1
|
Li CM, Miao Y, Lingeman RG, Hickey RJ, Malkas LH. Partial Purification of a Megadalton DNA Replication Complex by Free Flow Electrophoresis. PLoS One 2016; 11:e0169259. [PMID: 28036377 PMCID: PMC5201288 DOI: 10.1371/journal.pone.0169259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/12/2016] [Indexed: 02/03/2023] Open
Abstract
We describe a gentle and rapid method to purify the intact multiprotein DNA replication complex using free flow electrophoresis (FFE). In particular, we applied FFE to purify the human cell DNA synthesome, which is a multiprotein complex that is fully competent to carry-out all phases of the DNA replication process in vitro using a plasmid containing the simian virus 40 (SV40) origin of DNA replication and the viral large tumor antigen (T-antigen) protein. The isolated native DNA synthesome can be of use in studying the mechanism by which mammalian DNA replication is carried-out and how anti-cancer drugs disrupt the DNA replication or repair process. Partially purified extracts from HeLa cells were fractionated in a native, liquid based separation by FFE. Dot blot analysis showed co-elution of many proteins identified as part of the DNA synthesome, including proliferating cell nuclear antigen (PCNA), DNA topoisomerase I (topo I), DNA polymerase δ (Pol δ), DNA polymerase ɛ (Pol ɛ), replication protein A (RPA) and replication factor C (RFC). Previously identified DNA synthesome proteins co-eluted with T-antigen dependent and SV40 origin-specific DNA polymerase activity at the same FFE fractions. Native gels show a multiprotein PCNA containing complex migrating with an apparent relative mobility in the megadalton range. When PCNA containing bands were excised from the native gel, mass spectrometric sequencing analysis identified 23 known DNA synthesome associated proteins or protein subunits.
Collapse
Affiliation(s)
- Caroline M. Li
- Department of Molecular and Cellular Biology, Beckman Research Institute at City of Hope, Duarte, California, United States of America
- * E-mail:
| | - Yunan Miao
- Department of Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, California, United States of America
| | - Robert G. Lingeman
- Department of Molecular and Cellular Biology, Beckman Research Institute at City of Hope, Duarte, California, United States of America
| | - Robert J. Hickey
- Department of Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, California, United States of America
| | - Linda H. Malkas
- Department of Molecular and Cellular Biology, Beckman Research Institute at City of Hope, Duarte, California, United States of America
| |
Collapse
|
2
|
Dai H, Liu J, Malkas LH, Hickey RJ. Characterization of RNA primers synthesized by the human breast cancer cell DNA synthesome. J Cell Biochem 2009; 106:798-811. [PMID: 19204933 DOI: 10.1002/jcb.22015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We previously reported on the purification and characterization of a functional multi-protein DNA replication complex (the DNA synthesome) from human cells and tissues. The synthesome is fully competent to carry-out all phases of the DNA replication process in vitro. In this study, DNA primase, a component of the synthesome, is examined to determine its activity and processivity in the in vitro synthesis and extension of RNA primers. Our results show that primase activity in the P4 fraction of the synthesome is 30-fold higher than that of crude cell extracts. The synthesome synthesizes RNA primers that are 7-10 ribonucleotides long and DNA primers that are 20-40 deoxyribonucleotides long using a poly(dT) template of exogenous single-stranded DNA. The synthesome-catalyzed RNA primers can be elongated by E. coli DNA polymerase I to form the complementary DNA strands on the poly(dT) template. In addition, the synthesome also supports the synthesis of native RNA primers in vitro using an endogenous supercoiled double-stranded DNA template. Gel analysis demonstrates that native RNA primers are oligoribonucleotides of 10-20 nt in length and the primers are covalently link to DNA to form RNA-primed nascent DNA of 100-200 nt. Our study reveals that the synthesome model is capable of priming and continuing DNA replication. The ability of the synthesome to synthesize and extend RNA primers in vitro elucidates the organizational and functional properties of the synthesome as a potentially useful replication apparatus to study the function of primase and the interaction of primase with other replication proteins.
Collapse
Affiliation(s)
- Heqiao Dai
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indiana University Cancer Research Institute, Indiana University Simon Cancer Center, 1044 W. Walnut Street R4-170 Indianapolis, Indiana 46202, USA
| | | | | | | |
Collapse
|
3
|
Abstract
BACKGROUND Despite significant analysis of the chromosomal abnormalities associated with neuroblastoma (NB), the role that NB DNA replication may play in the accumulation of genetic damage is poorly understood. For that matter, the mechanisms involved in NB DNA synthesis have yet to be elucidated. In an effort to investigate this process in NB, we have isolated and purified a multiprotein DNA replication complex from human NB cells (IMR-32). METHODS Using a series of subcellular fractionations, ion-exchange chromatography, and gradient sedimentation steps, we have isolated a simian virus 40 replication competent multiprotein complex from IMR-32 NB cells, which has been designated the DNA synthesome. Enzymatic and immunodetection techniques were used to characterize the multiple components of the multiprotein DNA replication complex. RESULTS The NB DNA synthesome was found to remain intact and functional through all the steps of its purification. The proteins and enzymatic activities that were found to copurify with the NB DNA synthesome include: DNA polymerases alpha , delta , and epsilon , proliferating cell nuclear antigen, replication factor A, replication factor C, topoisomerases I and II, flap endonuclease 1, and DNA ligase I. CONCLUSION Although the cooperative integration of a DNA replication macromolecular complex (DNA synthesome) is not new, we extend the view of the DNA synthesome mediating DNA synthesis for human NB. The data reported here characterize the human NB DNA synthesome for the first time and provide the groundwork for investigating whether the NB DNA synthesome contributes to faulty DNA replication and tumor pathogenesis for this childhood malignancy.
Collapse
Affiliation(s)
- John A Sandoval
- Department of Surgery and Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
4
|
Matheos D, Ruiz MT, Price GB, Zannis-Hadjopoulos M. Ku antigen, an origin-specific binding protein that associates with replication proteins, is required for mammalian DNA replication. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1578:59-72. [PMID: 12393188 DOI: 10.1016/s0167-4781(02)00497-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ors binding activity (OBA) represents a HeLa cell protein activity that binds in a sequence-specific manner to A3/4, a 36-bp mammalian replication origin sequence. OBA's DNA binding domain is identical to the 80-kDa subunit of Ku antigen. Ku antigen associates with mammalian origins of DNA replication in vivo, with maximum binding at the G1/S phase. Addition of an A3/4 double-stranded oligonucleotide inhibited in vitro DNA replication of p186, pors12, and pX24, plasmids containing the monkey replication origins of ors8, ors12, and the Chinese hamster DHFR oribeta, respectively. In contrast, in vitro SV40 DNA replication remained unaffected. The inhibitory effect of A3/4 oligonucleotide was fully reversed upon addition of affinity-purified Ku. Furthermore, depletion of Ku by inclusion of an antibody recognizing the Ku heterodimer, Ku70/Ku80, decreased mammalian replication to basal levels. By co-immunoprecipitation analyses, Ku was found to interact with DNA polymerases alpha, delta and epsilon, PCNA, topoisomerase II, RF-C, RP-A, DNA-PKcs, ORC-2, and Oct-1. These interactions were not inhibited by the presence of ethidium bromide in the immunoprecipitation reaction, suggesting DNA-independent protein associations. The data suggest an involvement of Ku in mammalian DNA replication as an origin-specific-binding protein with DNA helicase activity. Ku acts at the initiation step of replication and requires an A3/4-homologous sequence for origin binding. The physical association of Ku with replication proteins reveals a possible mechanism by which Ku is recruited to mammalian origins.
Collapse
Affiliation(s)
- Diamanto Matheos
- McGill Cancer Centre, McGill University, 3655 Drummond Street, Promenade Sir William Osler, Montréal, Québec, Canada H3G 1Y6
| | | | | | | |
Collapse
|
5
|
Jiang HY, Hickey RJ, Abdel-Aziz W, Tom TD, Wills PW, Liu J, Malkas LH. Human cell DNA replication is mediated by a discrete multiprotein complex. J Cell Biochem 2002; 85:762-74. [PMID: 11968016 DOI: 10.1002/jcb.10182] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A discrete high molecular weight multiprotein complex containing DNA polymerase alpha has been identified by a native Western blotting technique. An enrichment of this complex was seen at each step in its purification. Further purification of this complex by ion-exchange chromatography indicates that the peak of DNA polymerase alpha activity co-purifies with the peak of in vitro SV40 DNA replication activity eluting from the column. The complex has a sedimentation coefficient of 18S in sucrose density gradients. We have designated this complex as the DNA synthesome. We further purified the DNA synthesome by electroeluting this complex from a native polyacrylamide gel. The eluted complex retains in vitro DNA synthetic activity, and by Western blot analysis, contains DNA polymerase delta, proliferating cell nuclear antigen, and replication protein A. Enzymatic analysis of the electroeluted DNA synthesome indicates that the synthesome contains topoisomerase I and II activities, and SDS-PAGE analysis of the electroeluted DNA synthesome revealed the presence of at least 25 major polypeptides with molecular weights ranging from 20 to 240 kDa. Taken together, our evidence suggests that the DNA synthesome may represent the minimal DNA replication unit of the human cell.
Collapse
Affiliation(s)
- Hai Yan Jiang
- Department of Medicine, Hematology/Oncology Division, Indiana Cancer Research Institute, Indiana University Purdue University, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Xu X, Hamhouyia F, Thomas SD, Burke TJ, Girvan AC, McGregor WG, Trent JO, Miller DM, Bates PJ. Inhibition of DNA replication and induction of S phase cell cycle arrest by G-rich oligonucleotides. J Biol Chem 2001; 276:43221-30. [PMID: 11555643 DOI: 10.1074/jbc.m104446200] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The discovery of G-rich oligonucleotides (GROs) that have non-antisense antiproliferative activity against a number of cancer cell lines has been recently described. This biological activity of GROs was found to be associated with their ability to form stable G-quartet-containing structures and their binding to a specific cellular protein, most likely nucleolin (Bates, P. J., Kahlon, J. B., Thomas, S. D., Trent, J. O., and Miller, D. M. (1999) J. Biol. Chem. 274, 26369-26377). In this report, we further investigate the novel mechanism of GRO activity by examining their effects on cell cycle progression and on nucleic acid and protein biosynthesis. Cell cycle analysis of several tumor cell lines showed that cells accumulate in S phase in response to treatment with an active GRO. Analysis of 5-bromodeoxyuridine incorporation by these cells indicated the absence of de novo DNA synthesis, suggesting an arrest of the cell cycle predominantly in S phase. At the same time point, RNA and protein synthesis were found to be ongoing, indicating that arrest of DNA replication is a primary event in GRO-mediated inhibition of proliferation. This specific blockade of DNA replication eventually resulted in altered cell morphology and induction of apoptosis. To characterize further GRO-mediated inhibition of DNA replication, we used an in vitro assay based on replication of SV40 DNA. GROs were found to be capable of inhibiting DNA replication in the in vitro assay, and this activity was correlated to their antiproliferative effects. Furthermore, the effect of GROs on DNA replication in this assay was related to their inhibition of SV40 large T antigen helicase activity. The data presented suggest that the antiproliferative activity of GROs is a direct result of their inhibition of DNA replication, which may result from modulation of a replicative helicase activity.
Collapse
Affiliation(s)
- X Xu
- Human Molecular Biology Group, James Graham Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Novac O, Matheos D, Araujo FD, Price GB, Zannis-Hadjopoulos M. In vivo association of Ku with mammalian origins of DNA replication. Mol Biol Cell 2001; 12:3386-401. [PMID: 11694575 PMCID: PMC61172 DOI: 10.1091/mbc.12.11.3386] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ku is a heterodimeric (Ku70/86-kDa) nuclear protein with known functions in DNA repair, V(D)J recombination, and DNA replication. Here, the in vivo association of Ku with mammalian origins of DNA replication was analyzed by studying its association with ors8 and ors12, as assayed by formaldehyde cross-linking, followed by immunoprecipitation and quantitative polymerase chain reaction analysis. The association of Ku with ors8 and ors12 was also analyzed as a function of the cell cycle. This association was found to be approximately fivefold higher in cells synchronized at the G1/S border, in comparison with cells at G0, and it decreased by approximately twofold upon entry of the cells into S phase, and to near background levels in cells at G2/M phase. In addition, in vitro DNA replication experiments were performed with the use of extracts from Ku80(+/+) and Ku80(-/-) mouse embryonic fibroblasts. A decrease of approximately 70% in in vitro DNA replication was observed when the Ku80(-/-) extracts were used, compared with the Ku80(+/+) extracts. The results indicate a novel function for Ku as an origin binding-protein, which acts at the initiation step of DNA replication and dissociates after origin firing.
Collapse
Affiliation(s)
- O Novac
- McGill Cancer Center, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | | | |
Collapse
|
8
|
Han S, Hickey RJ, Tom TD, Wills PW, Syväoja JE, Malkas LH. Differential inhibition of the human cell DNA replication complex-associated DNA polymerases by the antimetabolite 1-beta-D-arabinofuranosylcytosine triphosphate (ara-CTP). Biochem Pharmacol 2000; 60:403-11. [PMID: 10856436 DOI: 10.1016/s0006-2952(00)00336-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The antimetabolite 1-beta-D-arabinofuranosylcytosine (ara-C) has been used as a highly effective agent for the treatment of leukemia. The active metabolite 1-beta-D-arabinofuranosylcytosine triphosphate (ara-CTP) is a potent inhibitor of DNA polymerases alpha, delta, and epsilon, and is responsible for inhibiting intact cell DNA synthesis. We have shown that a multiprotein complex, exhibiting many of the properties expected of the human cell DNA replication apparatus, can be readily isolated from human cells and tissues and is capable of supporting origin-dependent DNA synthesis in vitro. DNA polymerases alpha, delta, and epsilon are components of this multiprotein complex, termed the DNA synthesome, and we report here that the activities of these DNA synthesome-associated DNA polymerases are inhibited differentially by ara-CTP. Inhibition of the DNA synthesome-associated DNA polymerase alpha increased in a concentration-dependent manner, and was correlated closely with the inhibition of simian virus 40 (SV40) origin-dependent in vitro DNA replication, whereas DNA synthesome-associated DNA polymerase delta activity was not inhibited significantly by ara-CTP at 100 microM. Recent work has shown that the synthesome-associated DNA polymerase epsilon does not function in in vitro SV40 DNA replication, suggesting that only polymerases alpha and delta drive the DNA replication fork. Therefore, our results suggest that inhibition of the activity of the mammalian cell DNA synthesome by ara-CTP is due primarily to the inhibition of the DNA synthesome-associated DNA polymerase alpha. This observation implies that the drug may target specific phases of the DNA synthetic process in human cells.
Collapse
Affiliation(s)
- S Han
- Department of Pharmacology and Experimental Therapeutics, School of Medicine, University of Maryland, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|