1
|
SLC24A5 plays fundamental roles in regulating melanophore development in Cyprinidae fish. REPRODUCTION AND BREEDING 2021. [DOI: 10.1016/j.repbre.2021.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
2
|
Scarabotti P, Govezensky T, Bolcatto P, Barrio RA. Universal model for the skin colouration patterns of neotropical catfishes of the genus Pseudoplatystoma. Sci Rep 2020; 10:12445. [PMID: 32709921 PMCID: PMC7381642 DOI: 10.1038/s41598-020-68700-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/23/2020] [Indexed: 11/29/2022] Open
Abstract
Fish skin colouration has been widely studied because it involves a variety of processes that are important to the broad field of the developmental biology. Mathematical modelling of fish skin patterning first predicted the existence of morphogens and helped to elucidate the mechanisms of pattern formation. The catfishes of the genus Pseudoplatystoma offer a good biological study model, since its species exhibit the most spectacular and amazing variations of colour patterns on the skin. They present labyrinths, closed loops (or cells), alternate spots and stripes, only spots and combinations of these. We have extended a well known mathematical model to study the skin of Pseudoplatystoma. The basic model is a two component, non-linear reaction diffusion system that presents a richness of bifurcations. The extended model assumes that there are two interacting cell/tissue layers in which morphogens diffuse and interact giving rise to the skin colouration pattern. We have found that by varying only two parameters we are able to accurately reproduce the distinct patterns found in all species of Pseudoplatystoma. The histological analysis of skin samples of two species of this genus, with different patterns, revealed differences on the disposition of the colouration cells that are consistent with our theoretical predictions.
Collapse
Affiliation(s)
- Pablo Scarabotti
- Instituto Nacional de Limnología, UNL, CONICET, FHUC, Ruta 168 Km 0, Ciudad Universitaria, S3001XAI, Santa Fe, Argentina.
| | - Tzipe Govezensky
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, CD.MX., Mexico
| | - Pablo Bolcatto
- Instituto de Matemática Aplicada del Litoral, UNL, CONICET, FHUC, IMAL, Colectora Ruta Nac. 168 km 0, Paraje El Pozo, S3007ABA, Santa Fe, Argentina
| | - Rafael A Barrio
- Instituto de Física, U.N.A.M., Apdo. Postal 20-36, 01000, CD.MX., Mexico
| |
Collapse
|
3
|
Patterson LB, Parichy DM. Zebrafish Pigment Pattern Formation: Insights into the Development and Evolution of Adult Form. Annu Rev Genet 2019; 53:505-530. [DOI: 10.1146/annurev-genet-112618-043741] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vertebrate pigment patterns are diverse and fascinating adult traits that allow animals to recognize conspecifics, attract mates, and avoid predators. Pigment patterns in fish are among the most amenable traits for studying the cellular basis of adult form, as the cells that produce diverse patterns are readily visible in the skin during development. The genetic basis of pigment pattern development has been most studied in the zebrafish, Danio rerio. Zebrafish adults have alternating dark and light horizontal stripes, resulting from the precise arrangement of three main classes of pigment cells: black melanophores, yellow xanthophores, and iridescent iridophores. The coordination of adult pigment cell lineage specification and differentiation with specific cellular interactions and morphogenetic behaviors is necessary for stripe development. Besides providing a nice example of pattern formation responsible for an adult trait of zebrafish, stripe-forming mechanisms also provide a conceptual framework for posing testable hypotheses about pattern diversification more broadly. Here, we summarize what is known about lineages and molecular interactions required for pattern formation in zebrafish, we review some of what is known about pattern diversification in Danio, and we speculate on how patterns in more distant teleosts may have evolved to produce a stunningly diverse array of patterns in nature.
Collapse
Affiliation(s)
| | - David M. Parichy
- Department of Biology and Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22903, USA
| |
Collapse
|
4
|
Evolution of Endothelin signaling and diversification of adult pigment pattern in Danio fishes. PLoS Genet 2018; 14:e1007538. [PMID: 30226839 PMCID: PMC6161917 DOI: 10.1371/journal.pgen.1007538] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/28/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022] Open
Abstract
Fishes of the genus Danio exhibit diverse pigment patterns that serve as useful models for understanding the genes and cell behaviors underlying the evolution of adult form. Among these species, zebrafish D. rerio exhibit several dark stripes of melanophores with sparse iridophores that alternate with light interstripes of dense iridophores and xanthophores. By contrast, the closely related species D. nigrofasciatus has an attenuated pattern with fewer melanophores, stripes and interstripes. Here we demonstrate species differences in iridophore development that presage the fully formed patterns. Using genetic and transgenic approaches we identify the secreted peptide Endothelin-3 (Edn3)—a known melanogenic factor of tetrapods—as contributing to reduced iridophore proliferation and fewer stripes and interstripes in D. nigrofasciatus. We further show the locus encoding this factor is expressed at lower levels in D. nigrofasciatus owing to cis-regulatory differences between species. Finally, we show that functions of two paralogous loci encoding Edn3 have been partitioned between skin and non-skin iridophores. Our findings reveal genetic and cellular mechanisms contributing to pattern differences between these species and suggest a model for evolutionary changes in Edn3 requirements for pigment patterning and its diversification across vertebrates. Neural crest derived pigment cells generate the spectacular variation in skin pigment patterns among vertebrates. Mammals and birds have just a single skin pigment cell, the melanocyte, whereas ectothermic vertebrates have several pigment cells including melanophores, iridophores and xanthophores, that together organize into a diverse array of patterns. In the teleost zebrafish, Danio rerio, an adult pattern of stripes depends on interactions between pigment cell classes and between pigment cells and their tissue environment. The close relative D. nigrofasciatus has fewer stripes and prior analyses suggested a difference between these species that lies extrinsic to the pigment cells themselves. A candidate for mediating this difference is Endothelin-3 (Edn3), essential for melanocyte development in warm-blooded animals, and required by all three classes of pigment cells in an amphibian. We show that Edn3 specifically promotes iridophore development in Danio, and that differences in Edn3 expression contribute to differences in iridophore complements, and striping, between D. rerio and D. nigrofasciatus. Our study reveals a novel function for Edn3 and provides new insights into how changes in gene expression yield morphogenetic outcomes to effect diversification of adult form.
Collapse
|
5
|
Dick C, Arendt J, Reznick DN, Hayashi CY. The developmental and genetic trajectory of coloration in the guppy (Poecilia reticulata). Evol Dev 2018; 20:207-218. [PMID: 30191662 DOI: 10.1111/ede.12268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Examining the association between trait variation and development is crucial for understanding the evolution of phenotypic differences. Male guppy ornamental caudal fin coloration is one trait that shows a striking degree of variation within and between guppy populations. Males initially have no caudal fin coloration, then gradually develop it as they reach sexual maturity. For males, there is a trade-off between female preference for caudal fin coloration and increased visibility to predators. This trade-off may reach unique endpoints in males from different predation regimes. Caudal fin coloration includes black melanin, orange/yellow pteridines or carotenoids, and shimmering iridescence. This study examined the phenotypic trajectory and genetics associated with color development. We found that black coloration always developed first, followed by orange/yellow, then iridescence. The ordering and timing of color appearance was the same regardless of predation regime. The increased expression of melanin synthesis genes correlated well with the visual appearance of black coloration, but there was no correlation between carotenoids or pteridine synthesis gene expression and the appearance of orange/yellow. The lack of orange/yellow coloration in earlier male caudal fin developmental stages may be due to reduced expression of genes underlying the development of orange/yellow xanthophores.
Collapse
Affiliation(s)
- Cynthia Dick
- Department of Evolution, Ecology, and Organismal Biology, University of California-Riverside, Riverside, California
| | - Jeff Arendt
- Department of Evolution, Ecology, and Organismal Biology, University of California-Riverside, Riverside, California
| | - David N Reznick
- Department of Evolution, Ecology, and Organismal Biology, University of California-Riverside, Riverside, California
| | - Cheryl Y Hayashi
- Division of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York
| |
Collapse
|
6
|
Nüsslein-Volhard C, Singh AP. How fish color their skin: A paradigm for development and evolution of adult patterns: Multipotency, plasticity, and cell competition regulate proliferation and spreading of pigment cells in Zebrafish coloration. Bioessays 2017; 39. [PMID: 28176337 DOI: 10.1002/bies.201600231] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pigment cells in zebrafish - melanophores, iridophores, and xanthophores - originate from neural crest-derived stem cells associated with the dorsal root ganglia of the peripheral nervous system. Clonal analysis indicates that these progenitors remain multipotent and plastic beyond embryogenesis well into metamorphosis, when the adult color pattern develops. Pigment cells share a lineage with neuronal cells of the peripheral nervous system; progenitors propagate along the spinal nerves. The proliferation of pigment cells is regulated by competitive interactions among cells of the same type. An even spacing involves collective migration and contact inhibition of locomotion of the three cell types distributed in superimposed monolayers in the skin. This mode of coloring the skin is probably common to fish, whereas different patterns emerge by species specific cell interactions among the different pigment cell types. These interactions are mediated by channels involved in direct cell contact between the pigment cells, as well as unknown cues provided by the tissue environment.
Collapse
|
7
|
Calfún C, Domínguez C, Pérez-Acle T, Whitlock KE. Changes in Olfactory Receptor Expression Are Correlated With Odor Exposure During Early Development in the zebrafish (Danio rerio). Chem Senses 2016; 41:301-12. [PMID: 26892307 DOI: 10.1093/chemse/bjw002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We have previously shown that exposure to phenyl ethyl alcohol (PEA) causes an increase in the expression of the transcription factor otx2 in the olfactory epithelium (OE) of juvenile zebrafish, and this change is correlated with the formation of an odor memory of PEA. Here, we show that the changes in otx2 expression are specific to βPEA: exposure to αPEA did not affect otx2 expression. We identified 34 olfactory receptors (ORs) representing 16 families on 4 different chromosomes as candidates for direct regulation of OR expression via Otx2. Subsequent in silico analysis uncovered Hnf3b binding sites closely associated with Otx2 binding sites in the regions flanking the ORs. Analysis by quantitative polymerase chain reaction and RNA-seq of OR expression in developing zebrafish exposed to different isoforms of PEA showed that a subset of ORs containing both Otx2/Hnf3b binding sites were downregulated only in βPEA-exposed juveniles and this change persisted through adult life. Localization of OR expression by in situ hybridization indicates the downregulation occurs at the level of RNA and not the number of cells expressing a given receptor. Finally, analysis of immediate early gene expression in the OE did not reveal changes in c-fos expression in response to either αPEA or βPEA.
Collapse
Affiliation(s)
- Cristian Calfún
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Pasaje Harrington 287, Valparaíso 2360102, Chile, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Pasaje Harrington 269, Valparaíso 2360102, Chile
| | - Calixto Domínguez
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Pasaje Harrington 287, Valparaíso 2360102, Chile, Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida, Av. Zañartu 1482, Santiago 7750000, Chile and
| | - Tomás Pérez-Acle
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Pasaje Harrington 287, Valparaíso 2360102, Chile, Computational Biology Lab, Fundación Ciencia & Vida, Av. Zañartu 1482, Santiago 7750000, Chile
| | - Kathleen E Whitlock
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Pasaje Harrington 287, Valparaíso 2360102, Chile, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Pasaje Harrington 269, Valparaíso 2360102, Chile,
| |
Collapse
|
8
|
Irion U, Singh AP, Nüsslein-Volhard C. The Developmental Genetics of Vertebrate Color Pattern Formation. Curr Top Dev Biol 2016; 117:141-69. [DOI: 10.1016/bs.ctdb.2015.12.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Abstract
Colour patterns are prominent features of many animals and have important functions in communication, such as camouflage, kin recognition and mate choice. As targets for natural as well as sexual selection, they are of high evolutionary significance. The molecular mechanisms underlying colour pattern formation in vertebrates are not well understood. Progress in transgenic tools, in vivo imaging and the availability of a large collection of mutants make the zebrafish (Danio rerio) an attractive model to study vertebrate colouration. Zebrafish display golden and blue horizontal stripes that form during metamorphosis as mosaics of yellow xanthophores, silvery or blue iridophores and black melanophores in the hypodermis. Lineage tracing revealed the origin of the adult pigment cells and their individual cellular behaviours during the formation of the striped pattern. Mutant analysis indicated that interactions between all three pigment cell types are required for the formation of the pattern, and a number of cell surface molecules and signalling systems have been identified as mediators of these interactions. The understanding of the mechanisms that underlie colour pattern formation is an important step towards deciphering the genetic basis of variation in evolution.
Collapse
|
10
|
Parichy DM. Advancing biology through a deeper understanding of zebrafish ecology and evolution. eLife 2015; 4:e05635. [PMID: 25807087 PMCID: PMC4373672 DOI: 10.7554/elife.05635] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/06/2015] [Indexed: 01/02/2023] Open
Abstract
Over the last two decades, the zebrafish has joined the ranks of premier model organisms for biomedical research, with a full suite of tools and genomic resources. Yet we still know comparatively little about its natural history. Here I review what is known about the natural history of the zebrafish, where significant gaps in our knowledge remain, and how a fuller appreciation of this organism's ecology and behavior, population genetics, and phylogeny can inform a variety of research endeavors.
Collapse
Affiliation(s)
- David M Parichy
- Department of Biology, University of Washington, Seattle, United States
| |
Collapse
|
11
|
Sunscreen for fish: co-option of UV light protection for camouflage. PLoS One 2014; 9:e87372. [PMID: 24489905 PMCID: PMC3906139 DOI: 10.1371/journal.pone.0087372] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 12/24/2013] [Indexed: 12/19/2022] Open
Abstract
Many animals change their body pigmentation according to illumination of their environment. In aquatic vertebrates, this reaction is mediated through aggregation or dispersion of melanin-filled vesicles (melanosomes) in dermal pigment cells (melanophores). The adaptive value of this behavior is usually seen in camouflage by allowing the animal to visually blend into the background. When exposed to visible light from below, however, dark-adapted zebrafish embryos at the age of 2 days post fertilization (dpf) surprisingly display dispersal instead of aggregation of melanosomes, i.e. their body coloration becomes dark on a bright background. Melanosomes of older embryos and early larvae (3–5 dpf) on the other hand aggregate as expected under these conditions. Here we provide an explanation to this puzzling finding: Melanosome dispersion in larvae 3 dpf and older is efficiently triggered by ultraviolet (UV) light, irrespective of the visual background, suggesting that the extent of pigmentation is a trade-off between threats from predation and UV irradiation. The UV light-induced dispersion of melanosomes thereby is dependent on input from retinal short wavelength-sensitive (SWS) cone photoreceptors. In young embryos still lacking a functional retina, protection from UV light predominates, and light triggers a dispersal of melanosomes via photoreceptors intrinsic to the melanophores, regardless of the actual UV content. In older embryos and early larvae with functional retinal photoreceptors in contrast, this light-induced dispersion is counteracted by a delayed aggregation in the absence of UV light. These data suggest that the primary function of melanosome dispersal has evolved as a protective adaption to prevent UV damage, which was only later co-opted for camouflage.
Collapse
|
12
|
Hinz C, Kobbenbring S, Kress S, Sigman L, Müller A, Gerlach G. Kin recognition in zebrafish, Danio rerio, is based on imprinting on olfactory and visual stimuli. Anim Behav 2013. [DOI: 10.1016/j.anbehav.2013.02.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Greenwood AK, Cech JN, Peichel CL. Molecular and developmental contributions to divergent pigment patterns in marine and freshwater sticklebacks. Evol Dev 2012; 14:351-62. [PMID: 22765206 DOI: 10.1111/j.1525-142x.2012.00553.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pigment pattern variation across species or populations offers a tractable framework in which to investigate the evolution of development. Juvenile threespine sticklebacks (Gasterosteus aculeatus) from marine and freshwater environments exhibit divergent pigment patterns that are associated with ecological differences. Juvenile marine sticklebacks have a silvery appearance, whereas sticklebacks from freshwater environments exhibit a pattern of vertical bars. We investigated both the developmental and molecular basis of this population-level variation in pigment pattern. Time course imaging during the transition from larval to juvenile stages revealed differences between marine and freshwater fish in spatial patterns of chromatophore differentiation as well as in pigment amount and dispersal. In freshwater fish, melanophores appear primarily within dark bars whereas iridophores appear within light bars. By contrast, in marine fish, these chromatophores are interspersed across the flank. In addition to spatially segregated chromatophore differentiation, pigment amount and dispersal within melanophores varies spatially across the flank of freshwater, but not marine fish. To gain insight into the molecular pathways that underlie the differences in pigment pattern development, we evaluated differential gene expression in the flanks of developing fish using high-throughput cDNA sequencing (RNA-seq) and quantitative PCR. We identified several genes that were differentially expressed across dark and light bars of freshwater fish, and between freshwater and marine fish. Together, these experiments begin to shed light on the process of pigment pattern evolution in sticklebacks.
Collapse
Affiliation(s)
- Anna K Greenwood
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | | | | |
Collapse
|
14
|
|
15
|
Abstract
The scototaxis (dark/light preference) protocol is a behavioral model for fish that is being validated to assess the antianxiety effects of pharmacological agents and the behavioral effects of toxic substances, and to investigate the (epi)genetic bases of anxiety-related behavior. Briefly, a fish is placed in a central compartment of a half-black, half-white tank; following habituation, the fish is allowed to explore the tank for 15 min; the number and duration of entries in each compartment (white or black) are recorded by the observer for the whole session. Zebrafish, goldfish, guppies and tilapias (all species that are important in behavioral neurosciences and neuroethology) have been shown to demonstrate a marked preference for the dark compartment. An increase in white compartment activity (duration and/or entries) should reflect antianxiety behavior, whereas an increase in dark compartment activity should reflect anxiety-promoting behavior. When individual animals are exposed to the apparatus on only one occasion, results can be obtained in 20 min per fish.
Collapse
|
16
|
Othmer HG, Painter K, Umulis D, Xue C. The Intersection of Theory and Application in Elucidating Pattern Formation in Developmental Biology. MATHEMATICAL MODELLING OF NATURAL PHENOMENA 2009; 4:3-82. [PMID: 19844610 PMCID: PMC2763616 DOI: 10.1051/mmnp/20094401] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We discuss theoretical and experimental approaches to three distinct developmental systems that illustrate how theory can influence experimental work and vice-versa. The chosen systems - Drosophila melanogaster, bacterial pattern formation, and pigmentation patterns - illustrate the fundamental physical processes of signaling, growth and cell division, and cell movement involved in pattern formation and development. These systems exemplify the current state of theoretical and experimental understanding of how these processes produce the observed patterns, and illustrate how theoretical and experimental approaches can interact to lead to a better understanding of development. As John Bonner said long ago'We have arrived at the stage where models are useful to suggest experiments, and the facts of the experiments in turn lead to new and improved models that suggest new experiments. By this rocking back and forth between the reality of experimental facts and the dream world of hypotheses, we can move slowly toward a satisfactory solution of the major problems of developmental biology.'
Collapse
Affiliation(s)
- Hans G. Othmer
- School of Mathematics and Digital Technology Center, University of Minnesota, Minneapolis, MN 55455 USA
| | - Kevin Painter
- Department of Mathematics, Department of Mathematics and Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - David Umulis
- Agricultural & Biological Engineering, Purdue University, West Lafayette, IN USA 47907 USA
| | - Chuan Xue
- Mathematical Biosciences Institute, Ohio State University, Columbus, OH 43210 USA
| |
Collapse
|
17
|
Takahashi G, Kondo S. Melanophores in the stripes of adult zebrafish do not have the nature to gather, but disperse when they have the space to move. Pigment Cell Melanoma Res 2008; 21:677-86. [DOI: 10.1111/j.1755-148x.2008.00504.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Mills MG, Patterson LB. Not just black and white: pigment pattern development and evolution in vertebrates. Semin Cell Dev Biol 2008; 20:72-81. [PMID: 19073271 DOI: 10.1016/j.semcdb.2008.11.012] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 11/19/2008] [Indexed: 02/08/2023]
Abstract
Animals display diverse colors and patterns that vary within and between species. Similar phenotypes appear in both closely related and widely divergent taxa. Pigment patterns thus provide an opportunity to explore how development is altered to produce differences in form and whether similar phenotypes share a common genetic basis. Understanding the development and evolution of pigment patterns requires knowledge of the cellular interactions and signaling pathways that produce those patterns. These complex traits provide unparalleled opportunities for integrating studies from ecology and behavior to molecular biology and biophysics.
Collapse
Affiliation(s)
- Margaret G Mills
- Department of Biology, Box 351800, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
19
|
Kelsh RN, Harris ML, Colanesi S, Erickson CA. Stripes and belly-spots -- a review of pigment cell morphogenesis in vertebrates. Semin Cell Dev Biol 2008; 20:90-104. [PMID: 18977309 DOI: 10.1016/j.semcdb.2008.10.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 08/29/2008] [Accepted: 10/03/2008] [Indexed: 11/27/2022]
Abstract
Pigment patterns in the integument have long-attracted attention from both scientists and non-scientists alike since their natural attractiveness combines with their excellence as models for the general problem of pattern formation. Pigment cells are formed from the neural crest and must migrate to reach their final locations. In this review, we focus on our current understanding of mechanisms underlying the control of pigment cell migration and patterning in diverse vertebrates. The model systems discussed here - chick, mouse, and zebrafish - each provide unique insights into the major morphogenetic events driving pigment pattern formation. In birds and mammals, melanoblasts must be specified before they can migrate on the dorsolateral pathway. Transmembrane receptors involved in guiding them onto this route include EphB2 and Ednrb2 in chick, and Kit in mouse. Terminal migration depends, in part, upon extracellular matrix reorganization by ADAMTS20. Invasion of the ectoderm, especially into the feather germ and hair follicles, requires specific signals that are beginning to be characterized. We summarize our current understanding of the mechanisms regulating melanoblast number and organization in the epidermis. We note the apparent differences in pigment pattern formation in poikilothermic vertebrates when compared with birds and mammals. With more pigment cell types, migration pathways are more complex and largely unexplored; nevertheless, a role for Kit signaling in melanophore migration is clear and indicates that at least some patterning mechanisms may be highly conserved. We summarize the multiple factors thought to contribute to zebrafish embryonic pigment pattern formation, highlighting a recent study identifying Sdf1a as one factor crucial for regulation of melanophore positioning. Finally, we discuss the mechanisms generating a second, metamorphic pigment pattern in adult fish, emphasizing recent studies strengthening the evidence that undifferentiated progenitor cells play a major role in generating adult pigment cells.
Collapse
Affiliation(s)
- Robert N Kelsh
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | | | | | | |
Collapse
|
20
|
Abstract
The olfactory sensory system is perhaps the most intriguing of the sensory systems making up the peripheral nervous system. Understanding how olfactory sensory stimuli result in behaviors relevant to the animal is made complicated by the fact that olfactory stimuli are more difficult to quantify than light and sound stimuli. Furthermore, in all vertebrates the olfactory sensory neurons regenerate throughout life, presenting a fascinating problem of how both the functional repertoire of olfactory sensory neurons and fidelity of connections to the central nervous system are maintained. Olfactory behaviors are crucial for feeding and reproduction and the olfactory information essential to these behaviors appears to be processed separately in distinct regions of the central nervous system. Zebrafish represent an excellent model system in which the strength of genetics and development can be combined with neuroethological techniques to unravel the mechanisms underlying olfactory behaviors in vertebrate animals.
Collapse
Affiliation(s)
- Kathleen E Whitlock
- Department of Molecular Biology and Genetics, Cornell University, 445 Biotechnology Building, Ithaca, New York 14850, USA.
| |
Collapse
|
21
|
Hatamoto K, Shingyoji C. Cyclical training enhances the melanophore responses of zebrafish to background colours. Pigment Cell Melanoma Res 2008; 21:397-406. [DOI: 10.1111/j.1755-148x.2008.00445.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Parichy DM. Homology and the evolution of novelty during Danio adult pigment pattern development. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2007; 308:578-90. [PMID: 17094081 DOI: 10.1002/jez.b.21141] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent studies using zebrafish and its relatives have provided insights into the development and evolution of adult pigment patterns. In this review, I describe how an iterative approach using a biomedical model organism and its close relatives can be used to elucidate both mechanistic and organismal aspects of pigment pattern formation. Such analyses have revealed critical roles for post-embryonic latent precursors as well as interactions among different pigment cell classes during adult pigment pattern formation and diversification. These studies also have started to reveal homologous and novel features of the underlying developmental processes.
Collapse
Affiliation(s)
- David M Parichy
- Department of Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98195-1800, USA.
| |
Collapse
|
23
|
Spence R, Gerlach G, Lawrence C, Smith C. The behaviour and ecology of the zebrafish, Danio rerio. Biol Rev Camb Philos Soc 2007; 83:13-34. [DOI: 10.1111/j.1469-185x.2007.00030.x] [Citation(s) in RCA: 699] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
24
|
Yamaguchi M, Yoshimoto E, Kondo S. Pattern regulation in the stripe of zebrafish suggests an underlying dynamic and autonomous mechanism. Proc Natl Acad Sci U S A 2007; 104:4790-3. [PMID: 17360399 PMCID: PMC1820822 DOI: 10.1073/pnas.0607790104] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The mechanism by which animal markings are formed is an intriguing problem that has remained unsolved for a long time. One of the most important questions is whether the positional information for the pattern formation is derived from a covert prepattern or an autonomous mechanism. In this study, using the zebrafish as the model system, we attempted to answer this classic question. We ablated the pigment cells in limited areas of zebrafish skin by using laser irradiation, and we observed the regeneration of the pigmentation pattern. Depending on the area ablated, different patterns regenerated in a specific time course. The regenerated patterns and the transition of the stripes during the regeneration process suggest that pattern formation is independent of the prepattern; furthermore, pattern formation occurs by an autonomous mechanism that satisfies the condition of "local self-enhancement and long-range inhibition." Because the zebrafish is the only striped animal for which detailed molecular genetic studies have been conducted, our finding will facilitate the identification of the molecular and cellular mechanisms that underlie skin pattern formation.
Collapse
Affiliation(s)
- Motoomi Yamaguchi
- *Laboratory for Positional Information, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | - Shigeru Kondo
- *Laboratory for Positional Information, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
25
|
Zou J, Beermann F, Wang J, Kawakami K, Wei X. The Fugu tyrp1 promoter directs specific GFP expression in zebrafish: tools to study the RPE and the neural crest-derived melanophores. ACTA ACUST UNITED AC 2007; 19:615-27. [PMID: 17083488 PMCID: PMC2920493 DOI: 10.1111/j.1600-0749.2006.00349.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In vertebrates, pigment cells account for a small percentage of the total cell population and they intermingle with other cell types. This makes it difficult to isolate them for analyzes of their functions in the context of development. To alleviate such difficulty, we generated two stable transgenic zebrafish lines (pt101 and pt102) that express green fluorescent protein (GFP) in melanophores under the control of the 1 kb Fugu tyrp1 promoter. In pt101, GFP is expressed in both retinal pigment epithelium (RPE) cells and the neural crest-derived melanophores (NCDM), whereas in pt102, GFP is predominately expressed in the NCDM. Our results indicate that the Fugu tyrp1 promoter can direct transgene expression in a cell-type-specific manner in zebrafish. In addition, our findings provide evidence supporting differential regulations of melanin-synthesizing genes in RPE cells and the NCDM in zebrafish. Utilizing the varying GFP expression levels in these fish, we have isolated melanophores via flow cytometry and revealed the capability of sorting the NCDM from RPE cells as well. Thus, these transgenic lines are useful tools to study melanophores in zebrafish.
Collapse
Affiliation(s)
- Jian Zou
- Department of Ophthalmology, University of Pittsburgh School of Medicine, 203 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Friedrich Beermann
- ISREC (Swiss Institute for Experimental Cancer Research), National Center of Competence in Research (NCCR) Molecular Oncology, Chemin des Boveresses, 1066 Epalinges, Switzerland
| | - Jianxin Wang
- Znomics, Inc. 2611 S.W. 3rd Ave. Suite 200, Portland, OR 97201, USA
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Xiangyun Wei
- Department of Ophthalmology, University of Pittsburgh School of Medicine, 203 Lothrop Street, Pittsburgh, PA 15213, USA
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, 203 Lothrop Street, Pittsburgh, PA 15213, USA
- Corresponding author: Tel: 412-647-3537 Fax: 412-647-5880
| |
Collapse
|
26
|
Harden MV, Newton LA, Lloyd RC, Whitlock KE. Olfactory imprinting is correlated with changes in gene expression in the olfactory epithelia of the zebrafish. ACTA ACUST UNITED AC 2007; 66:1452-66. [PMID: 17013923 DOI: 10.1002/neu.20328] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Odors experienced as juveniles can have significant effects on the behavior of mature organisms. A dramatic example of this occurs in salmon, where the odors experienced by developing fish determine the river to which they return as adults. Further examples of olfactory memories are found in many animals including vertebrates and invertebrates. Yet, the cellular and molecular bases underlying the formation of olfactory memory are poorly understood. We have devised a series of experiments to determine whether zebrafish can form olfactory memories much like those observed in salmonids. Here we show for the first time that zebrafish form and retain olfactory memories of an artificial odorant, phenylethyl alcohol (PEA), experienced as juveniles. Furthermore, we demonstrate that exposure to PEA results in changes in gene expression within the olfactory sensory system. These changes are evident by in situ hybridization in the olfactory epithelium of the developing zebrafish. Strikingly, our analysis by in situ hybridization demonstrates that the transcription factor, otx2, is up regulated in the olfactory sensory epithelia in response to PEA. This increase is evident at 2-3 days postfertilization and is maintained in the adult animals. We propose that the changes in otx2 gene expression are manifest as an increase in the number of neuronal precursors in the cells olfactory epithelium of the odor-exposed fish. Thus, our results reveal a role for the environment in controlling gene expression in the developing peripheral nervous system.
Collapse
Affiliation(s)
- Maegan V Harden
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
27
|
Spence R, Smith C. The Role of Early Learning in Determining Shoaling Preferences Based on Visual Cues in the Zebrafish, Danio rerio. Ethology 2007. [DOI: 10.1111/j.1439-0310.2006.01295.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Abstract
Pigment patterns of danio fishes are emerging as a useful system for studying the evolution of developmental mechanisms underlying adult form. Different closely related species within the genera Danio and Devario exhibit a range of pigment patterns including horizontal stripes, vertical bars, and others. In this review, I summarize recent work identifying the genetic and cellular bases for adult pigment pattern formation in the zebrafish Danio rerio, as well as studies of how these mechanisms have evolved in other danios. Together, these analyses highlight the importance of latent precursors at post-embrynoic stages, as well as interactions within and among pigment cell classes, for both pigment pattern development and evolution.
Collapse
Affiliation(s)
- D M Parichy
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA.
| |
Collapse
|
29
|
Quigley IK, Manuel JL, Roberts RA, Nuckels RJ, Herrington ER, MacDonald EL, Parichy DM. Evolutionary diversification of pigment pattern in Danio fishes: differential fms dependence and stripe loss in D. albolineatus. Development 2004; 132:89-104. [PMID: 15563521 DOI: 10.1242/dev.01547] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The developmental bases for species differences in adult phenotypes remain largely unknown. An emerging system for studying such variation is the adult pigment pattern expressed by Danio fishes. These patterns result from several classes of pigment cells including black melanophores and yellow xanthophores, which differentiate during metamorphosis from latent stem cells of presumptive neural crest origin. In the zebrafish D. rerio, alternating light and dark horizontal stripes develop, in part, owing to interactions between melanophores and cells of the xanthophore lineage that depend on the fms receptor tyrosine kinase; zebrafish fms mutants lack xanthophores and have disrupted melanophore stripes. By contrast, the closely related species D. albolineatus exhibits a uniform pattern of melanophores, and previous interspecific complementation tests identified fms as a potential contributor to this difference between species. Here, we survey additional species and demonstrate marked variation in the fms-dependence of hybrid pigment patterns, suggesting interspecific variation in the fms pathway or fms requirements during pigment pattern formation. We next examine the cellular bases for the evolutionary loss of stripes in D. albolineatus and test the simplest model to explain this transformation, a loss of fms activity in D. albolineatus relative to D. rerio. Within D. albolineatus, we demonstrate increased rates of melanophore death and decreased melanophore migration, different from wild-type D. rerio but similar to fms mutant D. rerio. Yet, we also find persistent fms expression in D. albolineatus and enhanced xanthophore development compared with wild-type D. rerio, and in stark contrast to fms mutant D. rerio. These findings exclude the simplest model in which stripe loss in D. albolineatus results from a loss of fms-dependent xanthophores and their interactions with melanophores. Rather, our results suggest an alternative model in which evolutionary changes in pigment cell interactions themselves have contributed to stripe loss, and we test this model by manipulating melanophore numbers in interspecific hybrids. Together, these data suggest evolutionary changes in the fms pathway or fms requirements, and identify changes in cellular interactions as a likely mechanism of evolutionary change in Danio pigment patterns.
Collapse
Affiliation(s)
- Ian K Quigley
- Section of Integrative Biology, Section of Molecular, Cell and Developmental Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, 1 University Station C0930, Austin, TX 78712, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Engeszer RE, Ryan MJ, Parichy DM. Learned social preference in zebrafish. Curr Biol 2004; 14:881-4. [PMID: 15186744 DOI: 10.1016/j.cub.2004.04.042] [Citation(s) in RCA: 213] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Revised: 03/18/2004] [Accepted: 03/18/2004] [Indexed: 12/28/2022]
Abstract
How social aggregations arise and persist is central to our understanding of evolution, behavior, and psychology. When social groups arise within a species, evolutionary divergence and speciation can result. To understand this diversifying role of social behavior, we must examine the internal and external influences that lead to nonrandom assortment of phenotypes. Many fishes form aggregations called shoals that reduce predation risk while enhancing foraging and reproductive success. Thus, shoaling is adaptive, and signals that maintain shoals are likely to evolve under selection. Given the diversity of pigment patterns among Danio fishes, visual signals might be especially important in mediating social behaviors in this group. Our understanding of pigment pattern development in the zebrafish D. rerio allows integrative analyses of how molecular variation leads to morphological variation among individuals and how morphological variation influences social interactions. Here, we use the zebrafish pigment mutant nacre/mitfa to test roles for genetic and environmental determinants in the development of shoaling preference. We demonstrate that individuals discriminate between shoals having different pigment pattern phenotypes and that early experience determines shoaling preference. These results suggest a role for social learning in pigment pattern diversification in danios.
Collapse
Affiliation(s)
- Raymond E Engeszer
- Section of Integrative Biology, University of Texas, Austin, TX 78712, USA.
| | | | | |
Collapse
|
31
|
Maderspacher F, Nüsslein-Volhard C. Formation of the adult pigment pattern in zebrafish requires leopard and obelix dependent cell interactions. Development 2003; 130:3447-57. [PMID: 12810592 DOI: 10.1242/dev.00519] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Colour patterns are a prominent feature of many animals and are of high evolutionary relevance. In zebrafish, the adult pigment pattern comprises alternating stripes of two pigment cell types, melanophores and xanthophores. How the stripes are defined and a straight boundary is formed remains elusive. We find that mutants lacking one pigment cell type lack a striped pattern. Instead, cells of one type form characteristic patterns by homotypic interactions. Using mosaic analysis, we show that juxtaposition of melanophores and xanthophores suffices to restore stripe formation locally. Based on this, we have analysed the pigment pattern of two adult specific mutants: leopard and obelix. We demonstrate that obelix is required in melanophores to promote their aggregation and controls boundary integrity. By contrast, leopard regulates homotypic interaction within both melanophores and xanthophores, and interaction between the two, thus controlling boundary shape. These findings support a view in which cell-cell interactions among pigment cells are the major driving force for adult pigment pattern formation.
Collapse
Affiliation(s)
- Florian Maderspacher
- Max-Planck-Institut für Entwicklungsbiologie, Abt. III/Genetik, Spemannstrasse 35, 72076 Tübingen, Germany.
| | | |
Collapse
|
32
|
McClure M, McCune AR. EVIDENCE FOR DEVELOPMENTAL LINKAGE OF PIGMENT PATTERNS WITH BODY SIZE AND SHAPE IN DANIOS (TELEOSTEI: CYPRINIDAE). Evolution 2003. [DOI: 10.1554/02-418] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Quigley IK, Parichy DM. Pigment pattern formation in zebrafish: a model for developmental genetics and the evolution of form. Microsc Res Tech 2002; 58:442-55. [PMID: 12242701 DOI: 10.1002/jemt.10162] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The zebrafish Danio rerio is an emerging model organism for understanding vertebrate development and genetics. One trait of both historical and recent interest is the pattern formed by neural crest-derived pigment cells, or chromatophores, which include black melanophores, yellow xanthophores, and iridescent iridophores. In zebrafish, an embryonic and early larval pigment pattern consists of several stripes of melanophores and iridophores, whereas xanthophores are scattered widely over the flank. During metamorphosis, however, this pattern is transformed into that of the adult, which comprises several dark stripes of melanophores and iridophores that alternate with light stripes of xanthophores and iridophores. In this review, we place zebrafish relative to other model and non-model species; we review what is known about the processes of chromatophore specification, differentiation, and morphogenesis during the development of embryonic and adult pigment patterns, and we address how future studies of zebrafish will likely aid our understanding of human disease and the evolution of form.
Collapse
Affiliation(s)
- Ian K Quigley
- Section of Integrative Biology, University of Texas at Austin, 78712, USA
| | | |
Collapse
|
34
|
SANGER THOMASJ, McCUNE AMYR. Comparative osteology of the Danio (Cyprinidae: Ostariophysi) axial skeleton with comments on Danio relationships based on molecules and morphology. Zool J Linn Soc 2002. [DOI: 10.1046/j.1096-3642.2002.00014.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Beeching SC, Holt BA, Neiderer MP. Ontogeny of Melanistic Color Pattern Elements in the Convict Cichlid, Cichlasoma nigrofasciatum. COPEIA 2002. [DOI: 10.1643/0045-8511(2002)002[0199:oomcpe]2.0.co;2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Hsiao CD, Hsieh FJ, Tsai HJ. Enhanced expression and stable transmission of transgenes flanked by inverted terminal repeats from adeno-associated virus in zebrafish. Dev Dyn 2001; 220:323-36. [PMID: 11307166 DOI: 10.1002/dvdy.1113] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mosaic expression of transgenes in the F0 generation severely hinders the study of transient expression in transgenic fish. To avoid mosaicism, enhanced green fluorescent protein (EGFP) gene cassettes were constructed and introduced into one-celled zebrafish embryos. These EGFP gene cassettes were flanked by inverted terminal repeats (ITRs) from adeno-associated virus (AAV) and driven by zebrafish alpha-actin (palpha-actin-EGFP-ITR) or medaka beta-actin promoters (pbeta-actin-EGFP-ITR). EGFP was expressed specifically and uniformly in the skeletal muscle of 56% +/- 8% of the palpha-actin-EGFP-ITR-injected survivors and in the entire body of 1.3% +/- 0.8% of the pbeta-actin-EGFP-ITR-injected survivors. Uniform transient expression never occurred in zebrafish embryos injected with EGFP genes that were not flanked by AAV-ITRs. In the F0 generation, uniformly distributed EGFP could mimic the stable expression in transgenic lines early in development. We established five transgenic lines derived from palpha-actin-EGFP-ITR-injected embryos crossed with wild-type fish and 11 transgenic lines derived from pbeta-actin-EGFP-ITR-injected embryos crossed with wild-type fish. None of these transgenic lines failed to express the transgene, a result confirmed by polymerase chain reaction analysis. Stable mendelian transmission of the transgenes was achieved in both alpha-actin and beta-actin transgenic lines without changing the patterns of expression and integration. Progeny inheritance test and Southern blot analysis results strongly suggest that transgenes flanked by AAV-ITRs were integrated randomly into the genome at a single locus with a concatamerized multiplier. Thus, incorporating AAV-ITRs into transgenes results in uniform gene expression in the F0 generation and stable transmission of transgenes in zebrafish.
Collapse
Affiliation(s)
- C D Hsiao
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
37
|
Parichy DM, Ransom DG, Paw B, Zon LI, Johnson SL. An orthologue of the kit-related gene fms is required for development of neural crest-derived xanthophores and a subpopulation of adult melanocytes in the zebrafish, Danio rerio. Development 2000; 127:3031-44. [PMID: 10862741 DOI: 10.1242/dev.127.14.3031] [Citation(s) in RCA: 254] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Developmental mechanisms underlying traits expressed in larval and adult vertebrates remain largely unknown. Pigment patterns of fishes provide an opportunity to identify genes and cell behaviors required for postembryonic morphogenesis and differentiation. In the zebrafish, Danio rerio, pigment patterns reflect the spatial arrangements of three classes of neural crest-derived pigment cells: black melanocytes, yellow xanthophores and silver iridophores. We show that the D. rerio pigment pattern mutant panther ablates xanthophores in embryos and adults and has defects in the development of the adult pattern of melanocyte stripes. We find that panther corresponds to an orthologue of the c-fms gene, which encodes a type III receptor tyrosine kinase and is the closest known homologue of the previously identified pigment pattern gene, kit. In mouse, fms is essential for the development of macrophage and osteoclast lineages and has not been implicated in neural crest or pigment cell development. In contrast, our analyses demonstrate that fms is expressed and required by D. rerio xanthophore precursors and that fms promotes the normal patterning of melanocyte death and migration during adult stripe formation. Finally, we show that fms is required for the appearance of a late developing, kit-independent subpopulation of adult melanocytes. These findings reveal an unexpected role for fms in pigment pattern development and demonstrate that parallel neural crest-derived pigment cell populations depend on the activities of two essentially paralogous genes, kit and fms.
Collapse
Affiliation(s)
- D M Parichy
- Department of Genetics, Washington University Medical School, St Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|