.)
| | - Nadezhda Ignatova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russia; (L.S.); (A.K.); (N.I.); (I.D.)
| | - Irina Druzhkova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russia; (L.S.); (A.K.); (N.I.); (I.D.)
| | - Margarita Gubina
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygin st. 4, 119991 Moscow, Russia; (A.G.); (M.G.)
| | - Elena Zagaynova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia;
| | - Marina K. Kuimova
- Department of Chemistry, Imperial College London (White City Campus), London W12 0BZ, UK;
| | - Marina Shirmanova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russia; (L.S.); (A.K.); (N.I.); (I.D.)
| |
Collapse
|
9
|
Simón-Gracia L, Scodeller P, Fisher WS, Sidorenko V, Steffes VM, Ewert KK, Safinya CR, Teesalu T. Paclitaxel-Loaded Cationic Fluid Lipid Nanodiscs and Liposomes with Brush-Conformation PEG Chains Penetrate Breast Tumors and Trigger Caspase-3 Activation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56613-56622. [PMID: 36521233 PMCID: PMC9879205 DOI: 10.1021/acsami.2c17961] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Novel approaches are required to address the urgent need to develop lipid-based carriers of paclitaxel (PTX) and other hydrophobic drugs for cancer chemotherapy. Carriers based on cationic liposomes (CLs) with fluid (i.e., chain-melted) membranes (e.g., EndoTAG-1) have shown promise in preclinical and late-stage clinical studies. Recent work found that the addition of a cone-shaped poly(ethylene glycol)-lipid (PEG-lipid) to PTX-loaded CLs (CLsPTX) promotes a transition to sterically stabilized, higher-curvature (smaller) nanoparticles consisting of a mixture of PEGylated CLsPTX and PTX-containing fluid lipid nanodiscs (nanodiscsPTX). These CLsPTX and nanodiscsPTX show significantly improved uptake and cytotoxicity in cultured human cancer cells at PEG coverage in the brush regime (10 mol % PEG-lipid). Here, we studied the PTX loading, in vivo circulation half-life, and biodistribution of systemically administered CLsPTX and nanodiscsPTX and assessed their ability to induce apoptosis in triple-negative breast-cancer-bearing immunocompetent mice. We focused on fluid rather than solid lipid nanodiscs because of the significantly higher solubility of PTX in fluid membranes. At 5 and 10 mol % of a PEG-lipid (PEG5K-lipid, molecular weight of PEG 5000 g/mol), the mixture of PEGylated CLsPTX and nanodiscsPTX was able to incorporate up to 2.5 mol % PTX without crystallization for at least 20 h. Remarkably, compared to preparations containing 2 and 5 mol % PEG5K-lipid (with the PEG chains in the mushroom regime), the particles at 10 mol % (with PEG chains in the brush regime) showed significantly higher blood half-life, tumor penetration, and proapoptotic activity. Our study suggests that increasing the PEG coverage of CL-based drug nanoformulations can improve their pharmacokinetics and therapeutic efficacy.
Collapse
Affiliation(s)
- Lorena Simón-Gracia
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia
| | - Pablo Scodeller
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Calle Darwin 3, 28049, Madrid, Spain
| | - William S. Fisher
- Materials Department, Molecular, Cellular, and Developmental Biology Department, Physics Department, and Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| | - Valeria Sidorenko
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia
| | - Victoria M. Steffes
- Materials Department, Molecular, Cellular, and Developmental Biology Department, Physics Department, and Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| | - Kai K. Ewert
- Materials Department, Molecular, Cellular, and Developmental Biology Department, Physics Department, and Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| | - Cyrus R. Safinya
- Materials Department, Molecular, Cellular, and Developmental Biology Department, Physics Department, and Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| | - Tambet Teesalu
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
10
|
Microfluidic paclitaxel-loaded lipid nanoparticle formulations for chemotherapy. Int J Pharm 2022; 628:122320. [DOI: 10.1016/j.ijpharm.2022.122320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/22/2022]
|
11
|
Aranda E, Teruel JA, Ortiz A, Pérez-Cárceles MD, Aranda FJ. Interaction of Docetaxel with Phosphatidylcholine Membranes: A Combined Experimental and Computational Study. J Membr Biol 2022; 255:277-291. [PMID: 35175383 PMCID: PMC9167220 DOI: 10.1007/s00232-022-00219-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/07/2022] [Indexed: 11/06/2022]
Abstract
The antineoplastic drug Docetaxel is a second generation taxane which is used against a great variety of cancers. The drug is highly lipophilic and produces a great array of severe toxic effects that limit its therapeutic effectiveness. The study of the interaction between Docetaxel and membranes is very scarce, however, it is required in order to get clues in relation with its function, mechanism of toxicity and possibilities of new formulations. Using phosphatidylcholine biomimetic membranes, we examine the interaction of Docetaxel with the phospholipid bilayer combining an experimental study, employing a series of biophysical techniques like Differential Scanning Calorimetry, X-Ray Diffraction and Infrared Spectroscopy, and a Molecular Dynamics simulation. Our experimental results indicated that Docetaxel incorporated into DPPC bilayer perturbing the gel to liquid crystalline phase transition and giving rise to immiscibility when the amount of the drug is increased. The drug promotes the gel ripple phase, increasing the bilayer thickness in the fluid phase, and is also able to alter the hydrogen-bonding interactions in the interfacial region of the bilayer producing a dehydration effect. The results from computational simulation agree with the experimental ones and located the Docetaxel molecule forming small clusters in the region of the carbon 8 of the acyl chain palisade overlapping with the carbonyl region of the phospholipid. Our results support the idea that the anticancer drug is embedded into the phospholipid bilayer to a limited amount and produces structural perturbations which might affect the function of the membrane.
Collapse
Affiliation(s)
- Elisa Aranda
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Universidad de Murcia, 30100, Murcia, Spain
- Hospital Universitario Virgen de la Arrixaca, Área de Salud 1, Murcia, Spain
| | - José A Teruel
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Universidad de Murcia, 30100, Murcia, Spain
| | - Antonio Ortiz
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Universidad de Murcia, 30100, Murcia, Spain
| | - María Dolores Pérez-Cárceles
- Departamento de Medicina Legal y Forense, Facultad de Medicina, Instituto de Investigación Biomédica (IMIB-Arrixaca), Universidad de Murcia, 30120, Murcia, Spain
| | - Francisco J Aranda
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Universidad de Murcia, 30100, Murcia, Spain.
| |
Collapse
|
12
|
Hosseini N, Lund M, Ejtehadi MR. Polarization Switching Method for Effective Free Energy Calculation of Membrane Translocation on the Nano-scale. Phys Chem Chem Phys 2022; 24:12281-12292. [DOI: 10.1039/d2cp00056c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Free-energy calculations are crucial for investigating biomolecular interactions on the Nano-scale level. However, in theoretical studies, the neglect of electronic polarization can jeopardize their accuracy and correct predictive capabilities, specifically...
Collapse
|
13
|
Anti-inflammatory potential of simvastatin loaded nanoliposomes in 2D and 3D foam cell models. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 37:102434. [PMID: 34214684 DOI: 10.1016/j.nano.2021.102434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/10/2021] [Accepted: 05/31/2021] [Indexed: 12/17/2022]
Abstract
Atherosclerosis is a multifactorial disease triggered and sustained by risk factors such as high cholesterol, high blood pressure and unhealthy lifestyle. Inflammation plays a pivotal role in atherosclerosis pathogenesis. In this study, we developed a simvastatin (STAT) loaded nanoliposomal formulation (LIPOSTAT) which can deliver the drug into atherosclerotic plaque, when administered intravenously. This formulation is easily prepared, stable, and biocompatible with minimal burst release for effective drug delivery. 2D and 3D in vitro models were examined towards anti-inflammatory effects of STAT, both free and in combination with liposomes. LIPOSTAT induced greater cholesterol efflux in the 2D foam cells and significantly reduced inflammation in both 2D and 3D models. LIPOSTAT alleviated inflammation by reducing the secretion of early and late phase pro-inflammatory cytokines, monocyte adherence marker, and lipid accumulation cytokines. Additionally, the 3D foam cell spheroid model is a convenient and practical approach in testing various anti-atherosclerotic drugs without the need for human tissue.
Collapse
|
14
|
Paclitaxel loading in cationic liposome vectors is enhanced by replacement of oleoyl with linoleoyl tails with distinct lipid shapes. Sci Rep 2021; 11:7311. [PMID: 33790325 PMCID: PMC8012651 DOI: 10.1038/s41598-021-86484-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/15/2021] [Indexed: 12/20/2022] Open
Abstract
Lipid carriers of hydrophobic paclitaxel (PTX) are used in clinical trials for cancer chemotherapy. Improving their loading capacity requires enhanced PTX solubilization. We compared the time-dependence of PTX membrane solubility as a function of PTX content in cationic liposomes (CLs) with lipid tails containing one (oleoyl; DOPC/DOTAP) or two (linoleoyl; DLinPC/newly synthesized DLinTAP) cis double bonds by using microscopy to generate kinetic phase diagrams. The DLin lipids displayed significantly increased PTX membrane solubility over DO lipids. Remarkably, 8 mol% PTX in DLinTAP/DLinPC CLs remained soluble for approximately as long as 3 mol% PTX (the solubility limit, which has been the focus of most previous studies and clinical trials) in DOTAP/DOPC CLs. The increase in solubility is likely caused by enhanced molecular affinity between lipid tails and PTX, rather than by the transition in membrane structure from bilayers to inverse cylindrical micelles observed with small-angle X-ray scattering. Importantly, the efficacy of PTX-loaded CLs against prostate cancer cells (their IC50 of PTX cytotoxicity) was unaffected by changing the lipid tails, and toxicity of the CL carrier was negligible. Moreover, efficacy was approximately doubled against melanoma cells for PTX-loaded DLinTAP/DLinPC over DOTAP/DOPC CLs. Our findings demonstrate the potential of chemical modifications of the lipid tails to increase the PTX membrane loading while maintaining (and in some cases even increasing) the efficacy of CLs. The increased PTX solubility will aid the development of liposomal PTX carriers that require significantly less lipid to deliver a given amount of PTX, reducing side effects and costs.
Collapse
|
15
|
Taguchi K, Okamoto Y, Matsumoto K, Otagiri M, Chuang VTG. When Albumin Meets Liposomes: A Feasible Drug Carrier for Biomedical Applications. Pharmaceuticals (Basel) 2021; 14:ph14040296. [PMID: 33810483 PMCID: PMC8065628 DOI: 10.3390/ph14040296] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
Albumin, the most abundant protein in plasma, possesses some inherent beneficial structural and physiological characteristics that make it suitable for use as a drug delivery agent, such as an extraordinary drug-binding capacity and long blood retention, with a high biocompatibility. The use of these characteristics as a nanoparticle drug delivery system (DDS) offers several advantages, including a longer circulation time, lower toxicity, and more significant drug loading. To date, many innovative liposome preparations have been developed in which albumin is involved as a DDS. These novel albumin-containing liposome preparations show superior deliverability for genes, hydrophilic/hydrophobic substances and proteins/peptides to the targeting area compared to original liposomes by virtue of their high biocompatibility, stability, effective loading content, and the capacity for targeting. This review summarizes the current status of albumin applications in liposome-based DDS, focusing on albumin-coated liposomes and albumin-encapsulated liposomes as a DDS carrier for potential medical applications.
Collapse
Affiliation(s)
- Kazuaki Taguchi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan; (K.T.); (K.M.)
| | - Yuko Okamoto
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 862-0082, Japan; (Y.O.); (M.O.)
| | - Kazuaki Matsumoto
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan; (K.T.); (K.M.)
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 862-0082, Japan; (Y.O.); (M.O.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 862-0082, Japan
| | - Victor Tuan Giam Chuang
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA 6102, Australia
- Correspondence:
| |
Collapse
|
16
|
Darwitan A, Wong YS, Nguyen LTH, Czarny B, Vincent A, Nedumaran AM, Tan YF, Muktabar A, Tang JK, Ng KW, Venkatraman S. Liposomal Nanotherapy for Treatment of Atherosclerosis. Adv Healthc Mater 2020; 9:e2000465. [PMID: 32543010 DOI: 10.1002/adhm.202000465] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/21/2020] [Indexed: 02/02/2023]
Abstract
Atherosclerosis is a chronic disease that can lead to life-threatening events such as myocardial infarction and stroke, is characterized by the build-up of lipids and immune cells within the arterial wall. It is understood that inflammation is a hallmark of atherosclerosis and can be a target for therapy. In support of this concept, an injectable nanoliposomal formulation encapsulating fluocinolone acetonide (FA), a corticosteroid, is developed that allows for drug delivery to atherosclerotic plaques while reducing the systemic exposure to off-target tissues. In this study, FA is successfully incorporated into liposomal nanocarriers of around 100 nm in size with loading efficiency of 90% and the formulation exhibits sustained release up to 25 d. The anti-inflammatory effect and cholesterol efflux capability of FA-liposomes are demonstrated in vitro. In vivo studies carried out with an apolipoprotein E-knockout (Apoe-/- ) mouse model of atherosclerosis show accumulation of liposomes in atherosclerotic plaques, colocalization with plaque macrophages and anti-atherogenic effect over 3 weeks of treatment. This FA-liposomal-based nanocarrier represents a novel potent nanotherapeutic option for atherosclerosis.
Collapse
Affiliation(s)
- Anastasia Darwitan
- School of Materials Science & EngineeringNanyang Technological University Singapore 639798 Singapore
| | - Yee Shan Wong
- School of Materials Science & EngineeringNanyang Technological University Singapore 639798 Singapore
| | - Luong T. H. Nguyen
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State University Columbus OH 43210 USA
| | - Bertrand Czarny
- School of Materials Science & EngineeringNanyang Technological University Singapore 639798 Singapore
- Lee Kong Chian School of MedicineNanyang Technological University Singapore 636921 Singapore
| | - Anita Vincent
- School of Materials Science & EngineeringNanyang Technological University Singapore 639798 Singapore
| | - Anu Maashaa Nedumaran
- School of Materials Science & EngineeringNanyang Technological University Singapore 639798 Singapore
| | - Yang Fei Tan
- School of Materials Science & EngineeringNanyang Technological University Singapore 639798 Singapore
| | - Aristo Muktabar
- School of Materials Science & EngineeringNanyang Technological University Singapore 639798 Singapore
| | - Jin Kai Tang
- School of Materials Science & EngineeringNanyang Technological University Singapore 639798 Singapore
| | - Kee Woei Ng
- School of Materials Science & EngineeringNanyang Technological University Singapore 639798 Singapore
| | - Subbu Venkatraman
- Materials Science and EngineeringNational University of Singapore Singapore 117575 Singapore
| |
Collapse
|
17
|
Steffes VM, Zhang Z, MacDonald S, Crowe J, Ewert KK, Carragher B, Potter CS, Safinya CR. PEGylation of Paclitaxel-Loaded Cationic Liposomes Drives Steric Stabilization of Bicelles and Vesicles thereby Enhancing Delivery and Cytotoxicity to Human Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:151-162. [PMID: 31820904 PMCID: PMC6984750 DOI: 10.1021/acsami.9b16150] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Poly(ethylene glycol) (PEG) is a polymer used widely in drug delivery to create "stealth" nanoparticles (NPs); PEG coatings suppress NP detection and clearance by the immune system and beneficially increase NP circulation time in vivo. However, NP PEGylation typically obstructs cell attachment and uptake in vitro compared to the uncoated equivalent. Here, we report on a cationic liposome (CL) NP system loaded with the hydrophobic cancer drug paclitaxel (PTX) in which PEGylation (i.e., PEG-CLPTX NPs) unexpectedly enhances, rather than diminishes, delivery efficacy and cytotoxicity to human cancer cells. This highly unexpected enhancement occurs even when the PEG-chains coating the NP are in the transition regime between the mushroom and brush conformations. Cryogenic transmission electron microscopy (TEM) of PEG-CLPTX NPs shows that PEG causes the proliferation of a mixture of sterically stabilized nanometer-scale vesicles and anisotropic micelles (e.g., bicelles). Remarkably, the onset of bicelles at sub-monolayer concentrations of the PEG coat has to our knowledge not been previously reported; it was previously thought that PEG-lipid in this composition regime was incorporated into vesicles but did not alter their shape. Confocal microscopy and flow cytometry reveal significantly greater PTX cell uptake from stabilized PEG-CLPTX NPs (vesicles and bicelles) in contrast to bare CLPTX NPs, which can aggregate in cell medium. This underscores the ability of steric stabilization to facilitate NP entry into cells via distinct size-dependent endocytic pathways, some of which cannot transport large NP aggregates into cells. This study highlights the value of understanding how PEGylation alters NP shape and structure, and thus NP efficacy, to design next-generation stealth drug carriers that integrate active cell-targeting strategies into NPs for in vivo delivery.
Collapse
Affiliation(s)
- Victoria M. Steffes
- Materials Department, University of California, Santa Barbara, California 93106, USA
- Chemistry and Biochemistry Department, University of California, Santa Barbara, California 93106, USA
| | - Zhening Zhang
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
- Present Address: Biochemistry and Molecular Biophysics Department, Columbia University Medical Center, New York, NY 10032, USA
| | - Scott MacDonald
- Physics Department, University of California, Santa Barbara, California 93106, USA
| | - John Crowe
- Physics Department, University of California, Santa Barbara, California 93106, USA
| | - Kai K. Ewert
- Materials Department, University of California, Santa Barbara, California 93106, USA
| | - Bridget Carragher
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Clinton S. Potter
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Cyrus R. Safinya
- Materials Department, University of California, Santa Barbara, California 93106, USA
- Physics Department, University of California, Santa Barbara, California 93106, USA
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
18
|
Porras-Gomez M, Leal C. Lipid-based Liquid Crystalline Films and Solutions for the Delivery of Cargo to Cells. LIQUID CRYSTALS REVIEWS 2019; 7:167-182. [PMID: 31942262 PMCID: PMC6961842 DOI: 10.1080/21680396.2019.1666752] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/09/2019] [Indexed: 05/20/2023]
Abstract
A major challenge in the delivery of cargo (genes and/or drugs) to cells using nanostructured vehicles is the ability to safely penetrate plasma membranes by escaping the endosome before degradation, later releasing the payload into the cytoplasm or organelle of interest. Lipids are a class of bio-compatible molecules that self-assemble into a variety of liquid crystalline constructs. Most of these materials can be used to encapsulate drugs, proteins, and nucleic acids to deliver them safely into various cell types. Lipid phases offer a plethora of structures capable of forming complexes with biomolecules, most notably nucleic acids. The physichochemical characteristics of the lipid molecular building blocks, one might say the lipid primary structure, dictates how they collectively interact to assemble into various secondary structures. These include bilayers, lamellar stacks of bilayers, two-dimensional (2D) hexagonal arrays of lipid tubes, and even 3D cubic constructs. The liquid crystalline materials can be present in the form of aqueous suspensions, bulk materials or confined to a film configuration depending on the intended application (e.g. bolus vs surface-based delivery). This work compiles recent findings of different lipid-based liquid crystalline constructs both in films and particles for gene and drug delivery applications. We explore how lipid primary and secondary structures endow liquid crystalline materials with the ability to carry biomolecular cargo and interact with cells.
Collapse
Affiliation(s)
- Marilyn Porras-Gomez
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign. Urbana, IL 61801, USA
| | - Cecilia Leal
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign. Urbana, IL 61801, USA
| |
Collapse
|
19
|
Nik ME, Momtazi-Borojeni AA, Zamani P, Navashenaq JG, Iranshahi M, Jaafari MR, Malaekeh-Nikouei B. Targeted-nanoliposomal combretastatin A4 (CA-4) as an efficient antivascular candidate in the metastatic cancer treatment. J Cell Physiol 2019; 234:14721-14733. [PMID: 30697744 DOI: 10.1002/jcp.28230] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/03/2019] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
A number of antiangiogenic drugs have been approved by the Food and Drug Administration which are used in cancer therapy, and variety of other agents in several stages of clinical development or in preclinical assessment. Among these, combretastatin A4 (CA-4) is an under-researched inhibitor of angiogenesis that shows potential activity in the treatment of advanced tumors with migration capacity. However, its clinical application has been limited due to poor water solubility, low bioavailability, rapid metabolism, and systemic elimination. During the last decade, numerous investigations have been done to overcome these problems by using different CA-4 delivery systems or developing produgs of CA-4 or its structural analogs. Nevertheless, these strategies could not be efficient out of the undesired side effects on normal tissues. Nanoliposomal CA-4 not only benefits from the advantage of using liposomal drugs as opposed to free drugs but also can accumulate in the tumor site via specific targeting ligands, which leads to efficient targeting and enhancement of bioavailability. To the best of our knowledge, we consider an important attempt to understand different factors that might influence the CA-4 loading and release pattern of liposomes and the consequent results in tumor therapy. In this review, we shed light on various studied liposomal CA-4 formulations showing application thereof in cancer treatment.
Collapse
Affiliation(s)
- Maryam Ebrahimi Nik
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Abbas Momtazi-Borojeni
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Zamani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshid Gholizadeh Navashenaq
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Immunogenetic and Cell Culture, Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bizhan Malaekeh-Nikouei
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
Okamoto Y, Taguchi K, Sakuragi M, Imoto S, Yamasaki K, Otagiri M. Preparation, Characterization, and in Vitro/in Vivo Evaluation of Paclitaxel-Bound Albumin-Encapsulated Liposomes for the Treatment of Pancreatic Cancer. ACS OMEGA 2019; 4:8693-8700. [PMID: 31459959 PMCID: PMC6649292 DOI: 10.1021/acsomega.9b00537] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/09/2019] [Indexed: 05/28/2023]
Abstract
Paclitaxel (PTX)-loaded liposomes were developed with the goal of enhancing the effects of cancer treatment. Although loading substances into the lipid membrane of liposome cause some destabilization of the lipid membrane, PTX was nearly exclusively embedded in the lipid membrane of liposomes, due to its low water solubility. Hydrophobic drugs can be encapsulated into the inner core of bovine serum albumin (BSA)-encapsulated liposomes (BSA-liposome) via noncovalent binding to albumin. Since PTX is able to noncovalently bind to albumin, we attempted to prepare PTX-loaded BSA-liposome (PTX-BSA-liposome). The amount of PTX loaded in the BSA-liposome could be increased substantially by using ethanol, since ethanol increases PTX solubility in BSA solutions via prompting the binding PTX to BSA. On the basis of the results of transmission electron microscopy and small-angle X-ray scattering, PTX-BSA-liposome formed unilamellar vesicles that were spherical in shape and the PTX was encapsulated into the inner aqueous core of the liposome as a form of PTX-BSA complex. In addition, the PTX-BSA-liposome, as well as nab-PTX, showed cytotoxicity against human pancreatic cancer cells, AsPC-1 cells, in a PTX concentration-dependent manner. The in vivo antitumor effect of PTX-BSA-liposomes was also observed in a mouse model that had been subcutaneously inoculated with pancreatic cancer cells by virtue of its high accumulation at the tumor site via the enhanced permeability retention effect. These results suggest that PTX-BSA-liposomes have the potential for serving as a novel PTX preparation method for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Yuko Okamoto
- Faculty of Pharmaceutical Sciences, Department of Nanoscience, and DDS Research Institute, Sojo University, Kumamoto 860-0082, Japan
| | - Kazuaki Taguchi
- Faculty of Pharmaceutical Sciences, Department of Nanoscience, and DDS Research Institute, Sojo University, Kumamoto 860-0082, Japan
- Faculty
of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Mina Sakuragi
- Faculty of Pharmaceutical Sciences, Department of Nanoscience, and DDS Research Institute, Sojo University, Kumamoto 860-0082, Japan
| | - Shuhei Imoto
- Faculty of Pharmaceutical Sciences, Department of Nanoscience, and DDS Research Institute, Sojo University, Kumamoto 860-0082, Japan
| | - Keishi Yamasaki
- Faculty of Pharmaceutical Sciences, Department of Nanoscience, and DDS Research Institute, Sojo University, Kumamoto 860-0082, Japan
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Department of Nanoscience, and DDS Research Institute, Sojo University, Kumamoto 860-0082, Japan
| |
Collapse
|
21
|
Nanda B, Manjappa AS, Chuttani K, Balasinor NH, Mishra AK, Ramachandra Murthy RS. Acylated chitosan anchored paclitaxel loaded liposomes: Pharmacokinetic and biodistribution study in Ehrlich ascites tumor bearing mice. Int J Biol Macromol 2018; 122:367-379. [PMID: 30342146 DOI: 10.1016/j.ijbiomac.2018.10.071] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/04/2018] [Accepted: 10/14/2018] [Indexed: 10/28/2022]
Abstract
Acylated chitosan (Myristoyl and Octanoyl) coated paclitaxel-loaded liposomal formulation was developed with an aim to overcome the cremophor EL related toxicities. They were evaluated for drug entrapment, in vitro drug release, and cytotoxicity and cell uptake behavior using A549 cells. The 99mTc radio-labeled formulations were also evaluated in vivo in Ehrlich Ascites Tumor (EAT) bearing mice for biodistribution and tumor uptake. The mean particle size of both coated and uncoated liposomal formulations was found to be in the range of 180-200 nm with high drug entrapment efficiency (>90% in case of uncoated liposomes and 80 ± 5% in case of coated liposomes). The uncoated liposomes displayed negative zeta potential (-10.5 ± 4.9 mV) whereas coated liposomes displayed positive zeta potential in the range of +21 to +27 mV. Slower drug release was observed in case of liposomes coated with acylated chitosans as compared to uncoated and native chitosan coated liposomes. All liposomal formulations were found less cytotoxic than paclitaxel injection (Celtax™, Celon Labs, India). In vitro cell uptake and intracellular distribution studies confirmed the cytosolic delivery of uncoated and coated liposomes. The myristoyl chitosan coated liposomal system (LMC) exhibited improved pharmacokinetic, biodistribution and tumor uptake characteristics over other formulations. These obtained results confirmed the potential application of acylated chitosn coated liposomal delivery systems (LMC) in tumor targeting of paclitaxel and other drugs.
Collapse
Affiliation(s)
- Biswarup Nanda
- TIFAC Centre of Relevance and Excellence in NDDS, Pharmacy Department, Faculty of Technology & Engineering, The M.S. University of Baroda, Vadodara, India.
| | - A S Manjappa
- TIFAC Centre of Relevance and Excellence in NDDS, Pharmacy Department, Faculty of Technology & Engineering, The M.S. University of Baroda, Vadodara, India; Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra, India
| | - Krishna Chuttani
- Division of Radiopharmaceuticals & Radiation Biology, Institute of Nuclear Medicine and Allied Sciences, DRDO, New Delhi, India
| | - N H Balasinor
- Neuroendocrinology Department, National Institute for Research in Reproductive Health (ICMR), Mumbai, India
| | - Anil K Mishra
- Division of Radiopharmaceuticals & Radiation Biology, Institute of Nuclear Medicine and Allied Sciences, DRDO, New Delhi, India
| | - Rayasa S Ramachandra Murthy
- TIFAC Centre of Relevance and Excellence in NDDS, Pharmacy Department, Faculty of Technology & Engineering, The M.S. University of Baroda, Vadodara, India; Nanomedicine Centre, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
22
|
In vivo drug delivery efficiency of albumin-encapsulated liposomes as hydrophobic drug carriers. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
23
|
Monpara J, Kanthou C, Tozer GM, Vavia PR. Rational Design of Cholesterol Derivative for Improved Stability of Paclitaxel Cationic Liposomes. Pharm Res 2018. [PMID: 29520495 DOI: 10.1007/s11095-018-2367-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE This work explores synthesis of novel cholesterol derivative for the preparation of cationic liposomes and its interaction with Paclitaxel (PTX) within liposome membrane using molecular dynamic (MD) simulation and in-vitro studies. METHODS Cholesteryl Arginine Ethylester (CAE) was synthesized and characterized. Cationic liposomes were prepared using Soy PC (SPC) at a molar ratio of 77.5:15:7.5 of SPC/CAE/PTX. Conventional liposomes were composed of SPC/cholesterol/PTX (92:5:3 M ratio). The interaction between paclitaxel, ligand and the membrane was studied using 10 ns MD simulation. The interactions were studied using Differential Scanning Calorimetry (DSC) and Small Angle Neutron Scattering analysis. The efficacy of liposomes was evaluated by MTT assay and endothelial cell migration assay on different cell lines. The safety of the ligand was determined using the Comet Assay. RESULTS The cationic liposomes improved loading efficiency and stability compared to conventional liposomes. The increased PTX loading could be attributed to the hydrogen bond between CAE and PTX and deeper penetration of PTX in the bilayer. The DSC study suggested that inclusion of CAE in the DPPC bilayer eliminates Tg. SANS data showed that CAE has more pronounced membrane thickening effect as compared to cholesterol. The cationic liposomes showed slightly improved cytotoxicity in three different cell lines and improved endothelial cell migration inhibition compared to conventional liposomes. Furthermore, the COMET assay showed that CAE alone does not show any genotoxicity. CONCLUSIONS The novel cationic ligand (CAE) retains paclitaxel within the phospholipid bilayer and helps in improved drug loading and physical stability. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Jasmin Monpara
- Department of Pharmaceutical Sciences and Technology, University under Section 3 of UGC Act - 1956, Elite Status and Center of Excellence - Govt. of Maharashtra, TEQIP Phase II Funded, Institute of Chemical Technology, Mumbai, 400019, India
| | - Chryso Kanthou
- Tumor Microcirculation Group, Department of Oncology & Metabolism School of Medicine, The University of Sheffield, Sheffield, UK
| | - Gillian M Tozer
- Tumor Microcirculation Group, Department of Oncology & Metabolism School of Medicine, The University of Sheffield, Sheffield, UK
| | - Pradeep R Vavia
- Department of Pharmaceutical Sciences and Technology, University under Section 3 of UGC Act - 1956, Elite Status and Center of Excellence - Govt. of Maharashtra, TEQIP Phase II Funded, Institute of Chemical Technology, Mumbai, 400019, India.
| |
Collapse
|
24
|
Bhatt P, Lalani R, Vhora I, Patil S, Amrutiya J, Misra A, Mashru R. Liposomes encapsulating native and cyclodextrin enclosed paclitaxel: Enhanced loading efficiency and its pharmacokinetic evaluation. Int J Pharm 2018; 536:95-107. [DOI: 10.1016/j.ijpharm.2017.11.048] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 11/02/2017] [Accepted: 11/21/2017] [Indexed: 01/06/2023]
|
25
|
Steffes VM, Murali MM, Park Y, Fletcher BJ, Ewert KK, Safinya CR. Distinct solubility and cytotoxicity regimes of paclitaxel-loaded cationic liposomes at low and high drug content revealed by kinetic phase behavior and cancer cell viability studies. Biomaterials 2017; 145:242-255. [PMID: 28889081 PMCID: PMC5610109 DOI: 10.1016/j.biomaterials.2017.08.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 07/19/2017] [Accepted: 08/14/2017] [Indexed: 01/20/2023]
Abstract
Lipid-based particles are used worldwide in clinical trials as carriers of hydrophobic paclitaxel (PTXL) for cancer chemotherapy, albeit with little improvement over the standard-of-care. Improving efficacy requires an understanding of intramembrane interactions between PTXL and lipids to enhance PTXL solubilization and suppress PTXL phase separation into crystals. We studied the solubility of PTXL in cationic liposomes (CLs) composed of positively charged 2,3-dioleyloxypropyltrimethylammonium chloride (DOTAP) and neutral 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) as a function of PTXL membrane content and its relation to efficacy. Time-dependent kinetic phase diagrams were generated from observations of PTXL crystal formation by differential-interference-contrast microscopy. Furthermore, a new synchrotron small-angle x-ray scattering in situ methodology applied to DOTAP/DOPC/PTXL membranes condensed with DNA enabled us to detect the incorporation and time-dependent depletion of PTXL from membranes by measurements of variations in the membrane interlayer and DNA interaxial spacings. Our results revealed three regimes with distinct time scales for PTXL membrane solubility: hours for >3 mol% PTXL (low), days for ≈ 3 mol% PTXL (moderate), and ≥20 days for < 3 mol% PTXL (long-term). Cell viability experiments on human cancer cell lines using CLPTXL nanoparticles (NPs) in the distinct CLPTXL solubility regimes reveal an unexpected dependence of efficacy on PTXL content in NPs. Remarkably, formulations with lower PTXL content and thus higher stability show higher efficacy than those formulated at the membrane solubility limit of ≈3 mol% PTXL (which has been the focus of most previous physicochemical studies and clinical trials of PTXL-loaded CLs). Furthermore, an additional high-efficacy regime is seen on occasion for liposome compositions with PTXL ≥9 mol% applied to cells at short time scales (hours) after formation. At longer time scales (days), CLPTXL NPs with ≥3 mol% PTXL lose efficacy while formulations with 1-2 mol% PTXL maintain high efficacy. Our findings underscore the importance of understanding the relationship of the kinetic phase behavior and physicochemical properties of CLPTXL NPs to efficacy.
Collapse
Affiliation(s)
- Victoria M Steffes
- Chemistry and Biochemistry Department, University of California, Santa Barbara, CA 93106, USA; Materials Department, University of California, Santa Barbara, CA 93106, USA
| | - Meena M Murali
- Materials Department, University of California, Santa Barbara, CA 93106, USA
| | - Yoonsang Park
- Materials Department, University of California, Santa Barbara, CA 93106, USA
| | - Bretton J Fletcher
- Materials Department, University of California, Santa Barbara, CA 93106, USA
| | - Kai K Ewert
- Materials Department, University of California, Santa Barbara, CA 93106, USA
| | - Cyrus R Safinya
- Materials Department, University of California, Santa Barbara, CA 93106, USA; Physics Department, University of California, Santa Barbara, CA 93106, USA; Molecular, Cellular & Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
26
|
Wei Y, Wang Y, Xia D, Guo S, Wang F, Zhang X, Gan Y. Thermosensitive Liposomal Codelivery of HSA-Paclitaxel and HSA-Ellagic Acid Complexes for Enhanced Drug Perfusion and Efficacy Against Pancreatic Cancer. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25138-25151. [PMID: 28696100 DOI: 10.1021/acsami.7b07132] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fibrotic stroma and tumor-promoting pancreatic stellate cells (PSCs), critical characters in the pancreatic ductal adenocarcinoma (PDA) microenvironment, promote a tumor-facilitating environment that simultaneously prevents drug penetration into tumor foci and stimulates tumor growth. Nab-PTX, a human serum albumin (HSA) nanoparticle of paclitaxel (PTX), indicates enhanced matrix penetration in PDA probably due to its small size in vivo and high affinity of HSA with secreted protein acidic and rich in cysteine (SPARC), overexpressed in the PDA stroma. However, this HSA nanoparticle shows poor drug blood retention because of its weak colloidal stability in vivo, thus resulting in insufficient drug accumulation within tumor. Encapsulating HSA nanoparticles into the internal aqueous phase of ordinary liposomes improves their blood retention and the following tumor accumulation, but the large 200 nm size and shielding of HSA in the interior might make it difficult for this hybrid nanomedicine to penetrate the fibrotic PDA matrix and promote bioavailability of the payload. In our current work, we prepared ∼9 nm HSA complexes with an antitumor drug (PTX) and an anti-PSC drug (ellagic acid, EA), and these two HSA-drug complexes were further coencapsulated into thermosensitive liposomes (TSLs). This nanomedicine was named TSL/HSA-PE. The use of TSL/HSA-PE could improve drug blood retention, and upon reaching locally heated tumors, these TSLs can rapidly release their payloads (HSA-drug complexes) to facilitate their further tumor accumulation and matrix penetration. With superior tumor accumulation, impressive matrix penetration, and simultaneous action upon tumor cells and PSCs to disrupt PSCs-PDA interaction, TSL/HSA-PE treatment combined with heat exhibited strong tumor growth inhibition and apoptosis in vivo.
Collapse
Affiliation(s)
- Yan Wei
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Haike Road, Shanghai 201203, China
| | - Yuxi Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Haike Road, Shanghai 201203, China
- Nano Science and Technology Institute, University of Science and Technology of China , 166 Renai Road, Suzhou, Jiangsu 215123, China
| | - Dengning Xia
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Haike Road, Shanghai 201203, China
| | - Shiyan Guo
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Haike Road, Shanghai 201203, China
| | - Feng Wang
- Shanghai Institute of Pharmaceutical Industry , 285 Gebaini Road, Shanghai 201203, China
| | - Xinxin Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Haike Road, Shanghai 201203, China
| | - Yong Gan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Haike Road, Shanghai 201203, China
| |
Collapse
|
27
|
Biophysics in cancer: The relevance of drug-membrane interaction studies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2231-2244. [DOI: 10.1016/j.bbamem.2016.06.025] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/31/2016] [Accepted: 06/26/2016] [Indexed: 12/26/2022]
|
28
|
Molinaro R, Corbo C, Martinez JO, Taraballi F, Evangelopoulos M, Minardi S, Yazdi I, Zhao P, De Rosa E, Sherman M, De Vita A, Furman NT, Wang X, Parodi A, Tasciotti E. Biomimetic proteolipid vesicles for targeting inflamed tissues. NATURE MATERIALS 2016; 15:1037-46. [PMID: 27213956 PMCID: PMC5127392 DOI: 10.1038/nmat4644] [Citation(s) in RCA: 301] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 04/13/2016] [Indexed: 05/13/2023]
Abstract
A multitude of micro- and nanoparticles have been developed to improve the delivery of systemically administered pharmaceuticals, which are subject to a number of biological barriers that limit their optimal biodistribution. Bioinspired drug-delivery carriers formulated by bottom-up or top-down strategies have emerged as an alternative approach to evade the mononuclear phagocytic system and facilitate transport across the endothelial vessel wall. Here, we describe a method that leverages the advantages of bottom-up and top-down strategies to incorporate proteins derived from the leukocyte plasma membrane into lipid nanoparticles. The resulting proteolipid vesicles-which we refer to as leukosomes-retained the versatility and physicochemical properties typical of liposomal formulations, preferentially targeted inflamed vasculature, enabled the selective and effective delivery of dexamethasone to inflamed tissues, and reduced phlogosis in a localized model of inflammation.
Collapse
Affiliation(s)
- R. Molinaro
- Department of Regenerative Medicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - C. Corbo
- Department of Regenerative Medicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
- EINGE–Biotecnologie Avanzate s.c.a.r.l., Via G. Salvatore 486, 80145 Naples, Italy
- IRCCS SDN, Via Gianturco 113, 80143 Naples, Italy
| | - J. O. Martinez
- Department of Regenerative Medicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - F. Taraballi
- Department of Regenerative Medicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
- Pain Therapy Service, Fondazione IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | - M. Evangelopoulos
- Department of Regenerative Medicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - S. Minardi
- Department of Regenerative Medicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - I.K. Yazdi
- Department of Regenerative Medicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - P. Zhao
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - E. De Rosa
- Department of Regenerative Medicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - M. Sherman
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555
| | - A. De Vita
- Osteoncology and Rare Tumors Center, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Meldola, Italy
| | - N.E. Toledano Furman
- Department of Regenerative Medicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - X. Wang
- Department of Regenerative Medicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - A. Parodi
- Department of Regenerative Medicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
- IRCCS SDN, Via Gianturco 113, 80143 Naples, Italy
| | - E. Tasciotti
- Department of Regenerative Medicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
- To whom correspondence should be addressed: Dr. Ennio Tasciotti, Department of Regenerative Medicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030,
| |
Collapse
|
29
|
Membrane Interactions of Phytochemicals as Their Molecular Mechanism Applicable to the Discovery of Drug Leads from Plants. Molecules 2015; 20:18923-66. [PMID: 26501254 PMCID: PMC6332185 DOI: 10.3390/molecules201018923] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/11/2015] [Accepted: 10/14/2015] [Indexed: 02/02/2023] Open
Abstract
In addition to interacting with functional proteins such as receptors, ion channels, and enzymes, a variety of drugs mechanistically act on membrane lipids to change the physicochemical properties of biomembranes as reported for anesthetic, adrenergic, cholinergic, non-steroidal anti-inflammatory, analgesic, antitumor, antiplatelet, antimicrobial, and antioxidant drugs. As well as these membrane-acting drugs, bioactive plant components, phytochemicals, with amphiphilic or hydrophobic structures, are presumed to interact with biological membranes and biomimetic membranes prepared with phospholipids and cholesterol, resulting in the modification of membrane fluidity, microviscosity, order, elasticity, and permeability with the potencies being consistent with their pharmacological effects. A novel mechanistic point of view of phytochemicals would lead to a better understanding of their bioactivities, an insight into their medicinal benefits, and a strategic implication for discovering drug leads from plants. This article reviews the membrane interactions of different classes of phytochemicals by highlighting their induced changes in membrane property. The phytochemicals to be reviewed include membrane-interactive flavonoids, terpenoids, stilbenoids, capsaicinoids, phloroglucinols, naphthodianthrones, organosulfur compounds, alkaloids, anthraquinonoids, ginsenosides, pentacyclic triterpene acids, and curcuminoids. The membrane interaction’s applicability to the discovery of phytochemical drug leads is also discussed while referring to previous screening and isolating studies.
Collapse
|
30
|
Alsop RJ, Armstrong CL, Maqbool A, Toppozini L, Dies H, Rheinstädter MC. Cholesterol expels ibuprofen from the hydrophobic membrane core and stabilizes lamellar phases in lipid membranes containing ibuprofen. SOFT MATTER 2015; 11:4756-4767. [PMID: 25915907 DOI: 10.1039/c5sm00597c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
There is increasing evidence that common drugs, such as aspirin and ibuprofen, interact with lipid membranes. Ibuprofen is one of the most common over the counter drugs in the world, and is used for relief of pain and fever. It interacts with the cyclooxygenase pathway leading to inhibition of prostaglandin synthesis. From X-ray diffraction of highly oriented model membranes containing between 0 and 20 mol% ibuprofen, 20 mol% cholesterol, and dimyristoylphosphatidylcholine (DMPC), we present evidence for a non-specific interaction between ibuprofen and cholesterol in lipid bilayers. At a low ibuprofen concentrations of 2 mol%, three different populations of ibuprofen molecules were found: two in the lipid head group region and one in the hydrophobic membrane core. At higher ibuprofen concentrations of 10 and 20 mol%, the lamellar bilayer structure is disrupted and a lamellar to cubic phase transition was observed. In the presence of 20 mol% cholesterol, ibuprofen (at 5 mol%) was found to be expelled from the membrane core and reside solely in the head group region of the bilayers. 20 mol% cholesterol was found to stabilize lamellar membrane structure and the formation of a cubic phase at 10 and 20 mol% ibuprofen was suppressed. The results demonstrate that ibuprofen interacts with lipid membranes and that the interaction is strongly dependent on the presence of cholesterol.
Collapse
Affiliation(s)
- Richard J Alsop
- Department of Physics and Astronomy, McMaster University, ABB-241, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada.
| | | | | | | | | | | |
Collapse
|
31
|
Liposomes as multicompartmental carriers for multidrug delivery in anticancer chemotherapy. Drug Deliv Transl Res 2015; 1:66-75. [PMID: 25787890 DOI: 10.1007/s13346-010-0007-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A new PEGylated liposomal formulation containing both gemcitabine (GEM) and paclitaxel (PTX) was investigated in order to realize an innovative multidrug carrier (MDC) to test on human cancer cells. The MDC in question was realized by the liposome extrusion method. Photocorrelation spectroscopy was used for the physicochemical characterization of the vesicular carriers. In vitro cytotoxicity was studied through MTT testing. The contemporary presence of the two antitumoral compounds induced no destabilization phenomena in the liposomal structure. The extrusion method provided vesicles with mean sizes of ∼100 nm and a zeta-potential of ∼ -10 mV. The liposomal MDC showed a high drug loading capacity (∼90% and ∼80% for GEM and PTX, respectively) as well as a controlled release of the active compounds over a 24-h period. Cell viability testing on Michigan Cancer Foundation-7 human breast cancer cells evidenced the MDC as having a stronger cytotoxic effect with respect to the active compounds tested in free and liposomal formulations, both as single molecules and in association. Flow cytometry furnished evidence of the synergistic in vitro antitumoral action between the GEM and PTX co-encapsulated the liposomal MDC. This formulation may offer even more advantages in in vivo testing in terms of drug pharmacokinetic, biodistribution, and antitumoral efficacy for the treatment of breast cancer, as compared to past formulations.
Collapse
|
32
|
Hong SS, Kim SH, Lim SJ. Effects of triglycerides on the hydrophobic drug loading capacity of saturated phosphatidylcholine-based liposomes. Int J Pharm 2015; 483:142-50. [PMID: 25667981 DOI: 10.1016/j.ijpharm.2015.02.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/28/2015] [Accepted: 02/06/2015] [Indexed: 10/24/2022]
Abstract
A high drug-loading capacity is a critical factor for the clinical development of liposomal formulations. The accommodation of hydrophobic drugs within the liposomal membrane is often limited in saturated phosphatidylcholine (PC)-based liposomes owing to the rigidity of the lipid acyl chain. In the current study, we explored the possibility of improving the hydrophobic drug loading capacity of liposomes by incorporating triglyceride into liposomal membranes. Incorporation of Captex 300, a medium chain triglyceride, into liposomes composed of dimyristoylphosphatidylcholine and cholesterol greatly increased the fluidity and lamellarity of the resultant liposomes. Liposomal incorporation of medium or long chain, but not short chain, triglycerides greatly enhanced the concentration of loaded paclitaxel (PTX) in saturated PC-based liposomes. The enhancing effect of triglyceride saturated at a triglyceride content corresponding to the amount required to fluidize the liposome structure. In addition, the enhancing effect was not observed in unsaturated PC-based liposomes and was not associated with the solubility of PTX in each triglyceride. Triglycerides also enhanced the loading of docetaxel, another hydrophobic drug. Taken together, our results suggest that triglyceride incorporation in saturated PC-based liposomes provide an improved dosage form that enables increased hydrophobic drug loading by altering the fluidity and structure of liposomal membranes.
Collapse
Affiliation(s)
- Soon-Seok Hong
- Department of Bioscience and Bioengineering, Institute of Bioscience, 98 Kunja-dong, Kwangjin-gu, Sejong University, Seoul, Republic of Korea
| | - So Hee Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, Republic of Korea.
| | - Soo-Jeong Lim
- Department of Bioscience and Bioengineering, Institute of Bioscience, 98 Kunja-dong, Kwangjin-gu, Sejong University, Seoul, Republic of Korea.
| |
Collapse
|
33
|
Gortzi O, Rovoli M, Lalas S, Kontopidis G. Development and Evaluation of a Phospholipid-sterol-protein Membrane Resembling System. FOOD BIOPHYS 2015. [DOI: 10.1007/s11483-015-9390-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
34
|
Kannan V, Balabathula P, Divi MK, Thoma LA, Wood GC. Optimization of drug loading to improve physical stability of paclitaxel-loaded long-circulating liposomes. J Liposome Res 2014; 25:308-15. [PMID: 25541107 DOI: 10.3109/08982104.2014.995671] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The effect of formulation and process parameters on drug loading and physical stability of paclitaxel-loaded long-circulating liposomes was evaluated. The liposomes were prepared by hydration-extrusion method. The formulation parameters such as total lipid content, cholesterol content, saturated-unsaturated lipid ratio, drug-lipid ratio and process parameters such as extrusion pressure and number of extrusion cycles were studied and their impact on drug loading and physical stability was evaluated. A proportionate increase in drug loading was observed with increase in the total phospholipid content. Cholesterol content and saturated lipid content in the bilayer showed a negative influence on drug loading. The short-term stability evaluation of liposomes prepared with different drug-lipid ratios demonstrated that 1:60 as the optimum drug-lipid ratio to achieve a loading of 1-1.3 mg/mL without the risk of physical instability. The vesicle size decreased with an increase in the extrusion pressure and number of extrusion cycles, but no significant trends were observed for drug loading with changes in process pressure or number of cycles. The optimization of formulation and process parameters led to a physically stable formulation of paclitaxel-loaded long-circulating liposomes that maintain size, charge and integrity during storage.
Collapse
Affiliation(s)
- Vinayagam Kannan
- a Department of Pharmaceutical Sciences , The University of Tennessee Health Science Center , Memphis , TN , USA and
| | - Pavan Balabathula
- a Department of Pharmaceutical Sciences , The University of Tennessee Health Science Center , Memphis , TN , USA and.,b Plough Center for Sterile Drug Delivery, The University of Tennessee Health Science Center , Memphis , TN , USA
| | - Murali K Divi
- a Department of Pharmaceutical Sciences , The University of Tennessee Health Science Center , Memphis , TN , USA and
| | - Laura A Thoma
- a Department of Pharmaceutical Sciences , The University of Tennessee Health Science Center , Memphis , TN , USA and.,b Plough Center for Sterile Drug Delivery, The University of Tennessee Health Science Center , Memphis , TN , USA
| | - George C Wood
- a Department of Pharmaceutical Sciences , The University of Tennessee Health Science Center , Memphis , TN , USA and
| |
Collapse
|
35
|
Liu Y, Fang J, Kim YJ, Wong MK, Wang P. Codelivery of doxorubicin and paclitaxel by cross-linked multilamellar liposome enables synergistic antitumor activity. Mol Pharm 2014; 11:1651-61. [PMID: 24673622 PMCID: PMC4018157 DOI: 10.1021/mp5000373] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
![]()
Combining
chemotherapeutics is a promising method of improving
cancer treatment; however, the clinical success of combination therapy
is limited by the distinct pharmacokinetics of combined drugs, which
leads to nonuniform distribution. In this study, we report a new robust
approach to load two drugs with different hydrophilicities into a
single cross-linked multilamellar liposomal vesicle (cMLV) to precisely
control the drug ratio that reaches the tumor in vivo. The stability of cMLVs improves the loading efficiency and sustained
release of doxorubicin (Dox) and paclitaxel (PTX), maximizing the
combined therapeutic effect and minimizing the systemic toxicity.
Furthermore, we show that the cMLV formulation maintains specific
drug ratios in vivo for over 24 h, enabling the ratio-dependent
combination synergy seen in vitro to translate to in vivo antitumor activity and giving us control over another
parameter important to combination therapy. This combinatorial delivery
system may provide a new strategy for synergistic delivery of multiple
chemotherapeutics with a ratiometric control over encapsulated drugs
to treat cancer and other diseases.
Collapse
Affiliation(s)
- Yarong Liu
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California , Los Angeles, California 90089, United States
| | | | | | | | | |
Collapse
|
36
|
Natarajan JV, Darwitan A, Barathi VA, Ang M, Htoon HM, Boey F, Tam KC, Wong TT, Venkatraman SS. Sustained drug release in nanomedicine: a long-acting nanocarrier-based formulation for glaucoma. ACS NANO 2014; 8:419-429. [PMID: 24392729 DOI: 10.1021/nn4046024] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Therapeutic nanomedicine has concentrated mostly on anticancer therapy by making use of the nanosize for targeted therapy. Such nanocarriers are not expected to have sustained release of the bioactive molecule beyond a few days. There are other conditions where patients can benefit from sustained duration of action following a single instillation, but achieving this has been difficult in nanosized carriers. An important prerequisite for sustained delivery over several months is to have sufficiently high drug loading, without disruption or changes to the shape of the nanocarriers. Here we report on successful development of a drug-encapsulated nanocarrier for reducing intraocular pressure in a diseased nonhuman primate model and explain why it has been possible to achieve sustained action in vivo. The drug is a prostaglandin derivative, latanoprost, while the carrier is a nanosized unilamellar vesicle. The mechanistic details of this unique drug-nanocarrier combination were elucidated by isothermal titration calorimetry. We show, using Cryo-TEM and dynamic light scattering, that the spherical shape of the liposomes is conserved even at the highest loading of latanoprost and that specific molecular interactions between the drug and the lipid are the reasons behind improved stability and sustained release. The in vivo results clearly attest to sustained efficacy of lowering the intraocular pressure for 120 days, making this an excellent candidate to be the first truly sustained-release nanomedicine product. The mechanistic details we have uncovered should enable development of similar systems for other conditions where sustained release from nanocarriers is desired.
Collapse
Affiliation(s)
- Jayaganesh V Natarajan
- School of Materials Science and Engineering, Nanyang Technological University , Blk N4.1, Nanyang Avenue, Singapore 639798
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Koudelka S, Turánek J. Liposomal paclitaxel formulations. J Control Release 2012; 163:322-34. [PMID: 22989535 DOI: 10.1016/j.jconrel.2012.09.006] [Citation(s) in RCA: 241] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 09/04/2012] [Accepted: 09/07/2012] [Indexed: 01/25/2023]
Abstract
Over the past three decades, taxanes represent one of the most important new classes of drugs approved in oncology. Paclitaxel (PTX), the prototype of this class, is an anti-cancer drug approved for the treatment of breast and ovarian cancer. However, notwithstanding a suitable premedication, present-day chemotherapy employing a commercial preparation of PTX (Taxol®) is associated with serious side effects and hypersensitivity reactions. Liposomes represent advanced and versatile delivery systems for drugs. Generally, both in vivo mice tumor models and human clinical trials demonstrated that liposomal PTX formulations significantly increase a maximum tolerated dose (MTD) of PTX which outperform that for Taxol®. Liposomal PTX formulations are in various stages of clinical trials. LEP-ETU (NeoPharm) and EndoTAG®-1 (Medigene) have reached the phase II of the clinical trials; Lipusu® (Luye Pharma Group) has already been commercialized. Present achievements in the preparation of various liposomal formulations of PTX, the development of targeted liposomal PTX systems and the progress in clinical testing of liposomal PTX are discussed in this review summarizing about 30 years of liposomal PTX development.
Collapse
Affiliation(s)
- Stěpán Koudelka
- Department of Toxicology, Pharmacology and Immunotherapy, Veterinary Research Institute, Brno, Czech Republic
| | | |
Collapse
|
39
|
Ikeuchi R, Iwasaki Y. High mineral affinity of polyphosphoester ionomer-phospholipid vesicles. J Biomed Mater Res A 2012; 101:318-25. [PMID: 22829566 DOI: 10.1002/jbm.a.34321] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 05/07/2012] [Accepted: 06/20/2012] [Indexed: 12/19/2022]
Abstract
Bone-specific drug delivery is important for the treatment of osteoporosis and osseous metastases. However, there have been limitations in the design of drug carriers having bone affinity. We synthesized amphiphilic polyphosphoester ionomers (CH-PHE) and modified them to 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) vesicles. The ζ-potential of the vesicles was decreased by immobilization of CH-PHE; the amount was influenced by the structure and fraction of CH-PHE. The release rate of 5-carboxyfluorescein from the vesicles could be controlled by changing the fraction of DOPC and CH-PHE. In particular, the release of CF from DOPC vesicles containing 3% CH-PHE was most reduced. In addition, the enzymatic degradation of DOPC was reduced by immobilization with polyphosphoester ionomers; enzyme tolerance was increased with an increase in the molar fraction of polyphosphoester ionomers. Hemolytic activity of the phospholipid vesicles bearing CH-PHE was infrequently observed and was similar to that of the DOPC vesicles. Although a decrease in the viability of mouse osteoblastic cells (MC3T3-E1) in contact with the vesicles bearing CH-PHE was observed when the DOPC concentration of the vesicles bearing 20 mol % CH-PHE with highly ionized units was greater than 200 μM, the cytotoxicity was diminished by sodium salt formation of the CH-PHE. The affinity of the vesicles to calcium deposits generated by MC3T3-E1 cells was significantly improved by the immobilization polyphosphoesters.
Collapse
Affiliation(s)
- Ryota Ikeuchi
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka, Japan
| | | |
Collapse
|
40
|
Banerjee S, Pal TK, Guha SK. Probing molecular interactions of poly(styrene-co-maleic acid) with lipid matrix models to interpret the therapeutic potential of the co-polymer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:537-50. [DOI: 10.1016/j.bbamem.2011.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 11/18/2011] [Accepted: 12/08/2011] [Indexed: 10/14/2022]
|
41
|
Natarajan JV, Ang M, Darwitan A, Chattopadhyay S, Wong TT, Venkatraman SS. Nanomedicine for glaucoma: liposomes provide sustained release of latanoprost in the eye. Int J Nanomedicine 2012; 7:123-31. [PMID: 22275828 PMCID: PMC3260956 DOI: 10.2147/ijn.s25468] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Indexed: 11/23/2022] Open
Abstract
Purpose: To report the development and therapeutic evaluation of a liposomal nanocarrier for sustained release of latanoprost, in the rabbit eye. Methods: We fabricated latanoprost-loaded egg-phosphatidylcholine (EggPC) liposomes using the film hydration technique. The delivery vehicles were nano-sized (Z avg = 109 ± 18 nm), had a narrow poly dispersity index (PDI = 0.19 ± 0.04), and a very high loading efficiency (94% ± 5%). Based on in vitro data, we evaluated this formulation for lowering intraocular pressure (IOP) in rabbit eyes. Following a single subconjunctival injection of the latanoprost loaded formulation, the eyes were clinically monitored and the IOP recorded. Results: Latanoprost-loaded EggPC liposomes demonstrated a high drug/lipid mole ratio of 0.181, remained stable for at least 6 months on storage (4°C), and at least 1 month at 25°C. A slow and sustained release of 60% of latanoprost was achieved by 14 days in the in vitro release study. The same formulation demonstrated a greater sustained IOP lowering effect compared with daily administration of topical latanoprost beyond 90 days (4.8 ± 1.5 vs 2.5 ± 0.9 mmHg; P < 0.001). No signs of inflammation were evident in the eyes from slit-lamp examination analysis. Conclusion: The loading required for a long-term sustained delivery of latanoprost for up to 90 days in the rabbit eyes was achieved with EggPC liposomes. A single injection of latanoprost-loaded EggPC liposomes can lower the IOP for up to 90 days, with a greater IOP lowering effect than daily topical administration of latanoprost.
Collapse
|
42
|
|
43
|
Heney M, Alipour M, Vergidis D, Omri A, Mugabe C, Th'ng J, Suntres Z. Effectiveness of liposomal paclitaxel against MCF-7 breast cancer cells. Can J Physiol Pharmacol 2011; 88:1172-80. [PMID: 21164564 DOI: 10.1139/y10-097] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Paclitaxel is an effective chemotherapeutic agent that is widely used for the treatment of several cancers, including breast, ovarian, and non-small-cell lung cancer. Due to its high lipophilicity, paclitaxel is difficult to administer and requires solubilization with Cremophor EL (polyethoxylated castor oil) and ethanol, which often lead to adverse side effects, including life-threatening anaphylaxis. Incorporation of paclitaxel in dimyristoylphosphatidylcholine:dimyristoylphosphatidylglycerol (DPPC:DMPG) liposomes can facilitate its delivery to cancer cells and eliminate the adverse reactions associated with the Cremophor EL vehicle. Accordingly, the effectiveness of liposomal paclitaxel on MCF-7 breast cancer cells was examined. The results from this study showed that (i) the lipid components of the liposomal formulation were nontoxic, (ii) the cytotoxic effects of liposomal paclitaxel were improved when compared with those seen with conventional paclitaxel, and (iii) the intracellular paclitaxel levels were higher in MCF-7 cells treated with the liposomal paclitaxel formulation. The results of these studies showed that delivery of paclitaxel as a liposomal formulation could be a promising strategy for enhancing its chemotherapeutic effects.
Collapse
Affiliation(s)
- Melanie Heney
- Department of Biology, Lakehead University, Thunder Bay, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
44
|
A liposomal formulation able to incorporate a high content of Paclitaxel and exert promising anticancer effect. JOURNAL OF DRUG DELIVERY 2010; 2011:629234. [PMID: 21490755 PMCID: PMC3065869 DOI: 10.1155/2011/629234] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 09/14/2010] [Accepted: 09/17/2010] [Indexed: 11/17/2022]
Abstract
A liposome formulation for paclitaxel was developed in this study. The liposomes, composed of naturally unsaturated and hydrogenated phosphatidylcholines, with significant phase transition temperature difference, were prepared and characterized. The liposomes exhibited a high content of paclitaxel, which was incorporated within the segregated microdomains coexisting on phospholipid bilayer of liposomes. As much as 15% paclitaxel to phospholipid molar ratio were attained without precipitates observed during preparation. In addition, the liposomes remained stable in liquid form at 4°C for at least 6 months. The special composition of liposomal membrane which could reduce paclitaxel aggregation could account for such a capacity and stability. The cytotoxicity of prepared paclitaxel liposomes on the colon cancer C-26 cell culture was comparable to Taxol. Acute toxicity test revealed that LD50 for intravenous bolus injection in mice exceeded by 40 mg/kg. In antitumor efficacy study, the prepared liposomal paclitaxel demonstrated the increase in the efficacy against human cancer in animal model. Taken together, the novel formulated liposomes can incorporate high content of paclitaxel, remaining stable for long-term storage. These animal data also demonstrate that the liposomal paclitaxel is promising for further clinical use.
Collapse
|
45
|
Ren CL, Ma YQ. Structure and organization of nanosized-inclusion-containing bilayer membranes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:011910. [PMID: 19658732 DOI: 10.1103/physreve.80.011910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Revised: 05/11/2009] [Indexed: 05/28/2023]
Abstract
Based on a considerable amount of experimental evidence for lateral organization of lipid membranes which share astonishingly similar features in the presence of different inclusions, we use a hybrid self-consistent field theory (SCFT)/density-functional theory (DFT) approach to deal with bilayer membranes embedded by nanosized inclusions and explain experimental findings. Here, the hydrophobic inclusions are simple models of hydrophobic drugs or other nanoparticles for biomedical applications. It is found that lipid/inclusion-rich domains are formed at moderate inclusion concentrations and disappear with the increase in the concentration of inclusions. At high inclusion content, chaining of inclusions occurs due to the effective depletion attraction between inclusions mediated by lipids. Meanwhile, the increase in the concentration of inclusions can also cause thickening of the membrane and the distribution of inclusions undergoes a layering transition from one-layer structure located in the bilayer midplane to two-layer structure arranged into the two leaflets of a bilayer. Our theoretical predictions address the complex interactions between membranes and inclusions suggesting a unifying mechanism which reflects the competition between the conformational entropy of lipids favoring the formation of lipid- and inclusion-rich domains in lipids and the steric repulsion of inclusions leading to the uniform dispersion.
Collapse
Affiliation(s)
- Chun-lai Ren
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China.
| | | |
Collapse
|
46
|
Fernández-Botello A, Comelles F, Alsina MA, Cea P, Reig F. A monolayer study on interactions of docetaxel with model lipid membranes. J Phys Chem B 2008; 112:13834-41. [PMID: 18844394 DOI: 10.1021/jp806423k] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Docetaxel (DCT) is an antineoplastic drug for the treatment of a wide spectrum of cancers. DCT surface properties as well as miscibility studies with l-alpha-dipalmitoyl phosphatidylcholine (DPPC), which constitutes the main component of biological membranes, are comprehensively described in this contribution. Penetration studies have revealed that when DCT is injected under DPPC monolayers compressed to different surface pressures, it penetrates into the lipid monolayer promoting an increase in the surface pressure. DCT is a surface active molecule able to decrease the surface tension of water and to form insoluble films when spread on aqueous subphases. The maximum surface pressure reached after compression of a DCT Langmuir film was 13 mN/m. Miscibility of DPPC and DCT in Langmuir films has been studied by means of thermodynamic properties as well as by Brewster angle microscopy (BAM) analysis of the mixed films at the air-water interface, concluding that DPPC and DCT are miscible and they form non-ideally mixed monolayers at the air-water interface. Helmholtz energies of mixing revealed that no phase separation occurs. In addition, Helmholtz energies of mixing become more negative with decreasing areas per molecule, which suggests that the stability of the mixed monolayers increases as the monolayers become more condensed. Compressibility values together with BAM images indicate that DCT has a fluidizing effect on DPPC monolayers.
Collapse
Affiliation(s)
- Alfonso Fernández-Botello
- Peptides Department and Surfactant Department, Institute for Chemical and Environmental Research (IIQAB-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.
| | | | | | | | | |
Collapse
|
47
|
Dhanikula AB, Panchagnula R. Fluorescence Anisotropy, FT-IR Spectroscopy and 31-P NMR Studies on the Interaction of Paclitaxel with Lipid Bilayers. Lipids 2008; 43:569-79. [DOI: 10.1007/s11745-008-3178-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2008] [Accepted: 04/01/2008] [Indexed: 10/22/2022]
|
48
|
Cavalcanti LP, Konovalov O, Haas H. X-ray diffraction from paclitaxel-loaded zwitterionic and cationic model membranes. Chem Phys Lipids 2007; 150:58-65. [PMID: 17662973 DOI: 10.1016/j.chemphyslip.2007.06.219] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 06/05/2007] [Accepted: 06/08/2007] [Indexed: 11/23/2022]
Abstract
We studied the incorporation of the hydrophobic anticancer drug paclitaxel (PXL), into a variety of lipid matrices by X-ray diffraction (XRD) measurements. Liposome suspensions from cationic and zwitterionic lipids, containing different molar fractions of paclitaxel were made and deposited on planar glass substrates. After drying at controlled relative humidity, aligned multilayer stacks were obtained. The structure perpendicular to the substrate plane was investigated by X-ray diffraction measurements. Bragg peaks to several orders were detected, indicative of well-ordered multilamellar lipid layers. The drug induced a modification of the bilayer spacing, which was the characteristic for a given type of lipid matrix. With an excess of the drug, Bragg peaks of drug crystals could be observed. The results provide insight into the solubility of paclitaxel in the different lipid membranes. A structural model of the organization of the drug in the membrane was discussed.
Collapse
|
49
|
Grinberg O, Hayun M, Sredni B, Gedanken A. Characterization and activity of sonochemically-prepared BSA microspheres containing Taxol--an anticancer drug. ULTRASONICS SONOCHEMISTRY 2007; 14:661-666. [PMID: 17208504 DOI: 10.1016/j.ultsonch.2006.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 11/07/2006] [Accepted: 11/11/2006] [Indexed: 05/13/2023]
Abstract
Proteinaceous microspheres of BSA (Bovine Serum Albumin) containing an anticancer drug, Taxol (paclitaxel) were fabricated using a sonochemical procedure and then assayed for chemical and biological activity. The sonochemical reaction did not compromise the drug, which became encapsulated in the BSA microspheres. The amount of the anticancer drug in the microspheres was determined by HPLC. Anticancer activity of the proteinaceous microspheres encapsulating the Taxol was tested on Mouse Multiple Myeloma cell line MPC-11. The influence of the Taxol microspheres on the cancer cells was different from pristine Taxol. It was found that Taxol in combination with the organic solvent causes the death of cancer cells.
Collapse
Affiliation(s)
- Olga Grinberg
- Department of Chemistry and Kanbar Laboratory for Nanomaterials at the Bar-Ilan University, Center for Advanced Materials and Nanotechnology, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Michal Hayun
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Benjamin Sredni
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Aharon Gedanken
- Department of Chemistry and Kanbar Laboratory for Nanomaterials at the Bar-Ilan University, Center for Advanced Materials and Nanotechnology, Bar-Ilan University, Ramat-Gan, 52900, Israel.
| |
Collapse
|
50
|
Zhao L, Feng SS, Kocherginsky N, Kostetski I. DSC and EPR investigations on effects of cholesterol component on molecular interactions between paclitaxel and phospholipid within lipid bilayer membrane. Int J Pharm 2007; 338:258-66. [PMID: 17337138 DOI: 10.1016/j.ijpharm.2007.01.045] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 01/18/2007] [Accepted: 01/27/2007] [Indexed: 10/23/2022]
Abstract
Differential scanning calorimetry (DSC) and electron paramagnetic resonance spectroscopy (EPR) were applied to investigate effects of cholesterol component on molecular interactions between paclitaxel, which is one of the best antineoplastic agents found from nature, and dipalmitoylphosphatidylcholine (DPPC) within lipid bilayer vesicles (liposomes), which could also be used as a model cell membrane. DSC analysis showed that incorporation of paclitaxel into the DPPC bilayer causes a reduction in the cooperativity of bilayer phase transition, leading to a looser and more flexible bilayer structure. Including cholesterol component in the DPPC/paclitaxel mixed bilayer can facilitate the molecular interaction between paclitaxel and lipid and make the tertiary system more stable. EPR analysis demonstrated that both of paclitaxel and cholesterol have fluidization effect on the DPPC bilayer membranes although cholesterol has more significant effect than paclitaxel does. The reduction kinetics of nitroxides by ascorbic acid showed that paclitaxel can inhibit the reaction by blocking the diffusion of either the ascorbic acid or nitroxide molecules since the reaction is tested to be a first order one. Cholesterol can remarkably increase the reduction reaction speed. This research may provide useful information for optimizing liposomal formulation of the drug as well as for understanding the pharmacology of paclitaxel.
Collapse
Affiliation(s)
- Lingyun Zhao
- Department of Chemical & Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Block E5, 02-11, 4 Engineering Drive 4, Singapore 117576, Singapore
| | | | | | | |
Collapse
|