1
|
Gautam S, Bhatnagar D, Bansal D, Batra H, Goyal N. Recent advancements in nanomaterials for biomedical implants. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
2
|
Szczęch M, Orsi D, Łopuszyńska N, Cristofolini L, Jasiński K, Węglarz WP, Albertini F, Kereïche S, Szczepanowicz K. Magnetically responsive polycaprolactone nanocarriers for application in the biomedical field: magnetic hyperthermia, magnetic resonance imaging, and magnetic drug delivery. RSC Adv 2020; 10:43607-43618. [PMID: 35519668 PMCID: PMC9058288 DOI: 10.1039/d0ra07507h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/22/2020] [Indexed: 01/01/2023] Open
Abstract
There are huge demands on multifunctional nanocarriers to be used in nanomedicine. Herein, we present a simple and efficient method for the preparation of multifunctional magnetically responsive polymeric-based nanocarriers optimized for biomedical applications. The hybrid delivery system is composed of drug-loaded polymer nanoparticles (poly(caprolactone), PCL) coated with a multilayer shell of polyglutamic acid (PGA) and superparamagnetic iron oxide nanoparticles (SPIONs), which are known as bio-acceptable components. The PCL nanocarriers with a model anticancer drug (Paclitaxel, PTX) were formed by the spontaneous emulsification solvent evaporation (SESE) method, while the magnetically responsive multilayer shell was formed via the layer-by-layer (LbL) method. As a result, we obtained magnetically responsive polycaprolactone nanocarriers (MN-PCL NCs) with an average size of about 120 nm. Using the 9.4 T preclinical magnetic resonance imaging (MRI) scanner we confirmed, that obtained MN-PCL NCs can be successfully used as a MRI-detectable drug delivery system. The magnetic hyperthermia effect of the MN-PCL NCs was demonstrated by applying a 25 mT radio-frequency (f = 429 kHz) alternating magnetic field. We found a Specific Absorption Rate (SAR) of 55 W g-1. The conducted research fulfills the first step of investigation for biomedical application, which is mandatory for the planning of any in vitro and in vivo studies.
Collapse
Affiliation(s)
- Marta Szczęch
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences Krakow Poland +48-124251923 +48-126395121
| | - Davide Orsi
- Department of Mathematical, Physical and Computer Sciences, University of Parma Parma Italy
| | - Natalia Łopuszyńska
- Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences Krakow Poland
| | - Luigi Cristofolini
- Department of Mathematical, Physical and Computer Sciences, University of Parma Parma Italy
| | - Krzysztof Jasiński
- Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences Krakow Poland
| | - Władysław P Węglarz
- Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences Krakow Poland
| | - Franca Albertini
- Institute of Materials for Electronics and Magnetism, National Research Council (CNR) Parma Italy
| | - Sami Kereïche
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University Prague Czech Republic
| | - Krzysztof Szczepanowicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences Krakow Poland +48-124251923 +48-126395121
| |
Collapse
|
3
|
Avila JD, Alrawahi Z, Bose S, Bandyopadhyay A. Additively Manufactured Ti6Al4V-Si-Hydroxyapatite composites for articulating surfaces of load-bearing implants. ADDITIVE MANUFACTURING 2020; 34:101241. [PMID: 32432027 PMCID: PMC7236886 DOI: 10.1016/j.addma.2020.101241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Directed-energy deposition (DED)-based additive manufacturing (AM) was explored for composite development using silicon (Si) and hydroxyapatite (HA) in Ti-6Al-4V (Ti64) matrix for articulating surfaces of load-bearing implants. Specifically, laser engineered net shaping (LENS™), a commercially available DED-based AM technique, was used to fabricate composites from premixed-feedstock powders. The AM'd composites proved to not only improve upon Ti64's mechanical properties but also produced an in-situ Si-based tribofilm during tribological testing that minimized wear induced damage. Additionally, it was found that with the introduction of Si, titanium silicides and vanadium silicides were formed; allowing for 114% increased hardness, decreased coefficient of friction (COF) and a reduction of wear rate of 38.1% and 48.7%, respectively. The produced composites also displayed a positive shift in open-circuit potential (OCP) during linear wear, along with a reduction in the change of OCP from idle to linear wear conditions. Additionally, contact resistance (CR) values increased with a maximum value of 1500 ohms due to the formation of Si-based tribofilm on the wear surface. Such composite development approach using DED-based AM can open up the possibilities of innovating next-generation implants that are designed and manufactured via multi-material AM.
Collapse
|
4
|
|
5
|
Noli F, Papadopoulos P, Kolias P, Tsiridis E, Papavasiliou K, Sayegh F. Neutron activation analysis for determination of metal ions in biological fluids of patients after CoCrMo arthroplasty. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06718-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Osteocytes respond to particles of clinically-relevant conventional and cross-linked polyethylene and metal alloys by up-regulation of resorptive and inflammatory pathways. Acta Biomater 2019; 87:296-306. [PMID: 30690207 DOI: 10.1016/j.actbio.2019.01.047] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 02/06/2023]
Abstract
Periprosthetic osteolysis is a major cause of implant failure in total hip replacements. Aseptic loosening caused by osteolytic lesions is associated with the production of bioactive wear particles from the articulations of implants. Wear particles infiltrate the surrounding tissue of implants, promoting inflammation as well as bone resorption. Osteocytes have been shown to both regulate physiological osteoclastogenesis and directly remodel their perilacunar bone matrix by the process of osteocytic osteolysis. We hypothesise that osteocytes respond to wear debris of orthopaedic implant materials by adopting a pro-catabolic phenotype and thus contribute to periprosthetic osteolysis through the known pathways of bone loss. Osteocyte responses to particles derived from clinically relevant materials, ultra-high molecular weight polyethylene (UHMWPE), highly cross-linked polyethylene (XLPE) and metal alloys, Ti6Al4V and CoCrMo, were examined in vitro in human primary osteocyte-like cultures. Osteocyte-like cells exposed to both polyethylene and metal wear particle types showed upregulated expression of catabolic markers associated with osteocytic osteolysis, MMP13, carbonic anhydrase 2 (CA2) and cathepsin K (CTSK). In addition, pro-osteoclastogenesis markers RANKL and M-CSF were induced, as well as the expression of pro-inflammatory cytokines, IL-6 and TNFα, albeit with different kinetics. These findings suggest a previously unrecognised action of wear particles of multiple orthopaedic materials on osteocytes, and suggest a multifaceted role for osteocytes in periprosthetic osteolysis. STATEMENT OF SIGNIFICANCE: This study addresses periprosthetic osteolysis, a major clinical problem leading to aseptic loosening of orthopaedic implants. It is well accepted that wear particles of polyethylene and of other implant materials stimulate the activity of bone resorbing osteoclasts. Our recent work provided evidence that commercial particles of ultra-high molecular weight polyethylene (UHMWPE) stimulated osteocytes to adopt a bone catabolic state. In this study we demonstrate for the first time that particles derived from materials in clinical use, conventional UHMWPE, highly cross-linked polyethylene (XLPE), and Ti6Al4V and CoCrMo metal alloys, all stimulate human osteocyte activities of osteocyte-regulated osteoclastogenesis, osteocytic osteolysis, proinflammatory responses, osteocyte apoptosis, albeit to varying extents. This study provides further mechanistic insight into orthopaedic wear particle mediated bone disease in terms of the osteocyte, the most abundant and key controlling cell type in bone.
Collapse
|
7
|
Aherwar A, Bahraminasab M. Biocompatibility evaluation and corrosion resistance of tungsten added Co-30Cr-4Mo-1Ni alloy. Biomed Mater Eng 2018; 28:687-701. [PMID: 29171973 DOI: 10.3233/bme-171706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Biomaterials are continuously being developed to overcome the drawbacks of existing materials and provide improved function in artificial organs. Currently Co-Cr based alloys are used in many medical applications such as hip and knee implants which still require modification to better perform. In this article, therefore, the influence of tungsten allying element on electrochemical corrosion resistance and biocompatibility behaviour of a recently developed Co-30Cr-4Mo-1Ni alloy composition were investigated. The tungsten modified alloys were prepared by using a high temperature vertical vacuum casting technique at five different weight percentages (0-4wt.% tungsten). The electrochemical corrosion behaviour of all the samples under NaCl solution was studied by using potentiodynamic scan method. The corrosion characteristics were investigated in terms of corrosion potential (Ecorr) and corrosion current density (Icorr). From the results of the analysis, it was observed that out of all samples, an alloy with 2wt.% of tungsten in composition (i.e. Co-30Cr-4Mo-1Ni-2W) exhibited better corrosion resistance. Furthermore, histopathological evaluations in subcutaneous tissue were performed in rats according to the standard ISO 10993 to examine the biocompatibility of the prepared samples. The results showed no evidence of inflammatory cell migration, no epidermal necrosis, no vacuolar degeneration of basal cell, no adnexal atrophy and vesicle formation of any samples. The obtained findings indicate that Co-30Cr-4Mo-1Ni-2W can be used in biomedical applications including femoral component of hip and knee implants.
Collapse
Affiliation(s)
- Amit Aherwar
- Mechanical Engineering Department, Madhav Institute of Technology and Science, Gwalior-474005, India
| | - Marjan Bahraminasab
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
8
|
|
9
|
Gibon E, Amanatullah DF, Loi F, Pajarinen J, Nabeshima A, Yao Z, Hamadouche M, Goodman SB. The biological response to orthopaedic implants for joint replacement: Part I: Metals. J Biomed Mater Res B Appl Biomater 2016; 105:2162-2173. [PMID: 27328111 DOI: 10.1002/jbm.b.33734] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 04/19/2016] [Accepted: 06/01/2016] [Indexed: 12/12/2022]
Abstract
Joint replacement is a commonly performed, highly successful orthopaedic procedure, for which surgeons have a large choice of different materials and implant designs. The materials used for joint replacement must be both biologically acceptable to minimize adverse local tissue reactions, and robust enough to support weight bearing during common activities of daily living. Modern joint replacements are made from metals and their alloys, polymers, ceramics, and composites. This review focuses on the biological response to the different biomaterials used for joint replacement. In general, modern materials for joint replacement are well tolerated by the body as long as they are in bulk (rather than in particulate or ionic) form, are mechanically stable and noninfected. If the latter conditions are not met, the prosthesis will be associated with an acute/chronic inflammatory reaction, peri-prosthetic osteolysis, loosening and failure. This article (Part 1 of 2) is dedicated to the use of metallic devices in orthopaedic surgery including the associated biological response to metallic byproducts is a review of the basic science literature regarding this topic. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2162-2173, 2017.
Collapse
Affiliation(s)
- Emmanuel Gibon
- Department of Orthopaedic Surgery, Stanford University, Stanford, California.,Laboratoire de Biomécanique et Biomatériaux Ostéo-Articulaires - UMR CNRS 7052, Faculté de Médecine - Université Paris7, Paris, France.,Department of Orthopaedic Surgery, Hopital Cochin, APHP, Université Paris5, Paris, France
| | - Derek F Amanatullah
- Department of Orthopaedic Surgery, Stanford University, Stanford, California
| | - Florence Loi
- Department of Orthopaedic Surgery, Stanford University, Stanford, California
| | - Jukka Pajarinen
- Department of Orthopaedic Surgery, Stanford University, Stanford, California
| | - Akira Nabeshima
- Department of Orthopaedic Surgery, Stanford University, Stanford, California
| | - Zhenyu Yao
- Department of Orthopaedic Surgery, Stanford University, Stanford, California
| | - Moussa Hamadouche
- Department of Orthopaedic Surgery, Hopital Cochin, APHP, Université Paris5, Paris, France
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, California
| |
Collapse
|
10
|
Hahn M, Busse B, Procop M, Zustin J, Amling M, Katzer A. Cobalt deposition in mineralized bone tissue after metal-on-metal hip resurfacing: Quantitative μ-X-ray-fluorescence analysis of implant material incorporation in periprosthetic tissue. J Biomed Mater Res B Appl Biomater 2016; 105:1855-1862. [PMID: 27240142 DOI: 10.1002/jbm.b.33667] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 10/15/2015] [Accepted: 03/10/2016] [Indexed: 11/08/2022]
Abstract
Most resurfacing systems are manufactured from cobalt-chromium alloys with metal-on-metal (MoM) bearing couples. Because the quantity of particulate metal and corrosion products which can be released into the periprosthetic milieu is greater in MoM bearings than in metal-on-polyethylene (MoP) bearings, it is hypothesized that the quantity and distribution of debris released by the MoM components induce a compositional change in the periprosthetic bone. To determine the validity of this claim, nondestructive µ-X-ray fluorescence analysis was carried out on undecalcified histological samples from 13 femoral heads which had undergone surface replacement. These samples were extracted from the patients after gradient time points due to required revision surgery. Samples from nonintervened femoral heads as well as from a MoP resurfaced implant served as controls. Light microscopy and µ-X-ray fluorescence analyses revealed that cobalt debris was found not only in the soft tissue around the prosthesis and the bone marrow, but also in the mineralized bone tissue. Mineralized bone exposed to surface replacements showed significant increases in cobalt concentrations in comparison with control specimens without an implant. A maximum cobalt concentration in mineralized hard tissue of up to 380 ppm was detected as early as 2 years after implantation. Values of this magnitude are not found in implants with a MoP surface bearing until a lifetime of more than 20 years. This study demonstrates that hip resurfacing implants with MoM bearings present a potential long-term health risk due to rapid cobalt ion accumulation in periprosthetic hard tissue. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1855-1862, 2017.
Collapse
Affiliation(s)
- Michael Hahn
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, D-22529, Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, D-22529, Hamburg, Germany
| | - Mathias Procop
- IFG-Institute for Scientific Instruments, D-12489, Berlin, Germany
| | - Jozef Zustin
- Institute of Bone Pathology, University Medical Center Hamburg-Eppendorf, D-22529, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, D-22529, Hamburg, Germany
| | | |
Collapse
|
11
|
Metal release from stainless steel in biological environments: A review. Biointerphases 2016; 11:018901. [DOI: 10.1116/1.4934628] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
12
|
Acevedo D, Loy BN, Lee B, Omid R, Itamura J. Mixing implants of differing metallic composition in the treatment of upper-extremity fractures. Orthopedics 2013; 36:e1175-9. [PMID: 24025010 DOI: 10.3928/01477447-20130821-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mixing implants with differing metallic compositions has been avoided for fear of galvanic corrosion and subsequent failure of the implants and of bone healing. The purpose of this study was to evaluate upper-extremity fractures treated with open reduction and internal fixation with metallic implants that differed in metallic composition placed on the same bone. The authors studied the effects of using both stainless steel and titanium implants on fracture healing, implant failure, and other complications associated with this method of fixation. Their hypothesis was that combining these metals on the same bone would not cause clinically significant nonunions or undo clinical effects from galvanic corrosion. A retrospective review was performed of 17 patients with upper-extremity fractures fixed with metal implants of differing metallic compositions. The primary endpoint was fracture union. Eight clavicles, 2 proximal humeri, 3 distal humeri, 3 olecranons, and 1 glenoid fracture with an average follow-up 10 months were reviewed. All fractures healed. One patient experienced screw backout, which did not affect healing. This study implies that mixing implants with differing metallic compositions on the same bone for the treatment of fractures does not adversely affect bone healing. No evidence existed of corrosion or an increase in complications with this method of treatment. Contrary to prior belief, small modular hand stainless steel plates can be used to assist in reduction of smaller fracture fragments in combination with anatomic titanium plates to obtain anatomic reduction of the fracture without adversely affecting healing.
Collapse
|
13
|
Early fixation of cobalt-chromium based alloy surgical implants to bone using a tissue-engineering approach. Int J Mol Sci 2012; 13:5528-5541. [PMID: 22754313 PMCID: PMC3382757 DOI: 10.3390/ijms13055528] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 04/25/2012] [Accepted: 05/03/2012] [Indexed: 11/17/2022] Open
Abstract
To establish the methods of demonstrating early fixation of metal implants to bone, one side of a Cobalt-Chromium (CoCr) based alloy implant surface was seeded with rabbit marrow mesenchymal cells and the other side was left unseeded. The mesenchymal cells were further cultured in the presence of ascorbic acid, β-glycerophosphate and dexamethasone, resulting in the appearance of osteoblasts and bone matrix on the implant surface. Thus, we succeeded in generating tissue-engineered bone on one side of the CoCr implant. The CoCr implants were then implanted in rabbit bone defects. Three weeks after the implantation, evaluations of mechanical test, undecalcified histological section and electron microscope analysis were performed. Histological and electron microscope images of the tissue engineered surface exhibited abundant new bone formation. However, newly formed bone tissue was difficult to detect on the side without cell seeding. In the mechanical test, the mean values of pull-out forces were 77.15 N and 44.94 N for the tissue-engineered and non-cell-seeded surfaces, respectively. These findings indicate early bone fixation of the tissue-engineered CoCr surface just three weeks after implantation.
Collapse
|
14
|
Galván JC, Saldaña L, Multigner M, Calzado-Martín A, Larrea M, Serra C, Vilaboa N, González-Carrasco JL. Grit blasting of medical stainless steel: implications on its corrosion behavior, ion release and biocompatibility. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:657-66. [PMID: 22271277 DOI: 10.1007/s10856-012-4549-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 01/10/2012] [Indexed: 05/17/2023]
Abstract
This study reports on the biocompatibility of 316 LVM steel blasted with small and rounded ZrO(2) particles or larger and angular shaped Al(2)O(3) particles. The effect of blasting on the in vitro corrosion behavior and the associated ion release is also considered. Surface of Al(2)O(3) blasted samples was rougher than that of ZrO(2) blasted samples, which was also manifested by a higher surface area. Compared to the polished alloy, blasted steels exhibited a lower corrosion resistance at the earlier stages of immersion, particularly when using Al(2)O(3) particles. With increasing immersion time, blasted samples experienced an improvement of the corrosion resistance, achieving impedance values typical of passive alloys. Blasting of the alloy led to an increase in Fe release and the leaching of Ni, Mn, Cr and Mo. On all surfaces, ion release is higher during the first 24 h exposure and tends to decrease during the subsequent exposure time. Despite the lower corrosion resistance and higher amount of ions released, blasted alloys exhibit a good biocompatibility, as demonstrated by culturing osteoblastic cells that attached and grew on the surfaces.
Collapse
Affiliation(s)
- J C Galván
- Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Grandfield K, Palmquist A, Gonçalves S, Taylor A, Taylor M, Emanuelsson L, Thomsen P, Engqvist H. Free form fabricated features on CoCr implants with and without hydroxyapatite coating in vivo: a comparative study of bone contact and bone growth induction. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:899-906. [PMID: 21305340 DOI: 10.1007/s10856-011-4253-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 01/29/2011] [Indexed: 05/21/2023]
Abstract
The current study evaluates the in vivo response to free form fabricated cobalt chromium (CoCr) implants with and without hydroxyapatite (HA) plasma sprayed coatings. The free form fabrication method allowed for integration of complicated pyramidal surface structures on the cylindrical implant. Implants were press fit into the tibial metaphysis of nine New Zealand white rabbits. Animals were sacrificed and implants were removed and embedded. Histological analysis, histomorphometry and electron microscopy studies were performed. Focused ion beam was used to prepare thin sections for high-resolution transmission electron microscopy examination. The fabricated features allowed for effective bone in-growth and firm fixation after 6 weeks. Transmission electron microscopy investigations revealed intimate bone-implant integration at the nanometre scale for the HA coated samples. In addition, histomorphometry revealed a significantly higher bone contact on HA coated implants compared to native CoCr implants. It is concluded that free form fabrication in combination with HA coating improves the early fixation in bone under experimental conditions.
Collapse
Affiliation(s)
- Kathryn Grandfield
- The Ångström Laboratory, Department of Engineering Sciences, Uppsala University, Box 534, 751 21 Uppsala, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Hedberg Y, Gustafsson J, Karlsson HL, Möller L, Odnevall Wallinder I. Bioaccessibility, bioavailability and toxicity of commercially relevant iron- and chromium-based particles: in vitro studies with an inhalation perspective. Part Fibre Toxicol 2010; 7:23. [PMID: 20815895 PMCID: PMC2941740 DOI: 10.1186/1743-8977-7-23] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 09/03/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Production of ferrochromium alloys (FeCr), master alloys for stainless steel manufacture, involves casting and crushing processes where particles inevitably become airborne and potentially inhaled. The aim of this study was to assess potential health hazards induced by inhalation of different well-characterized iron- and chromium-based particles, i.e. ferrochromium (FeCr), ferrosiliconchromium (FeSiCr), stainless steel (316L), iron (Fe), chromium (Cr), and chromium(III)oxide (Cr2O3), in different size fractions using in vitro methods. This was done by assessing the extent and speciation of released metals in synthetic biological medium and by analyzing particle reactivity and toxicity towards cultured human lung cells (A549). RESULTS The amount of released metals normalized to the particle surface area increased with decreasing particle size for all alloy particles, whereas the opposite situation was valid for particles of the pure metals. These effects were evident in artificial lysosomal fluid (ALF) of pH 4.5 containing complexing agents, but not in neutral or weakly alkaline biological media. Chromium, iron and nickel were released to very low extent from all alloy particles, and from particles of Cr due to the presence of a Cr(III)-rich protective surface oxide. Released elements were neither proportional to the bulk nor to the surface composition after the investigated 168 hours of exposure. Due to a surface oxide with less protective properties, significantly more iron was released from pure iron particles compared with the alloys. Cr was predominantly released as Cr(III) from all particles investigated and was strongly complexed by organic species of ALF. Cr2O3 particles showed hemolytic activity, but none of the alloy particles did. Fine-sized particles of stainless steel caused however DNA damage, measured with the comet assay after 4 h exposure. None of the particles revealed any significant cytotoxicity in terms of cell death after 24 h exposure. CONCLUSION It is evident that particle and alloy characteristics such as particle size and surface composition are important aspects to consider when assessing particle toxicity and metal release from alloy particles compared to pure metal particles. Generated results clearly elucidate that neither the low released concentrations of metals primarily as a result of protective and poorly soluble surface oxides, nor non-bioavailable chromium complexes, nor the particles themselves of occupational relevance induced significant acute toxic response, with exception of DNA damage from stainless steel.
Collapse
Affiliation(s)
- Yolanda Hedberg
- Div. Surface and Corrosion Science, Royal Institute of Technology (KTH), Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
17
|
Busse B, Hahn M, Niecke M, Jobke B, Püschel K, Delling G, Katzer A. Allocation of nonbirefringent wear debris: Darkfield illumination associated with PIXE microanalysis reveals cobalt deposition in mineralized bone matrix adjacent to CoCr implants. J Biomed Mater Res A 2008; 87:536-45. [DOI: 10.1002/jbm.a.31794] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Kovacik M, Mostardi R, Neal D, Bear T, Askew M, Bender E, Walker J, Ramsier R. Differences in the surface composition of seemingly similar F75 cobalt–chromium micron-sized particulates can affect synovial fibroblast viability. Colloids Surf B Biointerfaces 2008; 65:269-75. [DOI: 10.1016/j.colsurfb.2008.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 04/11/2008] [Accepted: 04/29/2008] [Indexed: 10/22/2022]
|
19
|
Savarino L, Maci GS, Greco M, Baldini N, Giunti A. Metal ion release from fracture fixation devices: A potential marker of implant failure. J Biomed Mater Res B Appl Biomater 2008; 86:389-95. [DOI: 10.1002/jbm.b.31032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Høl PJ, Mølster A, Gjerdet NR. Should the galvanic combination of titanium and stainless steel surgical implants be avoided? Injury 2008; 39:161-9. [PMID: 18054018 DOI: 10.1016/j.injury.2007.07.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 06/13/2007] [Accepted: 07/16/2007] [Indexed: 02/02/2023]
Abstract
It is recommended that one should not combine different metals in orthopaedic devices. The least noble metal in such a galvanic coupling is more likely to corrode. However, some studies have failed to show increased corrosion when titanium and stainless steel are combined. The aim of this study was to determine the fretting corrosion of the contact areas between screws and plates made of these dissimilar metals used for internal fixation of bone fractures. The plates were fixed to a bone-simulating material and subjected to tensile and compressive forces in both human serum and Hank's solution. The outcome variables included in the analyses were weight loss, and release of Ti, Cr, Ni and Mo to the different media. Results from the multiple combinations were subjected to multivariate statistics. Principal component analysis visualised our findings and allowed classification of similar samples and separation of discrepant groups of samples. We found a significant effect of the test medium, but no dramatic effect due to mixing of metals. The titanium screws and plates corroded more in serum than in saline, while the opposite was true for stainless steel. Combination of dissimilar screws and plates did not cause higher weight loss or metal release than the single-material constructions, indicating comparable clinical safety.
Collapse
Affiliation(s)
- Paul Johan Høl
- Orthopedic Biomaterials, Helse Bergen Haukeland University Hospital, Aarstadveien 17, NO-5009 Bergen, Norway.
| | | | | |
Collapse
|
21
|
Papageorgiou I, Brown C, Schins R, Singh S, Newson R, Davis S, Fisher J, Ingham E, Case CP. The effect of nano- and micron-sized particles of cobalt–chromium alloy on human fibroblasts in vitro. Biomaterials 2007; 28:2946-58. [PMID: 17379299 DOI: 10.1016/j.biomaterials.2007.02.034] [Citation(s) in RCA: 285] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Accepted: 02/22/2007] [Indexed: 12/13/2022]
Abstract
Wear debris from metal on polyethylene joint replacements causes asceptic loosening as a result of an inflammatory reaction of macrophages to micron-sized particles. Metal on metal implants, which generate nanoparticles, have been reintroduced into surgical practise in order to avoid this problem. There is a current concern about possible long-term effects of exposure to metal particles. In this study, the cytotoxic and genotoxic effects of nanoparticles and micron-sized particles of cobalt chrome alloy have been compared using human fibroblasts in tissue culture. Nanoparticles, which caused more free radicals in an acellular environment, induced more DNA damage than micron-sized particles using the alkaline comet assay. They induced more aneuploidy and more cytotoxicity at equivalent volumetric dose. Nanoparticles appeared to disintegrate within the cells faster than microparticles with the creation of electron dense deposits in the cell, which were enriched in cobalt. The mechanism of cell damage appears to be different after exposure to nanoparticles and microparticles. The concept of nanotoxicology is, therefore, an important consideration in the design of future surgical devices.
Collapse
Affiliation(s)
- I Papageorgiou
- Bristol Implant Research Centre, Avon Orthopaedic Centre, Southmead Hospital, Bristol BS10 5NB, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Keegan GM, Learmonth ID, Case CP. Orthopaedic metals and their potential toxicity in the arthroplasty patient. ACTA ACUST UNITED AC 2007; 89:567-73. [PMID: 17540737 DOI: 10.1302/0301-620x.89b5.18903] [Citation(s) in RCA: 208] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The long-term effects of metal-on-metal arthroplasty are currently under scrutiny because of the potential biological effects of metal wear debris. This review summarises data describing the release, dissemination, uptake, biological activity, and potential toxicity of metal wear debris released from alloys currently used in modern orthopaedics. The introduction of risk assessment for the evaluation of metal alloys and their use in arthroplasty patients is discussed and this should include potential harmful effects on immunity, reproduction, the kidney, developmental toxicity, the nervous system and carcinogenesis.
Collapse
Affiliation(s)
- G M Keegan
- University of Bristol, Bristol Implant Research Centre, Avon Orthopaedic Centre (lower level), Southmead Hospital, Westbury-on-Trym, Bristol, BS10 5NB, UK.
| | | | | |
Collapse
|
23
|
Singh R, Dahotre NB. Corrosion degradation and prevention by surface modification of biometallic materials. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2007; 18:725-51. [PMID: 17143737 DOI: 10.1007/s10856-006-0016-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Accepted: 10/10/2006] [Indexed: 05/12/2023]
Abstract
Metals, in addition to ceramics and polymers, are important class of materials considered for replacement of non-functional parts in the body. Stainless steel 316, titanium and titanium alloys, Co-Cr, and nitinol shape memory alloys are the most frequently used metallic materials. These alloys are prone to corrosion in various extents. This review briefly discusses the important biomaterials, their properties, and the physiological environment to which these materials are exposed. Corrosion performance of currently used metallic materials has been assessed and threat to the biocompatibility from corrosion products/metal ions is discussed. The possible preventive measures to improve corrosion resistance by surface modification and to increase the bioactivity of the metallic surfaces have also been discussed. Importance of the formation of oxide layers on the metal surface, another aspect of corrosion process, has been correlated with the host response. The gap areas and future direction of research are also outlined in the paper.
Collapse
|
24
|
Sigler M, Paul T, Grabitz RG. Biocompatibility screening in cardiovascular implants. ACTA ACUST UNITED AC 2005; 94:383-91. [PMID: 15940438 DOI: 10.1007/s00392-005-0231-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Accepted: 01/14/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Interest in information on biocompatibility of implants is increasing. The purpose of this paper is to discuss methods and results of pathological biocompatibility screening of explanted cardiovascular implants. METHODS Use of standard histology after embedding in paraffin is limited since metallic implants have to be removed during workup with disruption of the specimen. Alternatively, tissue blocks containing an implant can be embedded in methylmethacrylate or hydroxyethylmethacrylate and processed by sectioning with a diamond cutter and grinding, thus leaving the implant in situ and saving the tissue/implant interface for detection of local inflammatory reactions. Another important aspect of evaluation is the progress of thrombus organisation after initial fibrin clotting on the metal surface or in the inner part of occlusion devices. New methacrylate resins and embedding techniques allow for specific immunohistochemical staining of the specimen thus enabling characterisation of tissues surrounding the implant. Information on endothelialisation of the vascular surface of the implant can be obtained by means of immunohistochemistry or by scanning electron microscopy. RESULTS Illustrating the use of these technologies, we demonstrate findings in tissue specimens from animal studies with different types of devices (i.e. stents, occlusion devices). We present corresponding findings in human specimens with implants that were removed during corrective surgery for congenital heart defects. Early endothelialisation of the vascular surface was seen after implantation in all types of devices. Cells within occlusion devices could be characterised histologically and immunohistochemically as fibromuscular cells as seen in intimal hyperplasia after stent implantation. Inflammatory implant-host reactions ranged from mild to moderate (medical grade stainless steel, nitinol) to severe (polytetrafluoroethylene [PTFE]). CONCLUSIONS With an optimal work-up of cardiovascular implants, ingrowth and endothelialisation as well as inflammatory reactions in the surrounding tissue can be assessed. This information allows evaluation of individual tissue reactions to the implant and may serve as valuable basis for optimisation of biocompatibility by implant modification.
Collapse
Affiliation(s)
- M Sigler
- Herzzentrum Göttingen, Pädiatrische Kardiologie und Intensivmedizin, Georg-August-Universität Göttingen, 37099 Göttingen, Germany.
| | | | | |
Collapse
|
25
|
Pullen LJ, Gross KA. Dissolution and mineralization of sintered and thermally sprayed hydroxy-fluoroapatites. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2005; 16:399-404. [PMID: 15875248 DOI: 10.1007/s10856-005-6978-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Accepted: 11/01/2004] [Indexed: 05/02/2023]
Abstract
Hydroxyapatites are commonly used as bone cement, coatings on implants for dental and orthopaedic applications, but also as middle ear implants. These applications all require a different tissue healing response that can be attained by different manufacturing processes or by chemically modifying the composition. During implantation apatites undergo a process of dissolution and mineralization. The degree of dissolution is dependent upon the manufacturing process & is higher for thermally sprayed implant materials. This allows them to integrate to the natural bone. This study tests the dissolution and mineralization of fluoride containing hydroxyapatites through immersion in simulated body fluid. It shows that mineralization occurs more readily in hydroxyapatites than fluorapatites because of their higher dissolution rate. Mineralization was detected most readily by image analysis using scanning electron microscopy than by weight changes using a microbalance. Microscopy allowed small heterogeneous precipitates to be observed during the initial stages of mineralization.
Collapse
Affiliation(s)
- L J Pullen
- Department of Medicine Royal Melbourne Hospital, University of Melbourne, Australia
| | | |
Collapse
|
26
|
Kraft CN, Burian B, Diedrich O, Gessmann J, Wimmer MA, Pennekamp PH. Microvascular response of striated muscle to common arthroplasty-alloys: A comparativein vivo study with CoCrMo, Ti-6Al-4V, and Ti-6Al-7Nb. J Biomed Mater Res A 2005; 75:31-40. [PMID: 16078208 DOI: 10.1002/jbm.a.30407] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The impairment of skeletal muscle microcirculation by a biomaterial may have profound consequences. Due to excellent physical and corrosion characteristics, CoCrMo-, Ti-6Al-4V-, and Ti-6Al-7Nb-alloys are commonly used in orthopedic surgery. Yet concern has been raised with regard to the implications of inevitable corrosion product of these metals on the surrounding biologic environment, particularly in the case of CoCrMo. We, therefore, studied in vivo nutritive perfusion and leukocytic response of striated muscle to these alloys, thereby drawing conclusions on their inflammatory potential. In 28 hamsters, utilizing the dorsal skinfold chamber preparation and intravital microscopy, we could demonstrate that the implant material CoCrMo has a marked impact on local microvascular parameters. While the Ti-alloys Ti-6Al-4V and Ti-6Al-7Nb induced only a transient and moderate inflammatory response, the implantation of a CoCrMo sample led to a distinct and persistent activation of leukocytes combined with disruption of the microvascular endothelial integrity and marked leukocyte extravasation. Animals with Ti-alloys showed a clear tendency of recuperation, while in all but one CoCrMo-treated animals, a breakdown of microcirculation prior to the scheduled end of the experiment was observed. Overall, the alloy Ti-6Al-7Nb was tolerated slightly better than Ti-6Al-4V under the chosen test conditions, though this discrepancy was not statistically significant. Conclusively, the commonly used biomaterials Ti-6Al-7Nb and Ti-6Al-4V induce a considerably lower inflammatory response in the skeletal muscle microvascular system, compared to a CoCrMo-alloy. With a minimum of adverse host reaction, our results indicate that for this particular model Ti-alloys are better tolerated than CoCrMo implant materials.
Collapse
Affiliation(s)
- Clayton N Kraft
- Department of Orthopedic Surgery, University of Bonn, D-53105 Bonn, Germany.
| | | | | | | | | | | |
Collapse
|
27
|
Lee TM, Chang E, Yang CY. Attachment and proliferation of neonatal rat calvarial osteoblasts on Ti6Al4V: effect of surface chemistries of the alloy. Biomaterials 2004; 25:23-32. [PMID: 14580905 DOI: 10.1016/s0142-9612(03)00465-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This study examined the cell attachment and proliferation of neonatal rat calvarial osteoblasts on Ti6Al4V alloy as affected by the surface modifications. The modifications could alter simultaneously the surface chemistries of the alloy (elemental difference of Ti, Al, V, Cu and Ni about 300-600mum thick examined by EDS) as well as the XPS nano-surface characteristics of oxides on the metal surface (chemistries of oxides, amphoteric OH group adsorbed on oxides, and oxide thickness). Three materials including two from modifications and a control were examined. It is argued that a slight change of the nano-surface characteristics of oxides as a result of the modifications neither alters the in vitro capability of Ca and P ion adsorption nor affects the metal ion dissolution behavior of the alloy. This implies that any influence on the cytocompatibility of the materials should only be correlated to the effect of surface chemistries of the alloy and the associated metal ion dissolution behavior of the alloy. The experimental results suggest that the cell response of neonatal rat calvarial osteoblasts on the Ti6Al4V alloy should neither be affected by the variation of surface chemistries of the alloy in a range studied.
Collapse
Affiliation(s)
- T M Lee
- Institute of Oral Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| | | | | |
Collapse
|
28
|
Lourdes de Pereira M, Garcia e Costa F. Spermatogenesis recovery in the mouse after iron injury. Hum Exp Toxicol 2003; 22:275-9. [PMID: 12774891 DOI: 10.1191/0960327103ht344oa] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Alloys used as prosthetic devices for bone/joint replacement include some heavy metals such as chromium, iron, nickel, or titanium. Unfortunately, due to the aggressive nature of the physiological environment, corrosion of these alloys promotes the release of metal ions into the surrounding tissues causing systemic toxic effects. Our previous preliminary studies have demonstrated that iron induced several morphological changes within mice seminiferous epithelium. The aim of the present work was to investigate, over a one-month period, the possibility of recovery of mice seminiferous epithelium, previously damaged by iron. Male Charles River mice were dosed subcutaneously with 0.5 mL of an iron suspension of 538 mg/L +/- 10(-10) mg/L (n = 5) every 72 hours during two weeks, followed by a recovery period of 30 days. Fragments of the seminiferous tubules were fixed in glutaraldehyde and prepared for light and transmission electron microscopy. Regeneration of spermatogenesis was noted after a one-month period, as illustrated by the presence of normal germ cells, in the usual position within the seminiferous tubules. These germinal elements and the Sertoli cells have shown normal cytological features. These results strongly suggest that the deleterious effects induced by iron are reversible. The presence of residual bodies within Sertoli cells cytoplasm indicates that they are able to perform a normal functional activity in a recovered spermatogenesis.
Collapse
|
29
|
Zreiqat H, Crotti TN, Howlett CR, Capone M, Markovic B, Haynes DR. Prosthetic particles modify the expression of bone-related proteins by human osteoblastic cells in vitro. Biomaterials 2003; 24:337-46. [PMID: 12419636 DOI: 10.1016/s0142-9612(02)00324-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Loss of bone near joint prostheses is thought to be caused by activation of recruited osteoclasts by osteolytic mediators induced by wear particles. It is proposed that particles inhibit osteogenesis during bone remodelling causing a reduction in the levels of peri-implant bone. This study explores whether prosthetic particles modulate bone formation by affecting osteoblastic bone-related mRNAs (alkaline phosphatase, pro-collagen Ialpha1, osteopontin, osteonectin, osteocalcin, bone sialoprotein and thrombospondin) or their translated proteins using titanium alloy, commercially pure titanium, and cobalt-chrome particles. The direct effect of the particles revealed no change to the expression of the bone-related mRNAs in human bone-derived cells (HBDC) at the time points investigated; although non-collagenous translated proteins expressed by these HBDC were significantly effected (p<0.05). Different patterns of expression for bone-related proteins were induced by the different particles both directly and indirectly. Inflammatory mediators (interleukin-1beta, tumor necrosis factor alpha, interleukin-6, and prostaglandin E2) had similar effects on HBDC to the media obtained from monocytes incubated with particles. This study shows that prosthetic wear particles can significantly modify the expression of bone-related proteins by osteogenic cells in vitro. These alterations in osteogenic activity at the interface of the implant and bone may be an important factor in the failure of many orthopaedic implants.
Collapse
Affiliation(s)
- H Zreiqat
- Department of Pathology, School of Medical Sciences, The University of New South Wales, 2052 Sydney, NSW, Australia.
| | | | | | | | | | | |
Collapse
|
30
|
Ferreira ME, de Lourdes Pereira M, Garcia e Costa F, Sousa JP, de Carvalho GS. Comparative study of metallic biomaterials toxicity: a histochemical and immunohistochemical demonstration in mouse spleen. J Trace Elem Med Biol 2003; 17:45-9. [PMID: 12755501 DOI: 10.1016/s0946-672x(03)80045-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Metallic biomaterials available for orthopaedic purposes become essential to perform important physical activities, due to their low cost and excellent mechanical properties. In addition, they are frequently used in dentistry. However, corrosion phenomena of such devices are the main problems resulting in subsequent spreading of the elements through the whole body via lymph and blood. The spleen is the most important lymphoid organ and the only one included in the blood circulation. Thus, the aim of this study was to evaluate the short-term effects on spleen tissues of heavy metals released from stainless steel and Cr-Co-Mo alloys, as well as from titanium, at histochemical and immunohistochemical levels. For this purpose, metallic suspensions were obtained by electrochemical dissolution of the mentioned biomaterials: stainless steel (Fe 490 mg/L, Cr 224 mg/L, Ni 150 mg/L), Cr-Co-Mo (Cr 200 mg/L, Co 375 mg/L), and titanium (400 mg/L). Then 0.5 ml of each solution was subcutaneously administered to male Charles River mice each 72 hours during 30 days. Cryostat sections of the spleen from all groups were submitted to routine staining with haematoxylin/eosin, peroxidase detection by 3-3' diaminobenzidine (DAB), and alkaline phosphatase anti-alkaline phosphatase (APAAP) for lymphocyte detection. Several pronounced alterations were found in the spleen architecture, as manifested by irregular features within the capsule and medulla, namely depletion of T4 and B cells. Altogether these results suggest toxic alterations within the spleen induced by some of the metallic elements, indicating that the immune system may be hampered and so interfering in the body mechanisms of defence.
Collapse
|
31
|
Kirkpatrick CJ, Krump-Konvalinkova V, Unger RE, Bittinger F, Otto M, Peters K. Tissue response and biomaterial integration: the efficacy of in vitro methods. BIOMOLECULAR ENGINEERING 2002; 19:211-7. [PMID: 12202185 DOI: 10.1016/s1389-0344(02)00019-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Implantation involves tissue trauma, which evokes an inflammatory response, coupled to a wound healing reaction, involving angiogenesis, fibroblast activation and matrix remodelling. Until now the type and extent of such reactions to give optimal integration of various biomaterials are practically unknown. Three principal fields of research can yield useful data to understand these phenomena better: studies on explanted biomaterials, animal models and relevant in vitro techniques. This paper will present examples of the latter field and the application of endothelial cell (EC) culture systems to study the effects of important tissue (e.g. pro-inflammatory cytokines, chemokines) and material (e.g. metal ions, particulate debris) factors on the regulation of the inflammatory and angiogenic response. A central feature is the use of microvascular endothelial cells (MEC), which can be used in both 2-and 3-dimensional (3-D) assays. We have also used genetic manipulation to develop a permanent MEC line from the human lung (HPMEC-ST1), which is being tested for its suitability to study cell-biomaterial interactions. In addition, suitable in vitro techniques are being developed in order to investigate drug delivery systems (DDS). Of particular interest is the targeting of the central nervous system, our approach being to establish a human model of the blood-brain barrier (BBB). A mainstay of our scientific philosophy is that such in vitro methods can make an important contribution to understanding biological reactions at the tissue-biomaterial interface and thus further a causal approach to tissue engineering (TE) and drug delivery applications.
Collapse
Affiliation(s)
- C J Kirkpatrick
- Institute of Pathology, Johannes Gutenberg University, Langenbeckstr. 1, D-55101 Mainz, Germany.
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Cobalt-base alloys may be generally described as non magnetic, wear, corrosion and heat-resistant (high strength even at elevated temperature). Many properties of the alloy originate from the crystallographic nature of cobalt, the solid-solution-strengthening effect of chromium and molybdenum, the formation of extremely hard carbides and the corrosion resistance imparted by chromium. Cobalt-base alloys are difficult to fabricate which is why their use has been limited, but continuous work led to the development of specialized casting methods. Due to its excellent resistance to degradation in the oral environment, the first medical use of cobalt-base alloys was in the cast of dental implants. Various in vitro and in vivo tests have shown that the alloys are biocompatible and suitable for use as surgical implants. Today, the use of Co alloys for surgical applications is mainly related to orthopaedic prostheses for the knee, shoulder and hip as well as to fracture fixation devices. Joint endoprostheses are typical long-term implants and the applied implant material must therefore meet extremely high requirements with regard to biocompatibility with the surrounding body tissue material and corrosion resistance to body fluids.
Collapse
Affiliation(s)
- A Marti
- Dr Robert Mathys Foundation, Bischmattstr. 12, CH-2544 Bettlach
| |
Collapse
|