1
|
Modulation of Fecal Metabolites by Heat Stress and Diet, and Their Association with Inflammation and Leaky Gut Markers in Dairy Cows. Metabolites 2022; 12:metabo12020142. [PMID: 35208216 PMCID: PMC8874496 DOI: 10.3390/metabo12020142] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/22/2022] Open
Abstract
The analysis of fecal metabolite profiles could provide novel insights into the mechanisms underlying animal responses to environmental stressors and diet. We aimed to evaluate the effects of a 14-day heat stress period and of dietary mineral and vitamin supplementation under heat stress on fecal metabolite profiles and to investigate their associations with physiological markers of heat stress, leaky gut, and inflammation in lactating dairy cows. Twelve multiparous Holstein cows (42.2 ± 5.6 kg milk/d; 83.4 ± 27.1 DIM) were enrolled in an experiment in a split-plot design. The main plot was the level of dietary vitamin E and Se, as follows: (1) low (L-ESe; 20 IU/kg vitamin E, 0.3 ppm Se) or (2) high (H-ESe 200 IU/kg vitamin E, 1.2 ppm Se). Within each plot, six cows were randomly assigned to either (1) heat stress (HS; Total Humidity Index (THI): 82), (2) pair-feeding in thermoneutrality (TNPF; THI = 64), or (3) HS with vitamin D3 and Ca supplementation (HS+DCa; 1820 IU/kg and 1.5% Ca; THI: 82) in a replicated 3 × 3 Latin square design with 14-day periods and 7-day washouts. The concentrations of 94 metabolites were determined in fecal samples, including amino acids, fatty acids, biogenic amines, and vitamins. Relative to the L-ESe group, the H-ESe group increased α-tocopherol by threefold, whereas δ-tocopherol was decreased by 78% (PFDR < 0.01). Nevertheless, correlation analysis between α-tocopherol and all the others fecal metabolites or physiological heat stress measures did not show significant associations. No interactions between main plot and treatments were observed. Relative to TNPF, HS increased plasma tumor necrosis factor-alpha (TNF-α), plasma lipopolysaccharide-binding protein (LBP), milk somatic cell counts (SCC), respiratory rates, rectal temperatures, fecal tridecylic and myristic acids, vitamin B7, and retinol, whereas it decreased fecal amino acids such as histidine, methyl histidine, acetyl ornithine, and arginine (PFDR < 0.05). In contrast, HS+DCa increased fecal methyl histidine concentrations and reduced milk SCC, plasma TNF-α, and LBP, as well as rectal temperatures. Discriminant analysis revealed fecal histidine, taurine, acetyl ornithine, arginine, β-alanine, ornithine, butyric + iso-butyric acid, plasma non-esterified fatty acids, TNF-α, LBP, C-reactive protein, and milk SCC were predictive of HS. Several metabolites were predictive of HS+DCa, although only tryptophan was discriminant relative to HS. In conclusion, both heat stress and the supplementation of vitamin D3 and Ca can influence the fecal metabolome of dairy cows experiencing heat stress, independently of dietary levels of vitamin E and Se. Our results suggest that some fecal metabolites are well associated with physiological measures of heat stress and may thus provide insights into the gut-level changes taking place under heat stress in dairy cows.
Collapse
|
2
|
Crossland H, Smith K, Atherton PJ, Wilkinson DJ. A novel stable isotope tracer method to simultaneously quantify skeletal muscle protein synthesis and breakdown. Metabol Open 2020; 5:100022. [PMID: 32494771 PMCID: PMC7259457 DOI: 10.1016/j.metop.2020.100022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/11/2019] [Accepted: 01/01/2020] [Indexed: 01/08/2023] Open
Abstract
Background/aims Methodological challenges have been associated with the dynamic measurement of muscle protein breakdown (MPB), as have the measurement of both muscle protein synthesis (MPS) and MPB within the same experiment. Our aim was to use the transmethylation properties of methionine as proof-of-concept to measure rates of MPB via its methylation of histidine within skeletal muscle myofibrillar proteins, whilst simultaneously utilising methionine incorporation into bound protein to measure MPS. Results During the synthesis measurement period, incorporation of methyl[D3]-13C-methionine into cellular protein in C2C12 myotubes was observed (representative of MPS), alongside an increase in the appearance of methyl[D3]-methylhistidine into the media following methylation of histidine (representative of MPB). For further validation of this approach, fractional synthetic rates (FSR) of muscle protein were increased following treatment of the cells with the anabolic factors insulin-like growth factor-1 (IGF-1) and insulin, while dexamethasone expectedly reduced MPS. Conversely, rates of MPB were reduced with IGF-1 and insulin treatments, whereas dexamethasone accelerated MPB. Conclusions This is a novel stable isotope tracer approach that permits the dual assessment of muscle cellular protein synthesis and breakdown rates, through the provision of a single methionine amino acid tracer that could be utilised in a wide range of biological settings.
Collapse
Affiliation(s)
- Hannah Crossland
- MRC-ARUK Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Biomedical Research Centre (BRC), Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, UK
| | - Kenneth Smith
- MRC-ARUK Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Biomedical Research Centre (BRC), Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, UK
| | - Philip J Atherton
- MRC-ARUK Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Biomedical Research Centre (BRC), Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, UK
| | - Daniel J Wilkinson
- MRC-ARUK Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Biomedical Research Centre (BRC), Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, UK
| |
Collapse
|
3
|
Kaufman JD, Pohler KG, Mulliniks JT, Ríus AG. Lowering rumen-degradable and rumen-undegradable protein improved amino acid metabolism and energy utilization in lactating dairy cows exposed to heat stress. J Dairy Sci 2017; 101:386-395. [PMID: 29128223 DOI: 10.3168/jds.2017-13341] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/16/2017] [Indexed: 11/19/2022]
Abstract
The objective of this study was to evaluate the effects of reducing dietary rumen-degradable protein (RDP) and rumen-undegradable protein (RUP) on protein and energy metabolism in heat-stressed dairy cows. Eighteen primiparous and 30 multiparous mid-lactation Holstein cows were used in a completely randomized design arranged in a 2 × 2 factorial (n = 12/treatment). Cows were randomly assigned to 1 of 4 dietary treatments that included 2 levels of RDP (10 and 8%; D) and 2 levels of RUP (8 and 6%; U) of dry matter for 21 d as (1) 10D:8U, (2) 8D:8U, (3) 10D:6U, and (4) 8D:6U. Diets were isoenergetic and contained 50% forage and 50% concentrate (dry matter basis). Cows were housed in a freestall barn. Three weeks before start of treatments, all animals were fed the 10D:8U diet and received supplemental cooling to prevent heat stress. During the treatment period, cows experienced a daily increment in temperature-humidity index from 74 to 82 for 1000 to 2000 h. Blood samples were collected on d -1 and 21 of the treatment period to determine plasma concentrations of AA, glucose, insulin, fatty acids, and β-hydroxybutyrate. For primiparous cows, reducing from 10 to 8% RDP decreased insulin concentrations. For multiparous cows, we found significant RDP by RUP interactions for insulin, β-hydroxybutyrate, fatty acids, total essential AA, and 3-methylhistidine concentrations. Reducing from 10 to 8% RDP decreased insulin concentrations at 6% RUP, but concentrations did not change when reducing RDP at 8% RUP. Reducing from 10 to 8% RDP decreased β-hydroxybutyrate concentrations at 8% RUP, but concentrations did not change when reducing RDP at 6% RUP. Reducing from 10 to 8% RDP increased nonesterified fatty acid and total essential AA concentrations at 8% RUP, but concentrations did not change when reducing RDP at 6% RUP. Reducing from 8 to 6% RUP decreased 3-methylhistidine concentration at 8% RDP, but not at 10% RDP. Reducing from 8 to 6% RUP increased milk protein yield efficiency in primiparous and multiparous cows. These results indicate that reducing RDP and RUP lowers circulating insulin, which was associated with mobilization and utilization of fatty acids. Reduced RDP and RUP increases the use of AA to maintain milk protein synthesis and limit AA catabolism in cows exposed to warm climates.
Collapse
Affiliation(s)
- J D Kaufman
- Department of Animal Science, University of Tennessee, Knoxville 37996
| | - K G Pohler
- Department of Animal Science, University of Tennessee, Knoxville 37996
| | - J T Mulliniks
- Department of Animal Science, University of Tennessee, Knoxville 37996
| | - A G Ríus
- Department of Animal Science, University of Tennessee, Knoxville 37996.
| |
Collapse
|
4
|
Nakashima K, Ishida A, Yakabe Y, Yamazaki M, Abe H. Effects of Orally Administrated Amino Acids on Myofibrillar Proteolysis in Chicks. Biosci Biotechnol Biochem 2014; 70:1975-8. [PMID: 16926512 DOI: 10.1271/bbb.60028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We examined the effects of orally administrated amino acids on myfibrillar proteolysis in food-deprived chicks. Plasma N(tau)-methylhistidine concentration, as an index of myofibrillar proteolysis, was decreased by the administration of Glu, Gly, Ala, Leu, Ile, Ser, Thr, Met, Trp, Asn, Gln, Pro, Lys and Arg but not by Asp, Val, Phe, Tyr or His to chicks. Orally administrated Cys was fatal to chicks. These results indicate that oral Glu, Gly, Ala, Leu, Ile, Ser, Thr, Met, Trp, Asn, Gln, Pro, Lys and Arg administration suppressed myofibrillar proteolysis in chicks.
Collapse
Affiliation(s)
- Kazuki Nakashima
- Department of Animal Physiology and Nutrition, National Institute of Livestock and Grassland Science, Tsukuba, Japan.
| | | | | | | | | |
Collapse
|
5
|
Effect of Orally Administered Taurine on Myofibrillar Proteolysis and Expression of Proteolytic-Related Genes of Skeletal Muscle in Chicks. J Poult Sci 2009. [DOI: 10.2141/jpsa.46.328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
6
|
Neumann S, Welling H, Bilzer T, Thuere S. Myopathy and alterations in serum 3-methylhistidine in dogs with liver disease. Res Vet Sci 2008; 84:178-84. [PMID: 17643456 DOI: 10.1016/j.rvsc.2007.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 03/01/2007] [Accepted: 05/16/2007] [Indexed: 10/23/2022]
Abstract
Liver disease can influence the metabolism of various other organs. Regarding the influence of liver diseases on muscles, only a few studies done on people exist. The goal of our study was to investigate the influence of liver diseases on muscles in dogs. Twenty-eight dogs with different liver diseases were investigated in this study. The diagnosis of muscle alteration was based on electromyography (EMG), creatine kinase serum activity, 3-methylhistidine serum concentration and a muscle biopsy in some cases. Our results suggest that liver diseases in dogs can be accompanied with muscle alteration. 3-Methylhistidine serum concentration as a new parameter for muscle destruction in dogs was significantly increased compared to clinical healthy dogs and was comparable to those concentrations in dogs with histologically confirmed myopathy of different types. The differentiation of the liver diseases into severe hepatitis, moderate hepatitis and liver tumours showed a significant elevation of 3-methylhistidine serum concentration in cases of liver tumours (P=0.03) and a tendency in cases of severe hepatitis (P=0.07). Based on our study we can conclude that liver diseases have an influence on muscles in dogs and 3-methylhistidine could be a useful parameter for muscle destruction.
Collapse
Affiliation(s)
- Stephan Neumann
- Institute of Veterinary Medicine, University of Goettingen, Burckhardtweg 2, D-37077, Goettingen, Germany.
| | | | | | | |
Collapse
|
7
|
KAMIYA M, KAMIYA Y, TANAKA M, SHIOYA S. Changes of plasma free amino acid concentrations and myofibrillar proteolysis index by starvation in non-pregnant dry cows. Anim Sci J 2008. [DOI: 10.1111/j.1740-0929.2007.00497.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Nakashima K, Yakabe Y, Ishida A, Katsumata M. Effects of orally administered glycine on myofibrillar proteolysis and expression of proteolytic-related genes of skeletal muscle in chicks. Amino Acids 2007; 35:451-6. [PMID: 17624491 DOI: 10.1007/s00726-007-0573-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2007] [Accepted: 06/18/2007] [Indexed: 10/23/2022]
Abstract
We examined the effects of orally administered glycine on myofibrillar proteolysis in food-deprived chicks. Food-deprived (24 h) chicks were orally administered 57, 113, and 225 mg glycine/100 g body weight and killed after 2 h. The plasma N(tau)-methylhistidine concentration, used as myofibrillar proteolysis, was decreased by glycine. We also examined the expression of proteolytic-related genes by real-time PCR of cDNA from chick skeletal muscles. The mRNA expression of atrogin-1/MAFbx, proteasome C2 subunit, m-calpain large subunit, and cathepsin B was decreased by glycine in a dose-dependent manner. The plasma corticosterone concentration was also decreased by glycine, but the plasma insulin concentration was unaffected. These results indicate that orally administered glycine suppresses myofibrillar proteolysis and expression of proteolytic-related genes of skeletal muscle by decreasing the plasma corticosterone concentration in chicks.
Collapse
Affiliation(s)
- K Nakashima
- Molecular Nutrition Research Team, National Institute of Livestock and Grassland Science, Tsukuba, Japan.
| | | | | | | |
Collapse
|
9
|
Nakashima K, Yakabe Y. AMPK activation stimulates myofibrillar protein degradation and expression of atrophy-related ubiquitin ligases by increasing FOXO transcription factors in C2C12 myotubes. Biosci Biotechnol Biochem 2007; 71:1650-6. [PMID: 17617726 DOI: 10.1271/bbb.70057] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In skeletal muscle, AMP-activated protein kinase (AMPK) is a metabolic master switch regulating glucose and lipid metabolism. Recently, AMPK has been implicated in the control of protein synthesis in skeletal muscle, but the effect of AMPK activation on myofibrillar protein degradation has yet to be elucidated. The present study was designed to examine the effect of 5-aminoimidazole-4-carboxamide-1-beta-D-ribonucleoside (AICAR)-induced AMPK signaling on effector mechanisms of myofibrillar protein degradation and the expression of atrophy-related genes (atrogin-1/MAFbx, MuRF1, proteasome C2 subunit, calpains, cathepsin B, and caspase-3) in C2C12 myotubes. AICAR stimulated myofibrillar protein degradation (as measured by N(tau)-methylhistidine release), while also increasing the levels of atrogin-1/MAFbx and MuRF1 mRNA, but the expression of other atrophy-related genes was not enhanced by AICAR treatment in C2C12 myotubes. AICAR also stimulated the level of FOXO transcription factors mRNA and protein in C2C12 myotubes. These results indicate that activation of AMPK stimulates myofibrillar protein degradation through the expression of atrogin-1/MAFbx and MuRF1 by increasing FOXO transcription factors in skeletal muscles.
Collapse
Affiliation(s)
- Kazuki Nakashima
- Molecular Nutrition Research Team, National Institute of Livestock and Grassland Science, Ikenoda, Tsukuba, Japan.
| | | |
Collapse
|
10
|
Nakashima K, Yakabe Y, Ishida A, Yamazaki M, Abe H. Suppression of myofibrillar proteolysis in chick skeletal muscles by α-ketoisocaproate. Amino Acids 2006; 33:499-503. [PMID: 16998714 DOI: 10.1007/s00726-006-0404-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Accepted: 08/18/2006] [Indexed: 10/24/2022]
Abstract
We previously reported that L-leucine suppresses myofibrillar proteolysis in chick skeletal muscles. In the current study, we compared the effects of L- and D-enantiomers of leucine on myofibrillar proteolysis in skeletal muscle of chicks. We also assessed whether leucine itself or its metabolite, alpha-ketoisocaproate (alpha-KIC), mediates the effects of leucine. Food-deprived (24 h) chicks were orally administered 225 mg/100 g body weight L-leucine, D-leucine or alpha-KIC and were sacrificed after 2 h. L-Leucine administration had an obvious inhibitory effect on myofibrillar proteolysis (plasma N(tau)-methylhistidine concentration) in chicks while D-leucine and alpha-KIC were much more effective. We also examined the expression of the proteolytic-related genes (ubiquitin, proteasome, m-calpain and cathepsin B) by real-time PCR of cDNA in chick skeletal muscles. Ubiquitin mRNA expression was decreased by D-leucine and alpha-KIC but not L-leucine. Proteasome and m-calpain mRNA expressions as well as cathepsin B mRNA expression were likewise decreased by L-leucine, D-leucine and alpha-KIC. These results indicate that D-leucine and alpha-KIC suppress proteolytic-related genes, resulting in an decrease in myofibrillar proteolysis while L-leucine is much less effective in skeletal muscle of chicks, may be explain by conversion of D-leucine to alpha-KIC.
Collapse
Affiliation(s)
- K Nakashima
- Department of Animal Physiology and Nutrition, National Institute of Livestock and Grassland Science, Tsukuba, Japan.
| | | | | | | | | |
Collapse
|
11
|
KAMIYA M, KAMIYA Y, TANAKA M, OKI T, NISHIBA Y, SHIOYA S. Effects of high ambient temperature and restricted feed intake on urinary and plasma 3-methylhistidine in lactating Holstein cows. Anim Sci J 2006. [DOI: 10.1111/j.1740-0929.2006.00338.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Nakashima K, Ishida A, Yamazaki M, Abe H. Leucine suppresses myofibrillar proteolysis by down-regulating ubiquitin-proteasome pathway in chick skeletal muscles. Biochem Biophys Res Commun 2005; 336:660-6. [PMID: 16153608 DOI: 10.1016/j.bbrc.2005.08.138] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Accepted: 08/17/2005] [Indexed: 11/27/2022]
Abstract
In skeletal muscle, amino acids, together with hormones, are key regulators of protein metabolism. Leucine, in particular, has inhibitory effects of protein degradation in skeletal muscles, but the mechanisms are poorly understood. The present study addressed the role of leucine as a regulator of myofibrillar proteolysis in cultured chick myotubes and chick skeletal muscles, and aimed to determine which cellular responses regulate the process. In chick myotubes, leucine suppressed myofibrillar proteolysis (as measured by N(tau)-methylhistidine release), while also decreasing ubiquitin and proteasome C2 subunit mRNA. Oral administration of leucine also suppressed myofibrillar proteolysis (as measured by plasma N(tau)-methylhistidine concentration), while also decreasing proteasome C2 subunit mRNA in chick skeletal muscle. Leucine activated the phosphatidylinositol 3-kinase (PI3K) and protein kinase C (PKC) (but not the mammalian target of rapamycin) inhibition of these pathways and increased myofibrillar proteolysis, ubiquitin and proteasome C2 subunit mRNA. Thus, an important component of muscle proteolysis inhibition by leucine, through the PI3K and PKC, is its ability to suppress transcription of the ubiquitin and proteasome C2 subunit, and degradation of myofibrillar protein.
Collapse
Affiliation(s)
- Kazuki Nakashima
- Department of Animal Physiology and Nutrition, National Institute of Livestock and Grassland Science, Tsukuba 305-0901, Japan.
| | | | | | | |
Collapse
|
13
|
NAKASHIMA K, NONAKA I, MASAKI S, YAMAZAKI M, ABE H. Myofibrillar proteolysis in chick muscle cell cultures during heat stress. Anim Sci J 2004. [DOI: 10.1111/j.1740-0929.2004.00197.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Kleger GR, Turgay M, Imoberdorf R, McNurlan MA, Garlick PJ, Ballmer PE. Acute metabolic acidosis decreases muscle protein synthesis but not albumin synthesis in humans. Am J Kidney Dis 2001; 38:1199-207. [PMID: 11728951 DOI: 10.1053/ajkd.2001.29215] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Chronic metabolic acidosis induces negative nitrogen balance by either increased protein breakdown or decreased protein synthesis. Few data exist regarding effects of acute metabolic acidosis on protein synthesis. We investigated fractional synthesis rates (FSRs) of muscle protein and albumin, plasma concentrations of insulin-like growth factor-I (IGF-I), thyroid-stimulating hormone (TSH), and thyroid hormones (free thyroxin [fT(4)] and triiodothyronine [fT(3)]) in seven healthy human volunteers after a stable controlled metabolic period of 5 days and again 48 hours later after inducing metabolic acidosis by oral ammonium chloride intake (4.2 mmol/kg/d divided in six daily doses). Muscle and albumin FSRs were obtained by the [(2)H(5)ring]phenylalanine flooding technique. Ammonium chloride induced a significant decrease in pH (7.43 +/- 0.02 versus 7.32 +/- 0.04; P < 0.0001) and bicarbonate concentration (24.6 +/- 1.6 versus 16.0 +/- 2.7 mmol/L; P < 0.0001) within 48 hours. Nitrogen balance decreased significantly on the second day of acidosis. The FSR of muscle protein decreased (1.94 +/- 0.25 versus 1.30 +/- 0.39; P < 0.02), whereas the FSR of albumin remained constant. TSH levels increased significantly (1.1 +/- 0.5 versus 1.9 +/- 1.1 mU/L; P = 0.03), whereas IGF-I, fT(4), and fT(3) levels showed no significant change. We conclude that acute metabolic acidosis for 48 hours in humans induces a decrease in muscle protein synthesis, which contributes substantially to a negative nitrogen balance. In contrast to prolonged metabolic acidosis of 7 days, a short period of acidosis in the present study did not downregulate albumin synthesis.
Collapse
Affiliation(s)
- G R Kleger
- Department of Medicine, Inselspital Bern, Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
15
|
Thompson MG, Palmer RM, Thom A, Garden K, Lobley GE, Calder G. N tau-methylhistidine turnover in skeletal muscle cells measured by GC-MS. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 270:C1875-9. [PMID: 8764172 DOI: 10.1152/ajpcell.1996.270.6.c1875] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A method that employs gas chromatography-mass spectrometry has been developed to measure N tau-methylhistidine (3-methylhistidine; 3-MH) synthesis and release from skeletal muscle myotubes in vitro. It shows excellent linearity (0.9999) over the range studied (0-4 nmol), high recovery (92.6%), and low coefficient of variation (1.6%). 3-MH release from myotubes was essentially linear over a 96-h incubation, whereas the loss of 3-MH from cell protein accelerated with increasing time, an effect due, at lest in part, to decreasing rates of total protein synthesis. When incubated in either glutamine-free or methionine-free medium for 48 h, 3-MH in cell protein and appearing in the medium were greatly reduced compared with the 48-h controls, suggesting that hypertrophy was greatly reduced. Similar but lesser trends were observed with adenosine 3',5' -cyclic monophosphate. In contrast, 12-O-tetradecanoylphorbol-13-acetate (TPA) appeared to both stimulate 3-MII synthesis and inhibit its release during a 48-h incubation. The development of this method facilitates detailed investigation into the mechanisms through which agents such as TPA regulate myofibrillar protein degradation.
Collapse
Affiliation(s)
- M G Thompson
- Rowett Research Institute, Bucksburn, Aberdeen, United Kingdom
| | | | | | | | | | | |
Collapse
|