1
|
Abstract
Breast cancer is the most prevalent type of cancer amongst women worldwide. The mortality rate for patients with early-stage breast cancer has been decreasing, however, the 5-year survival rate for patients with metastatic disease remains poor, currently at 27%. Here, we have reviewed the current understanding of the role of bone morphogenetic protein (BMP) signaling in breast cancer progression, and have highlighted the discordant results that are reported in different studies. We propose that some of these contradictory outcomes may result from signaling through either the canonical or non-canonical pathways in different cell lines and tumors, or from different tumor-stromal interactions that occur in vivo.
Collapse
Affiliation(s)
- Lap Hing Chi
- a Metastasis Research Laboratory, Olivia Newton-John Cancer Research Institute , Heidelberg , Australia
- b School of Cancer Medicine, La Trobe University , Bundoora , Australia
| | - Allan D Burrows
- a Metastasis Research Laboratory, Olivia Newton-John Cancer Research Institute , Heidelberg , Australia
- b School of Cancer Medicine, La Trobe University , Bundoora , Australia
| | - Robin L Anderson
- a Metastasis Research Laboratory, Olivia Newton-John Cancer Research Institute , Heidelberg , Australia
- b School of Cancer Medicine, La Trobe University , Bundoora , Australia
- c Department of Clinical Pathology, The University of Melbourne , Parkville , VIC , Australia
- d Sir Peter MacCallum Department of Oncology, The University of Melbourne , Parkville , Australia
| |
Collapse
|
2
|
Gratchev A. TGF-β signalling in tumour associated macrophages. Immunobiology 2016; 222:75-81. [PMID: 26876591 DOI: 10.1016/j.imbio.2015.11.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/23/2015] [Accepted: 11/23/2015] [Indexed: 12/14/2022]
Abstract
Tumour associated macrophages (TAM) represent an important component of tumour stroma. They develop under the influence of tumour microenvironment where transforming growth factor (TGF)β is frequently present. Activities of TAM regulated by TGFβ stimulate proliferation of tumour cells and lead to tumour immune escape. Despite high importance of TGFβ-induction of TAM activities till now our understanding of the mechanism of this induction is limited. We have previously developed a model of type 2 macrophages (M2) resembling certain properties of TAM. We established that in M2 TGFβRII is regulated on the level of subcellular sorting by glucocorticoids. Further studies revealed that in M2 with high levels of TGFβRII on the surface TGFβ activates not only its canonical Smad2/3-mediated signaling, but also Smad1/5-mediated signaling, what is rather typical for bone morphogenetic protein (BMP) stimulation. Complexity of macrophage populations, however, allows assumption that TGFβ signalling may function in different ways depending on the functional state of the cell. To understand the peculiarities of TGFβ signalling in human TAMs experimental systems using primary cells have to be developed and used together with the modern mathematical modelling approaches.
Collapse
Affiliation(s)
- Alexei Gratchev
- Blokhin Cancer Research Center, Moscow, Russia; Laboratory for translational cellular and molecular biomedicine, Tomsk State University, Tomsk, Russia.
| |
Collapse
|
3
|
Abstract
MT1-MMP is a key integral membrane protease, which regulates tumor growth by cleaving extracellular matrix components, activating growth factors and receptors, and consequently, triggering downstream signals. To study what genes or pathways are mediated by endogenous MT1-MMP during tumor growth in vivo, we stably suppressed endogenous MT1-MMP in human tumor cells using RNA interference (RNAi). Tumor growth was significantly reduced in tumors derived from MT1-MMP-suppressed cells relative to control cells; the effect was rescued in cells engineered to re-express MT1-MMP expression. Gene expression profiling of cultured and tumor-derived cells by DNA microarray and real-time RT-PCR revealed that Smad1 expression was upregulated in MT1-MMP-expressing cells and rapidly growing tumors; this was confirmed in 4 additional tumor cell lines. Furthermore, tumor growth of MT1-MMP-expressing cells was reduced when Smad1 was suppressed by RNAi. We also found that the active form, but not the latent form, of TGF-beta was capable in promoting Smad1 expression and 3D cell proliferation in MT1-MMP-suppressed cells. In addition, a dominant-negative form of the TGF-beta Type II receptor reduced Smad1 expression in MT1-MMP-expressing cells. Thus, we propose that MT1-MMP functions, in part, to promote tumor growth by inducing the expression of Smad1 via TGF-beta signaling.
Collapse
Affiliation(s)
| | - Wen-Tien Chen
- To whom requests for reprints should be addressed, at Department of Medicine, HSC T15, Rm. 053, Stony Brook University, Stony Brook, NY 11794-8151. Phone: (631) 444-6948; Fax: (631) 444-7530;
| |
Collapse
|
4
|
Jin Q, Ding W, Mulder KM. Requirement for the dynein light chain km23-1 in a Smad2-dependent transforming growth factor-beta signaling pathway. J Biol Chem 2007; 282:19122-32. [PMID: 17420258 DOI: 10.1074/jbc.m609915200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have identified km23-1 as a novel transforming growth factor-beta (TGFbeta) receptor (TbetaR)-interacting protein that is also a light chain of the motor protein dynein (dynein light chain). Herein, we demonstrate by sucrose gradient analyses that, in the presence of TGFbeta but not in the absence, km23-1 was present in early endosomes with the TbetaRs. Further, confocal microscopy studies indicate that endogenous km23-1 was co-localized with endogenous Smad2 at early times after TGFbeta treatment, prior to Smad2 translocation to the nucleus. In addition, immunoprecipitation/blot analyses showed that TGFbeta regulated the interaction between endogenous km23-1 and endogenous Smad2 in vivo. Blockade of km23-1 using a small interfering RNA approach resulted in a reduction in both total intracellular Smad2 levels and in nuclear levels of phosphorylated Smad2 after TGFbeta treatment. This decrease was reversed by lactacystin, a specific inhibitor of the 26 S proteasome, suggesting that knockdown of km23-1 causes proteasomal degradation of phosphorylated (i.e. activated) Smad2. Blockade of km23-1 also resulted in a reduction in TGFbeta/Smad2-dependent ARE-Lux transcriptional activity, which was rescued by a km23-1 small interfering RNA-resistant construct. In contrast, a reduction in TGFbeta/Smad3-dependent SBE2-Luc transcriptional activity did not occur under similar conditions. Furthermore, overexpression of the dynactin subunit dynamitin, which is known to disrupt dynein-mediated intracellular transport, blocked TGFbeta-stimulated nuclear translocation of Smad2. Collectively, our findings indicate for the first time that a dynein light chain is required for a Smad2-dependent TGFbeta signaling pathway.
Collapse
Affiliation(s)
- Qunyan Jin
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | |
Collapse
|
5
|
Beck SE, Jung BH, Rosario ED, Gomez J, Carethers JM. BMP-induced growth suppression in colon cancer cells is mediated by p21WAF1 stabilization and modulated by RAS/ERK. Cell Signal 2007; 19:1465-72. [PMID: 17317101 PMCID: PMC3444522 DOI: 10.1016/j.cellsig.2007.01.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 01/15/2007] [Accepted: 01/16/2007] [Indexed: 11/29/2022]
Abstract
Bone morphogenetic proteins (BMPs) regulate cell differentiation, proliferation, and apoptosis through a canonical SMAD signaling cascade. Absence of BMP signaling causes the formation of intestinal juvenile polyps in the colon cancer-prone syndrome familial juvenile polyposis. As sporadic colon cancers appear to have intact BMP signaling, we evaluated if K-RAS, driving a mitogenic pathway frequently activated in colon cancer, negatively affects BMP growth suppression. We treated non-tumorigenic but activated RAS/ERK FET cells with BMP2, and in combination with pharmacological or genetic inhibition of RAS/ERK, examined BMP-SMAD signaling, transcriptional activity, and cell growth, and also assessed p21(WAF1) mRNA, transcriptional activation, and protein levels. BMP2 increased nuclear phospho-SMAD1 2-fold, which increased another 2-3 fold when RAS/ERK was inhibited. BMP2 increased BMP-specific SMAD transcriptional activity 2-fold over control and decreased cell growth, but inhibition of RAS/ERK further enhanced BMP-specific transcriptional activity by an additional 1.5-2 fold and enhanced growth suppression by 20%. BMP-induced growth suppression is mediated in part by p21(WAF1), not by transcriptional upregulation but by improved p21 protein stability, which is inhibited by RAS/ERK. In colon cancer cells, BMP-SMAD signaling and growth suppression is facilitated by p21(WAF1) but modulated by oncogenic K-RAS to reduce the growth suppression directed by this pathway.
Collapse
Affiliation(s)
- Stayce E. Beck
- Department of Medicine, University of California, San Diego, United States
- Biomedical Sciences Program, University of California, San Diego, United States
| | - Barbara H. Jung
- Department of Medicine, University of California, San Diego, United States
- Rebecca and John Moores Comprehensive Cancer Center, University of California, San Diego, United States
- VA San Diego Healthcare System, United States
| | - Eunice Del Rosario
- Department of Medicine, University of California, San Diego, United States
| | - Jessica Gomez
- Department of Medicine, University of California, San Diego, United States
- Rebecca and John Moores Comprehensive Cancer Center, University of California, San Diego, United States
| | - John M. Carethers
- Department of Medicine, University of California, San Diego, United States
- Rebecca and John Moores Comprehensive Cancer Center, University of California, San Diego, United States
- Biomedical Sciences Program, University of California, San Diego, United States
- VA San Diego Healthcare System, United States
- Corresponding author. University of California, San Diego, Division of Gastroenterology, UC303, MC 0063, 9500 Gilman Drive, La Jolla, CA 92093-0063, United States. Tel.: +1 858 534 3320; fax: +1 858 534 3337., (J.M. Carethers)
| |
Collapse
|
6
|
Jin Q, Ding W, Staub CM, Gao G, Tang Q, Mulder KM. Requirement of km23 for TGFβ-mediated growth inhibition and induction of fibronectin expression. Cell Signal 2005; 17:1363-72. [PMID: 15925487 DOI: 10.1016/j.cellsig.2005.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Revised: 02/04/2005] [Accepted: 02/15/2005] [Indexed: 02/03/2023]
Abstract
We previously identified km23 as a novel TGFbeta receptor-interacting protein. Here we show that km23 is ubiquitously expressed in human tissues and that cell-type specific differences in endogenous km23 protein expression exist. In addition, we demonstrate that the phosphorylation of km23 is TGFbeta-dependent, in that EGF was unable to phosphorylate km23. Further, the kinase activity of both TGFbeta receptors appears to play a role in the TGFbeta-mediated phosphorylation of km23, although TGFbeta RII kinase activity is absolutely required for km23 phosphorylation. Blockade of km23 using small interfering RNAs significantly decreased key TGFbeta responses, including induction of fibronectin expression and inhibition of cell growth. Thus, our results demonstrate that km23 is required for TGFbeta induction of fibronectin expression and is necessary, but not sufficient, for TGFbeta-mediated growth inhibition.
Collapse
Affiliation(s)
- Qunyan Jin
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
7
|
Oren T, Torregroza I, Evans T. An Oct-1 binding site mediates activation of the gata2 promoter by BMP signaling. Nucleic Acids Res 2005; 33:4357-67. [PMID: 16061939 PMCID: PMC1182169 DOI: 10.1093/nar/gki746] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The gata2 gene encodes a transcription factor implicated in regulating early patterning of ectoderm and mesoderm, and later in numerous cell-specific gene expression programs. Activation of the gata2 gene during embryogenesis is dependent on the bone morphogenetic protein (BMP) signaling pathway, but the mechanism for how signaling controls gene activity has not been defined. We developed an assay in Xenopus embryos to analyze regulatory sequences of the zebrafish gata2 promoter that are necessary to mediate the response to BMP signaling during embryogenesis. We show that activation is Smad dependent, since it is blocked by expression of the inhibitory Smad6. Deletion analysis identified an octamer binding site that is necessary for BMP-mediated induction, and that interacts with the POU homeodomain protein Oct-1. However, this element is not sufficient to transfer a BMP response to a heterologous promoter, requiring an additional more proximal cooperating element. Based on recent studies with other BMP-dependent promoters (Drosophila vestigial and Xenopus Xvent-2), our studies of the gata2 gene suggest that POU-domain proteins comprise a common component of the BMP signaling pathway, cooperating with Smad proteins and other transcriptional activators.
Collapse
Affiliation(s)
| | | | - Todd Evans
- To whom correspondence should be addressed at Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Chanin Building, Room 501, Bronx NY 10461, USA. Tel: +1 718 430 3506; Fax: +1 718 430 8988;
| |
Collapse
|
8
|
Wang Z, Zhang B, Wang M, Carr BI. Cdc25A and ERK interaction: EGFR-independent ERK activation by a protein phosphatase Cdc25A inhibitor, compound 5. J Cell Physiol 2005; 204:437-44. [PMID: 15672448 DOI: 10.1002/jcp.20297] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Extracellular signal-regulated kinase (ERK) plays a central role in regulating cell growth, differentiation, and apoptosis. We previously found that 2-(2-mercaptoethanol)-3-methyl-1,4-napthoquinone or Compound 5 (Cpd 5), is a Cdc25A protein phosphatase inhibitor and causes prolonged, strong ERK phosphorylation which is triggered by epidermal growth factor receptor (EGFR) activation. We now report that Cpd 5 can directly cause ERK phosphorylation by inhibiting Cdc25A activity independently of the EGFR pathway. We found that Cdc25A physically interacted with and de-phosphorylated phospho-ERK both in vitro and in cell culture. Inhibition of Cdc25A activity by Cpd 5 resulted in ERK hyper-phosphorylation. Transfection of Hep3B human hepatoma cells with inactive Cdc25A mutant enhanced Cpd 5 action on ERK phosphorylation, whereas over-expression of Cdc25A attenuated this Cpd 5 action. Furthermore, endogenous Cdc25A knock-down by Cdc25A siRNA resulted in a constitutive-like ERK phosphorylation and Cpd 5 treatment further enhanced it. In EGFR-devoid NR6 fibroblasts and MEK (ERK kinase) mutated MCF7 cells, Cpd 5 treatment also resulted in ERK phosphorylation, providing support for the idea that Cpd 5 can directly act on ERK phosphorylation by inhibiting Cdc25A activity. These data suggest that phospho-ERK is likely another Cdc25A substrate, and Cpd 5-caused ERK phosphorylation is probably regulated by both EGFR-dependent and EGFR-independent pathways.
Collapse
Affiliation(s)
- Ziqiu Wang
- Thomas E. Starzl Transplant Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | |
Collapse
|
9
|
Yue J, Sun B, Liu G, Mulder KM. Requirement of TGF-? receptor-dependent activation of c-Jun N-terminal kinases (JNKs)/stress-activated protein kinases (Sapks) for TGF-? up-regulation of the urokinase-type plasminogen activator receptor. J Cell Physiol 2004; 199:284-92. [PMID: 15040011 DOI: 10.1002/jcp.10469] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We have previously demonstrated that activation of the Ras/Mapk pathways is required for transforming growth factor beta (TGF-beta) induction of TGF-beta(1) expression. Here we examined the role of the Ras/Mapk pathways in TGF-beta induction of urokinase-type plasminogen activator receptor (uPAR) expression in untransformed intestinal epithelial cells (IECs). TGF-beta activated the stress-activated protein kinases (Sapk)/c-Jun N-terminal kinases (JNKs) within 5-10 min, an effect that preceeded TGF-beta induction of uPAR expression in these cells. TGF-beta induction of both JNK1 activity and JunD phosphorylation was blocked by expression of a dominant-negative mutant of the type II TGF-beta receptor (DN TbetaRII), a dominant-negative mutant of MKK4 (DN MKK4), or a dominant-negative mutant of Ras (RasN17), or by the addition of the JNK inhibitor SP600125. TGF-beta also induced AP-1 complex formation at the distal AP-1 site (-184 to -178) of the uPAR promoter within 2 h of TGF-beta addition, consistent with the time-dependent up-regulation of uPAR expression. The primary components present in the TGF-beta-stimulated AP-1 complex bound to the uPAR promoter were Jun D and Fra-2. Moreover, addition of SP600125, or expression of DN MKK4 or DN TbetaRII, blocked TGF-beta up-regulation of uPAR in IECs. Accordingly, our results indicate that TGF-beta activates the Ras/MKK4/JNK1 signaling cascade, leading to induction of AP-1 activity, which, in turn, up-regulates uPAR expression. Our results also indicate that the type II TGF-beta receptor (RII) is required for TGF-beta activation of JNK1 and the resulting up-regulation of uPAR expression.
Collapse
Affiliation(s)
- Jianbo Yue
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey 17033, USA
| | | | | | | |
Collapse
|
10
|
Lhuillier L, Dryer SE. Ras is a mediator of TGFbeta1 signaling in developing chick ciliary ganglion neurons. Brain Res 2003; 982:119-24. [PMID: 12915246 DOI: 10.1016/s0006-8993(03)03020-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Large-conductance Ca(2+)-activated K(+) channels (K(Ca)) in chick ciliary ganglion neurons are regulated by target-derived TGFbeta1. Here we show that TGFbeta1 stimulation of K(Ca) expression was blocked by the structurally dissimilar Ras protein farnesyl transferase inhibitors manumycin-A and FTI-277. A similar effect was produced in ciliary neurons overexpressing RasN17, a widely used dominant-negative form of Ras. Moreover, TGFbeta1-evoked increases in phosphorylation of SMAD2 were reduced by manumycin-A, suggesting that Ras-dependent transduction cascades activated by TGFbeta1 feed back onto SMAD signaling. Thus, Ras is a mediator of pleiotropic TGFbeta1 signaling in developing neurons.
Collapse
Affiliation(s)
- Loic Lhuillier
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5513, USA
| | | |
Collapse
|
11
|
Lamb KJ, Lewthwaite JC, Bastow ER, Pitsillides AA. Defining boundaries during joint cavity formation: going out on a limb. Int J Exp Pathol 2003; 84:55-67. [PMID: 12801279 PMCID: PMC2517544 DOI: 10.1046/j.1365-2613.2003.00338.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Whilst factors controlling the site at which joints form within the developing limb are recognised, the mechanisms by which articular element separation occurs during the formation of the joint cavity have not been determined. Herein, we review the relationships between early limb patterning, embryonic movement, extracellular matrix composition, local signalling events and the process of joint cavity formation. We speculate that a pivotal event in this process involves the demarcation of signalling boundaries, established by local mechano-dependent modifications in glycosaminoglycan synthesis. In our opinion, studies that examine early patterning and also focus on local developmental alterations in tissue architecture are required in order to help elucidate the fundamental principals regulating joint formation.
Collapse
Affiliation(s)
- K J Lamb
- Department of Veterinary Basic Sciences, Royal Veterinary Collage, University of London, Royal College Street, London, NW1 OTU, UK
| | | | | | | |
Collapse
|
12
|
Imai G, Satoh T, Kumai T, Murao M, Tsuchida H, Shima Y, Ogimoto G, Fujino T, Kobayashi S, Kimura K. Hypertension accelerates diabetic nephropathy in Wistar fatty rats, a model of type 2 diabetes mellitus, via mitogen-activated protein kinase cascades and transforming growth factor-beta1. Hypertens Res 2003; 26:339-47. [PMID: 12733703 DOI: 10.1291/hypres.26.339] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Although it is known that diabetic nephropathy is accelerated by hypertension, the mechanisms involved in this process are not clear. In this study we aimed to clarify these mechanisms using male Wistar fatty rats (WFR) as a type 2 diabetic model and male Wistar lean rats (WLR) as a control. Each group was fed a normal or high sodium diet from the age of 6 to 14 weeks. We determined the blood pressure and urinary albumin excretion (UAE). At the end of the study, the expressions of mitogen-activated protein kinases (MAPK) and transforming growth factor-beta1 (TGF-beta1) were examined in the isolated glomeruli by Western blot analysis, and the number of glomerular lesions was determined by conventional histology. High sodium load caused hypertension and a marked increase in UAE in the WFR but not in the WLR. Glomerular volume was increased in the hypertensive WFR. There was no difference among the four groups in the expression of c-Jun-NH2-terminal kinase (JNK). In contrast, the expressions of extracellular signal-regulated kinase 1/2 (ERK1/2) and its upstream regulator, MAPK/ERK kinase 1 (MEK1), were augmented in the hypertensive WFR. Expression of p38 MAPK was increased in the normotensive WFR, and further enhanced in the hypertensive WFR. Moreover, administration of high sodium load to WFR augmented the expression of TGF-beta1. In conclusion, systemic hypertension in WFR accelerates the diabetic nephropathy in type 2 diabetes via MEK-ERK and p38 MAPK cascades. TGF-beta1 is also involved in this mechanism.
Collapse
Affiliation(s)
- Goro Imai
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bron R, Klesse LJ, Shah K, Parada LF, Winter J. Activation of Ras is necessary and sufficient for upregulation of vanilloid receptor type 1 in sensory neurons by neurotrophic factors. Mol Cell Neurosci 2003; 22:118-32. [PMID: 12595244 DOI: 10.1016/s1044-7431(02)00022-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We have analyzed signaling pathways involved in neurotrophic factor (NTF)-induced upregulation of nociceptive properties, specifically vanilloid receptor type 1 (VR1), by adult rat dorsal root ganglion neurons. Upregulation of VR1 by nerve growth factor and glial cell line-derived neurotrophic factor is partially blocked by a MEK inhibitor. Dominant negative Ras, but not Rap, blocks NTF-induced ERK activation and VR1 upregulation. Activated Ras mimics NTF-mediated induction of VR1 in dorsal root ganglion neurons. An inhibitor of phosphatidylinositol 3-kinase, LY294002, also inhibited NTF-induced VR1 upregulation. However, this may at least in part be due to a block of NTF-induced ERK activation. Constitutive simultaneous stimulation of both ERK and phosphatidylinositol 3-kinase is not sufficient for VR1 upregulation. Together, the data suggest that VR1 expression by dorsal root ganglion neurons is regulated by common Ras-dependent pathways.
Collapse
MESH Headings
- Animals
- Capsaicin/pharmacology
- Cells, Cultured
- Cyclic AMP Response Element-Binding Protein/drug effects
- Cyclic AMP Response Element-Binding Protein/metabolism
- Enzyme Inhibitors/pharmacology
- Ganglia, Spinal/cytology
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Glial Cell Line-Derived Neurotrophic Factor
- Mitogen-Activated Protein Kinases/antagonists & inhibitors
- Mitogen-Activated Protein Kinases/metabolism
- Nerve Growth Factor/metabolism
- Nerve Growth Factor/pharmacology
- Nerve Growth Factors/metabolism
- Nerve Growth Factors/pharmacology
- Neurons, Afferent/cytology
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Nociceptors/cytology
- Nociceptors/drug effects
- Nociceptors/metabolism
- Pain/metabolism
- Pain/physiopathology
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphoinositide-3 Kinase Inhibitors
- Rats
- Rats, Sprague-Dawley
- Rats, Wistar
- Receptors, Drug/drug effects
- Receptors, Drug/metabolism
- Up-Regulation/drug effects
- Up-Regulation/physiology
- ras Proteins/metabolism
Collapse
Affiliation(s)
- Romke Bron
- Novartis Institute for Medical Sciences (NIMS), 5 Gower Place, London WC1E 6BN, Great Britain.
| | | | | | | | | |
Collapse
|
14
|
Tang Q, Staub CM, Gao G, Jin Q, Wang Z, Ding W, Aurigemma RE, Mulder KM. A novel transforming growth factor-beta receptor-interacting protein that is also a light chain of the motor protein dynein. Mol Biol Cell 2002; 13:4484-96. [PMID: 12475967 PMCID: PMC138648 DOI: 10.1091/mbc.e02-05-0245] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2002] [Revised: 08/23/2002] [Accepted: 08/29/2002] [Indexed: 11/11/2022] Open
Abstract
The phosphorylated, activated cytoplasmic domains of the transforming growth factor-beta (TGFbeta) receptors were used as probes to screen an expression library that was prepared from a highly TGFbeta-responsive intestinal epithelial cell line. One of the TGFbeta receptor-interacting proteins isolated was identified to be the mammalian homologue of the LC7 family (mLC7) of dynein light chains (DLCs). This 11-kDa cytoplasmic protein interacts with the TGFbeta receptor complex intracellularly and is phosphorylated on serine residues after ligand-receptor engagement. Forced expression of mLC7-1 induces specific TGFbeta responses, including an activation of Jun N-terminal kinase (JNK), a phosphorylation of c-Jun, and an inhibition of cell growth. Furthermore, TGFbeta induces the recruitment of mLC7-1 to the intermediate chain of dynein. A kinase-deficient form of TGFbeta RII prevents both mLC7-1 phosphorylation and interaction with the dynein intermediate chain (DIC). This is the first demonstration of a link between cytoplasmic dynein and a natural growth inhibitory cytokine. Furthermore, our results suggest that TGFbeta pathway components may use a motor protein light chain as a receptor for the recruitment and transport of specific cargo along microtublules.
Collapse
Affiliation(s)
- Qian Tang
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Roman BL, Pham VN, Lawson ND, Kulik M, Childs S, Lekven AC, Garrity DM, Moon RT, Fishman MC, Lechleider RJ, Weinstein BM. Disruption ofacvrl1increases endothelial cell number in zebrafish cranial vessels. Development 2002; 129:3009-19. [PMID: 12050147 DOI: 10.1242/dev.129.12.3009] [Citation(s) in RCA: 266] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The zebrafish mutant violet beauregarde (vbg) can be identified at two days post-fertilization by an abnormal circulation pattern in which most blood cells flow through a limited number of dilated cranial vessels and fail to perfuse the trunk and tail. This phenotype cannot be explained by caudal vessel abnormalities or by a defect in cranial vessel patterning, but instead stems from an increase in endothelial cell number in specific cranial vessels. We show that vbg encodes activin receptor-like kinase 1 (Acvrl1; also known as Alk1), a TGFβ type I receptor that is expressed predominantly in the endothelium of the vessels that become dilated in vbg mutants. Thus, vbg provides a model for the human autosomal dominant disorder, hereditary hemorrhagic telangiectasia type 2, in which disruption of ACVRL1 causes vessel malformations that may result in hemorrhage or stroke.Movies available on-line
Collapse
Affiliation(s)
- Beth L Roman
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Liu JF, Crépin M, Liu JM, Barritault D, Ledoux D. FGF-2 and TPA induce matrix metalloproteinase-9 secretion in MCF-7 cells through PKC activation of the Ras/ERK pathway. Biochem Biophys Res Commun 2002; 293:1174-82. [PMID: 12054499 DOI: 10.1016/s0006-291x(02)00350-9] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Matrix metalloproteinases (MMPs) play an important role in cancer metastasis. Here, we investigated the effect of fibroblast growth factor-2 (FGF-2) and 12-O-tetradecanoylphorbol-13-acetate (TPA) on the secretion of type IV collagenases (MMP-2, MMP-9) in breast cancer MCF-7 cells. As shown by gelatin zymography, both FGF-2 and TPA stimulated the secretion of MMP-9 in MCF-7 cells while they did not change the level of MMP-2 secretion. Signaling cascade studies indicated that both FGF-2 and TPA induced Ras activation, c-Raf phosphorylation, mitogen-activated protein kinase/ERK kinase (MEK(1/2)) phosphorylation, and extracellular signal-regulated kinase (ERK(1/2)) phosphorylation. The FGF-2- and TPA-induced MMP-9 secretion was significantly inhibited by transient transfection of MCF-7 cells with dominant negative Ras (Ras-N17) and by treatment with MEK(1/2) inhibitor PD98059. A pan-protein kinase C (PKC) inhibitor, GF109203X, was found to totally abolish the FGF-2- and TPA-induced MMP-9 secretion and ERK(1/2) phosphorylation. Use of isoform-specific PKC inhibitors such as Rotllerin and Gö6976 suggested, moreover, that the PKC-delta isoform is a likely component of FGF-2 and TPA trophic signaling. These results demonstrated that FGF-2 and TPA induce MMP-9 secretion in MCF-7 cells mainly through PKC-dependent activation of the Ras/ERK(1/2) signaling pathway.
Collapse
Affiliation(s)
- Jian-Feng Liu
- Laboratoire de Recherche sur la Croissance Cellulaire, la Réparation et la Régénération Tissulaires, CNRS UPRES-A 7053, Université Paris XII, Avenue du Général de Gaulle, 94000 Créteil, France
| | | | | | | | | |
Collapse
|
17
|
Kinkl N, Sahel J, Hicks D. Alternate FGF2-ERK1/2 signaling pathways in retinal photoreceptor and glial cells in vitro. J Biol Chem 2001; 276:43871-8. [PMID: 11571286 DOI: 10.1074/jbc.m105256200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Basic fibroblast growth factor (FGF2) stimulates photoreceptor survival in vivo and in vitro, but the molecular signaling mechanism(s) involved are unknown. Immunohistochemical and immunoblotting analyses of pure photoreceptors, inner retinal neurons, and Müller glial cells (MGC) in vitro revealed differential expression of the high affinity FGF receptors (FGFR1-4), as well as many cytoplasmic signaling intermediates known to mediate the extracellular signal-regulated kinase (ERK1/2) pathway. FGF2-induced tyrosine phosphorylation in vitro exhibited distinct profiles for each culture type, and FGF2-induced ERK1/2 activation was observed for all three preparations. Whereas U0126, a specific inhibitor of ERK kinase (MEK), completely abolished FGF2-induced ERK1/2 tyrosine phosphorylation and survival in cultured photoreceptors, persistent ERK1/2 phosphorylation was observed in cultured inner retinal cells and MGC. Furthermore U0126 treatment entirely blocked nerve growth factor-induced ERK1/2 activation in MGC, as well as FGF2-induced ERK1/2 activation in cerebral glial cells. Taken together, these data indicate that FGF2-induced ERK1/2 activation is entirely mediated by MEK within photoreceptors, which is responsible for FGF2-stimulated photoreceptor survival. In contrast, inner retina/glia possess alternative, cell type, and growth factor-specific MEK-independent ERK1/2 activation pathways. Hence signaling and biological effects elicited by FGF2 within retina are mediated by cell type-specific pathways.
Collapse
Affiliation(s)
- N Kinkl
- Laboratoire de Physiopathologie Cellulaire et Moléculaire de la Rétine, INSERM-Université Louis Pasteur EMI 9918, Clinique Médicale A, Centre Hospitalier Régional Universitaire, BP. 426, 1 Place de l'Hôpital, 67091 Strasbourg Cedex, France
| | | | | |
Collapse
|
18
|
Abstract
Bone morphogenetic proteins (BMPs), members of the TGF-beta superfamily of secreted signaling molecules, have important functions in many biological contexts. They bind to specific serine/threonine kinase receptors, which transduce the signal to the nucleus through Smad proteins. The question of how BMPs can have such diverse effects while using the same canonical Smad pathway has recently come closer to an answer at the molecular level. Nuclear cofactors have been identified that cooperate with the Smads in regulating specific target genes depending on the cellular context. In addition, the pivotal role BMP signaling plays is underscored by the identification of factors that regulate members of this pathway at the cell surface, in the cytoplasm, and in the nucleus. Many of these factors are BMP-inducible and inhibit the BMP pathway, thus establishing negative feedback loops. Members of the BMP-Smad pathway can also physically interact with components of other signaling pathways to establish crosstalk. Finally, there is accumulating evidence that an alternative pathway involving MAP kinases can transduce BMP signals. The evidence and implications of these findings are discussed with an emphasis on early embryonic development of Xenopus and vertebrates.
Collapse
Affiliation(s)
- A von Bubnoff
- Department of Developmental & Cell Biology, University of California, Irvine, California 92697-2300, USA
| | | |
Collapse
|
19
|
Abstract
Transforming growth factor (TGF)-beta is a natural and potent growth inhibitor of a variety of cell types, including epithelial, endothelial, and hematopoietic cells. The ability of TGF-beta to potently inhibit the growth of many solid tumors of epithelial origin, including breast and colon carcinomas, is of particular interest. However, many solid tumor cells become refractory to the growth inhibitory effects of TGF-beta due to defects in TGF-beta signaling pathways. In addition, TGF-beta may stimulate the invasiveness of tumor cells via the paracrine effects of TGF-beta. Accordingly, in order to develop more effective anticancer therapeutics, it is necessary to determine the TGF-beta signal transduction pathways underlying the growth inhibitory effects and other cellular effects of TGF-beta in normal epithelial cells. Thus far, two primary signaling cascades downstream of the TGF-beta receptors have been elucidated, the Sma and mothers against decapentaplegic homologues and the Ras/mitogen-activated protein kinase pathways. The major objective of this review is to summarize TGF-beta signaling in epithelial cells, focusing on recent advances involving the Sma and mothers against decapentaplegic homologues and Ras/mitogen-activated protein kinase pathways. This review is particularly timely in that it provides a comprehensive summary of both signal transduction mechanisms and the cell cycle effects of TGF-beta.
Collapse
Affiliation(s)
- J Yue
- Department of Pharmacology, MC H078, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | |
Collapse
|
20
|
Abstract
Members of the transforming growth factor-beta (TGF-beta) family bind to type II and type I serine/threonine kinase receptors, which initiate intracellular signals through activation of Smad proteins. Receptor-regulated Smads (R-Smads) are anchored to the cell membrane by interaction with membrane-bound proteins, including Smad anchor for receptor activation (SARA). Upon ligand stimulation, R-Smads are phosphorylated by the receptors and form oligomeric complexes with common-partner Smads (Co-Smads). The oligomeric Smad complexes then translocate into the nucleus, where they regulate the transcription of target genes by direct binding to DNA, interaction with various DNA-binding proteins, and recruitment of transcriptional coactivators or corepressors. A third class of Smads, inhibitory Smads (I-Smads), inhibits the signals from the serine/threonine kinase receptors. Since the expression of I-Smads is induced by the TGF-beta superfamily proteins, Smads constitute an autoinhibitory signaling pathway. The functions of Smads are regulated by other signaling pathways, such as the MAP kinase pathway. Moreover, Smads interact with and modulate the functions of various transcription factors which are downstream targets of other signaling pathways. Loss of function of certain Smads is involved in tumorigenesis, e.g., pancreatic and colorectal cancers. Analyses by gene targeting revealed pivotal roles of Smads in early embryogenesis, angiogenesis, and immune functions in vivo.
Collapse
Affiliation(s)
- K Miyazono
- Department of Biochemistry, Cancer Institute of Japanese Foundation for Cancer Research, Tokyo, Japan
| | | | | |
Collapse
|
21
|
Yue J, Mulder KM. Requirement of Ras/MAPK pathway activation by transforming growth factor beta for transforming growth factor beta 1 production in a Smad-dependent pathway. J Biol Chem 2000; 275:30765-73. [PMID: 10843986 DOI: 10.1074/jbc.m000039200] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Our previous results have shown that transforming growth factor beta (TGFbeta) rapidly activates Ras, as well as both ERKs and SAPKs. In order to address the biological significance of the activation of these pathways by TGFbeta, here we examined the role of the Ras/MAPK pathways and the Smads in TGFbeta(3) induction of TGFbeta(1) expression in untransformed lung and intestinal epithelial cells. Expression of either a dominant-negative mutant of Ras (RasN17) or a dominant-negative mutant of MKK4 (DN MKK4), or addition of the MEK1 inhibitor PD98059, inhibited the ability of TGFbeta(3) to induce AP-1 complex formation at the TGFbeta(1) promoter, and the subsequent induction of TGFbeta(1) mRNA. The primary components present in this TGFbeta(3)-inducible AP-1 complex at the TGFbeta(1) promoter were JunD and Fra-2, although c-Jun and FosB were also involved. Furthermore, deletion of the AP-1 site in the TGFbeta(1) promoter or addition of PD98059 inhibited the ability of TGFbeta(3) to stimulate TGFbeta(1) promoter activity. Collectively, our data demonstrate that TGFbeta(3) induction of TGFbeta(1) is mediated through a signaling cascade consisting of Ras, the MAPKKs MKK4 and MEK1, the MAPKs SAPKs and ERKs, and the specific AP-1 proteins Fra-2 and JunD. Although Smad3 and Smad4 were not detectable in TGFbeta(3)-inducible AP-1 complexes at the TGFbeta(1) promoter, stable expression of dominant-negative Smad3 could significantly inhibit the ability of TGFbeta(3) to stimulate TGFbeta(1) promoter activity. Transient expression of dominant-negative Smad4 also inhibited the ability of TGFbeta(3) to transactivate the TGFbeta(1) promoter. Thus, although the Ras/MAPK pathways are essential for TGFbeta(3) induction of TGFbeta(1), Smads may only contribute to this biological response in an indirect manner.
Collapse
Affiliation(s)
- J Yue
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | |
Collapse
|
22
|
Choi ME. Mechanism of transforming growth factor-β1 signaling: Role of the mitogen-activated protein kinase. Kidney Int 2000. [DOI: 10.1046/j.1523-1755.2000.07709.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Abstract
Normal signaling by TGFbeta, in the absence of serum or exogenous factors, involves a rapid activation of Ras, Erks, and Sapks in proliferating cultures of TGFbeta-sensitive untransformed epithelial cells and human carcinoma cells. Expression of either RasN17 or dominant-negative (DN) MKK4, or addition of the MEK1 inhibitor PD98059, can block the ability of TGFbeta to induce AP-1 complex formation at the TGFbeta(1) promoter and to autoinduce its own production. The primary components present in this TGFbeta-stimulated AP-1 complex are JunD and Fra-2, although c-Jun, and possibly Fos B, may also be present. While there are two potential Smad binding elements (SBE's) in the TGFbeta(1) promoter, supershift assays suggest that at least one of these does not bind Smad4, and the other is unable to bind factors activated by TGFbeta. In contrast, TGFbeta autoinduction is Smad3-dependent, as DN Smad3 inhibits the ability of TGFbeta to stimulate TGFbeta(1) promoter activity. Our results indicate that TGFbeta can activate both the MKK4/Sapk and MEK/Erk pathways, through Ras and TGFbeta R(I) and R(II), to induce TGFbeta(1) production; Smad4 does not appear to be involved, and Smad3 appears to function independently of this Smad4. We also demonstrate that activation of the Ras/Mapk pathway by TGFbeta positively modulates Smad1-signaling-pathway activation by TGFbeta. In addition, Smad1 could enhance TGFbeta activation of the SBE reporter SBE-luc and this effect could be blocked by co-expression of a DN TGFbeta R(I) receptor or by the MEK1 inhibitor PD98059. This cross-talk between the MEK/Erk and Smad1 pathways was mediated through the four Erk consensus phosphorylation sites in the linker region of Smad1. Mutation of these sites resulted in a loss of the ligand-dependence of both Smad1-Smad4 interactions and nuclear accumulation of Smad1, as well as a loss of the ability of Smad1 to enhance TGFbeta-mediated SBE activation. Our results provide evidence that Erk-mediated phosphorylation of Smad1 in response to TGFbeta is critical for regulating Smad1 subcellular localization; this may be a key determinant in maintaining TGFbeta-dependent transcriptional activation.
Collapse
Affiliation(s)
- K M Mulder
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
24
|
Nakamura K, Shirai T, Morishita S, Uchida S, Saeki-Miura K, Makishima F. p38 mitogen-activated protein kinase functionally contributes to chondrogenesis induced by growth/differentiation factor-5 in ATDC5 cells. Exp Cell Res 1999; 250:351-63. [PMID: 10413589 DOI: 10.1006/excr.1999.4535] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies of intracellular signal transduction mechanisms for the transforming growth factor-beta (TGF-beta) superfamily have focused on Smad proteins, but have paid little attention to mitogen-activated protein (MAP) kinase cascades. Here we demonstrate that growth/differentiation factor-5 (GDF-5), but neither bone morphogenetic protein-2 (BMP-2) nor TGF-beta1, fully promotes the early phase of the chondrogenic response by inducing cellular condensation followed by cartilage nodule formation in a mouse chondrogenic cell line, ATDC5. We investigated which, if any, of the three major types of MAP kinase plays a functional role in the promotion of chondrogenesis induced by GDF-5. GDF-5 induced phosphorylation of p38 MAP kinase and extracellular signal-regulated kinase (ERK) but not that of c-Jun N-terminal kinase (JNK). The phosphorylation of p38 MAP kinase was also induced by BMP-2 and TGF-beta1. An inhibitor of p38 and p38 beta MAP kinase, SB202190, showed complete inhibition of cartilage nodule formation but failed to affect alkaline phosphatase (ALP) activity induced by GDF-5. Expression of the type II collagen gene, a hallmark of chondrogenesis in vertebrates, was also induced by GDF-5 treatment and strongly suppressed by SB202190. On the other hand, although an inhibitor of MAP/ERK kinase, PD98059, inhibited the rapid phosphorylation of ERK by GDF-5, it inhibited neither ALP activity nor cartilage nodule formation induced by GDF-5. These results strongly suggest that the p38 MAP kinase cascade is involved in GDF-5 signaling pathways and that a role of the p38 MAP kinase pathway is necessary over a longer period to promote chondrogenesis in ATDC5 cells.
Collapse
Affiliation(s)
- K Nakamura
- Discovery Research Laboratories, Hoechst Marion Roussel Ltd., 3-2, Minamidai 1-chome, Kawagoe, Saitama, 350-1165, Japan
| | | | | | | | | | | |
Collapse
|